JPH01120084A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH01120084A
JPH01120084A JP27760287A JP27760287A JPH01120084A JP H01120084 A JPH01120084 A JP H01120084A JP 27760287 A JP27760287 A JP 27760287A JP 27760287 A JP27760287 A JP 27760287A JP H01120084 A JPH01120084 A JP H01120084A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
crystal growth
groove
clad layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27760287A
Other languages
Japanese (ja)
Inventor
Masaya Mannou
萬濃 正也
Mototsugu Ogura
基次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27760287A priority Critical patent/JPH01120084A/en
Publication of JPH01120084A publication Critical patent/JPH01120084A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily manufacture a short-wavelength laser whose unity in transverse mode is excellent by a method wherein, after a first clad layer and an antioxidation layer have been grown on a U-shaped groove by an LPE method so as to make the surface flat, a double heterostructure including a second clad layer is grown again on them. CONSTITUTION:The following two are formed one after another on a GaAs substrate 1 of a first conductivity type having at least a groove 2 as a first crystal growth process: a first clad layer 3 composed of an AlxGa1-xAs layer of the first conductivity type which fills the groove 2 by a liquid growth method, which has a flat upper face, whose forbidden band width is larger than that of an active layer and whose refractive index is small; a GazIn1-zP antioxidation layer 4 (z-0.5) of the first conductivity type on the first clad layer 3. Then, at least a second clad layer 5 of the first conductivity type, an active layer 6 and a clad layer 7 of a second conductivity type are formed one after another on said GazIn1-zP antioxidation layer 4 as a second crystal growth process. Said second crystal growth process is executed by using a crystal growth method in a thermal non-equilibrium state, e.g. a metal organic vapor growth method, a molecular beam growth method or the like.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、情報の光通信あるいは光消去・記録・再生な
どに用いることのできる単一横モード短波長半導体レー
ザの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a single transverse mode short wavelength semiconductor laser that can be used for optical communication of information, optical erasing, recording, reproducing, etc.

従来の技術 近年、ディジタル拳オーディオ会ディスク、光デイヌク
ファイル、レーザプリンター等の情報処理装置用光源と
して、例えば第3図に示すような構造の0.8μr4i
 AI G a A s系半導体レーザが実用化されて
いる。一方、さらに高性能化を目指すためA7GaIn
P  系半導体レーザやA I G a A S系量子
井戸型半導体レーザに代表される0、871m〜0.7
71m帯短波長短波長半導ザが強く要望されている。
2. Description of the Related Art In recent years, 0.8μr4i with a structure as shown in FIG.
AIGaAs semiconductor lasers have been put into practical use. On the other hand, in order to aim for even higher performance, A7GaIn
0.871 m to 0.7 m, represented by P-based semiconductor lasers and AIG a S-based quantum well semiconductor lasers.
There is a strong demand for 71m band short wavelength short wavelength semiconductor lasers.

以下、第3図の従来の横モードを制御した0、871m
帯jJGaAs  系半導体レーザについて説明する。
Below, 0,871m with conventional transverse mode control shown in Figure 3.
A band jJ GaAs semiconductor laser will be explained.

1は凹溝2を設けたn−GaAs基板、12はn−Al
yGa1.、Asクラッド層、13はノンドープA l
 y G a 1−y A s活性層(y’<y)、1
4はp −A l y G a 1−y A sクラッ
ド層、8はn−GaAsキャップ層、9はZn拡散層、
10.11はそれぞれ” r P側電極である。以上の
ような構造は液相成長法(以下、LPE法)により形成
され、n−AlyGa 1−、Asり2ラド層12上面
において平坦化されている。この構造において、電流は
Zn拡散層9によりロ溝12内しか流れず、凹溝12上
の活性層が発光することになる。レーザ発振した光の一
部はクラッド層にしみ出し、n −GaAs基板1の凹
溝外部で吸収され、その結果、横方向に実効的な屈折率
差がつき、光は閉じ込められることにな)横モード制御
が行われていた。
1 is an n-GaAs substrate provided with grooves 2, 12 is an n-Al
yGa1. , As cladding layer, 13 is non-doped Al
y Ga 1-y As active layer (y'<y), 1
4 is a p-AlyGa1-yAs cladding layer, 8 is an n-GaAs cap layer, 9 is a Zn diffusion layer,
Reference numerals 10 and 11 are respectively "r P side electrodes. The above structure is formed by liquid phase epitaxy (hereinafter referred to as LPE method), and the upper surface of the n-AlyGa 1-, As 2-rad layer 12 is flattened. In this structure, the current flows only in the groove 12 due to the Zn diffusion layer 9, and the active layer on the groove 12 emits light. A part of the laser oscillated light leaks into the cladding layer. The light is absorbed outside the groove of the n-GaAs substrate 1, resulting in an effective refractive index difference in the lateral direction, and the light is confined (transverse mode control).

発明が解決しようとする問題点 しかしながら、更に短波長の半導体レーザ例えばAIG
aInP系半導体レー系中導体レーザ a A s系量
子井戸型半導体レーザにこの構造を適用する場合、他の
材料系に比べて結晶成長するうえで種々の制約があシ、
形成困難であった。
Problems to be Solved by the Invention However, even shorter wavelength semiconductor lasers such as AIG
When this structure is applied to an aInP semiconductor laser medium conductor laser or an aAs quantum well semiconductor laser, there are various constraints on crystal growth compared to other material systems.
It was difficult to form.

つまシ前者は熱力学的制限から、後者は膜厚の制御性の
観点から従来一般に用いられているLPE法では形成困
難である。また、熱非平衡状態下での成長法である有機
金属気相成長法(以下、MovPE法)や分子線成長法
(以下、MBE法)は溝埋め成長しにくい等の欠点があ
シ、例えば、第3図のようなLPE法でしばしば行われ
るような、基板に溝を形成し、この溝が埋まるようにダ
ブルへテロ構造を積層し、溝の両側での基板による光吸
収により実効的な光ガイドを形成するタイプの半導体レ
ーザには適用しにくい。
The former is difficult to form due to thermodynamic limitations, and the latter is difficult to form using the conventionally commonly used LPE method from the viewpoint of controllability of film thickness. Furthermore, metal organic vapor phase epitaxy (hereinafter referred to as MovPE method) and molecular beam growth method (hereinafter referred to as MBE method), which are growth methods under thermal non-equilibrium conditions, have drawbacks such as difficulty in trench-filling growth. , as is often done in the LPE method as shown in Figure 3, a groove is formed in the substrate, and a double heterostructure is stacked so that the groove is filled, and the effective light absorption by the substrate on both sides of the groove is achieved. It is difficult to apply this method to a type of semiconductor laser that forms a light guide.

そこで、本発明の目的は、上記の問題点を除去し、横モ
ードの単一性に優れた短波長レーザの製造方法を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned problems and provide a method for manufacturing a short wavelength laser with excellent transverse mode unity.

問題点を解決するための手段 上記問題点を解決するための本発明の技術的手段はLP
E法によりあらかじめ凹溝を設けたG a A s基板
上に活性層となる材料より禁制帯幅が大きく屈折率の小
さい第1のAl工G a 1− XA sクラッド層金
その上面で平坦になるよう形成し、さらにそのA〜G 
a i −yA s  層が酸化されないようG a 
zI n 1−zP酸化防止層(z −0,5)を形成
、しかる後にMOVPE法もしくはMBE法により第2
のクラッド層を含む所定のダブルへテロ構造を積層する
ものである。この場合、第1のAlGaAs  クラッ
ド層は凹溝部で少なくとも第2のクラッド層との積層に
より活性層への光閉じ込め全行い、門構外部ではG a
 A s基板が光吸収層として働くのに十分な厚さに選
定する。
Means for solving the problems The technical means of the present invention for solving the above problems is LP
A first aluminum cladding layer, gold, which has a larger forbidden band and a lower refractive index than the material that will become the active layer, is formed on the GaAs substrate, which has grooves formed in advance using the E method, and is flattened on its upper surface. Then, the A to G
Ga to prevent the a i -yA s layer from being oxidized
zI n 1-zP oxidation prevention layer (z -0,5) is formed, and then a second layer is formed by MOVPE or MBE.
A predetermined double heterostructure including a cladding layer is laminated. In this case, the first AlGaAs cladding layer completely confines light to the active layer by laminating at least the second cladding layer in the groove, and Ga
The thickness is chosen to be sufficient for the As substrate to act as a light absorption layer.

作  用 本発明においては、短波長半導体レーザの横モードを制
御するため、溝埋め成長が可能なLPE法により凹溝上
に表面が平坦になるよう第1のA11xGa 1−xA
s  クラッド層とその表面酸化防止のためG a 2
I n 1−zP層を成長する工程と、その上にMOV
PE法もしくはMBE法により第2のクラッド層を含む
ダブルへテロ構造を再成長する工程によ多構成されたも
のであ夛、第1のAl工Ga1−xAII クラッド層
のAIAa組成比組成比色くても再成長界面および再成
長層の結晶性を損うことはなく、しかも基板側のクラッ
ド層は凹溝部で第1および第2のクラッド層の積層によ
り十分光閉じ込めが行われ、凹溝外部でG a A s
基板が光吸収層として働くようにしたことによって単−
横モードの短波長レーザを実現することができる。
Function In the present invention, in order to control the transverse mode of a short wavelength semiconductor laser, the first A11xGa 1-xA is grown on the concave groove so that the surface is flat by the LPE method that allows trench-filling growth.
s G a 2 to prevent oxidation of the cladding layer and its surface
Step of growing In 1-zP layer and MOV on it
The structure is composed of a process of regrowing a double heterostructure including a second cladding layer by PE method or MBE method. Even if the crystallinity of the regrown interface and regrown layer is deteriorated, the crystallinity of the regrown interface and the regrown layer will not be impaired.Moreover, the cladding layer on the substrate side is sufficiently optically confined in the groove by the stacking of the first and second cladding layers. G a A s outside
By making the substrate work as a light absorption layer,
A transverse mode short wavelength laser can be realized.

実施例 以下、本発明の一実施例を図面に基づいて説明する。Example Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は本発明を実施した場合の概略断面図、第2図は
主要な製造過程を示す工程図である。
FIG. 1 is a schematic sectional view when the present invention is implemented, and FIG. 2 is a process diagram showing the main manufacturing process.

まず、第2図Aに示すようにn −G a A s基板
1上には通常のフォトリングラフィ及び化学エツチング
によりロ溝2を形成する。凹溝の深さと幅はそれぞれ1
 、#m 、 5 Itmである。次に第2図Bに示す
ようにLPE法により第1のクラッド層としてn  A
lo、7 G a o、 5A 8層3.酸化防止層と
してn G a o、 s I n o、 s P 4
を順次成長させる。この時、n−Alo、7Ga、As
層3は表面が平坦であシ、その膜厚は凹溝2部で1.2
71m、凹溝2外部で0.2 It m 。
First, as shown in FIG. 2A, a groove 2 is formed on an n-GaAs substrate 1 by ordinary photolithography and chemical etching. The depth and width of the groove are each 1
, #m, 5 Itm. Next, as shown in FIG. 2B, nA was formed as the first cladding layer by LPE method
lo, 7 Ga o, 5A 8 layers3. nGao, sIno, sP4 as anti-oxidation layer
grow sequentially. At this time, n-Alo, 7Ga, As
Layer 3 has a flat surface, and its thickness is 1.2 at the groove 2 part.
71 m, 0.2 It m outside groove 2.

n −G a o、 s I n o、 s P層4の
膜厚は50Aである。
The thickness of the n-Gao, sIno, sP layer 4 is 50A.

LPE法゛による第1の結晶成長工程の後ただちにMO
VPE法によりPH3雰囲気中で10分間のサーマルク
リーニングに続き第2のクラッド層としてn All 
l]、2 G a o、 !、 I n o、5P層5
.活性層としてノンドープG a o、s I n o
、s P層6.さらに逆導電型のクラッド層としてp#
o、2Gao、3In。、5P 層7゜キャップ層とし
てn−GaAs 層8を順次成長させる。この時、再成
長界面は良好であシ、再成長層の結晶性には何ら問題は
ない。
Immediately after the first crystal growth step by LPE method, MO
n All as a second cladding layer following thermal cleaning for 10 minutes in a PH3 atmosphere by VPE
l], 2 G a o, ! , I no, 5P layer 5
.. Non-doped G ao, s I n o as active layer
, s P layer 6. Furthermore, as a cladding layer of the opposite conductivity type, p#
o, 2Gao, 3In. , 5P layer 7. An n-GaAs layer 8 is sequentially grown as a cap layer. At this time, the regrown interface is good and there is no problem with the crystallinity of the regrown layer.

それぞれの層の膜厚は0.171m 、 0.171m
 、 11trn 、 1/1mである。
The thickness of each layer is 0.171m, 0.171m
, 11trn, 1/1m.

この表面上よυ選択的に亜鉛(Zn)を拡散し、Zn拡
散層9がp−Alo、2Ga o、3In 0.5”層
6に達するようにする。次いでn側電極1o及びp側電
極11を被着させ、その後、へき開マウント、パッケー
ジングを行う。
Zinc (Zn) is selectively diffused onto this surface so that the Zn diffusion layer 9 reaches the p-Alo, 2Ga o, 3In 0.5'' layer 6. Next, the n-side electrode 1o and the p-side electrode 11 is applied, followed by cleavage mounting and packaging.

MOVPE法で形成した活性層G a o、s I n
 o、s P層6の禁制帯幅は1.85e、Vであシ、
第1のA710.7 Ga cLsAsクラッド層3お
よび第2のAlo、2(ja O,3I n o、s 
Pクラッド層5の禁制帯幅はともに2.1 eV  以
上あシ上記の膜厚において十分に光の閉じ込めが達成さ
れている。Ga(、,51n。、5P酸化防止層4は十
分薄く、しかもLPE法により形成されたもので禁制帯
幅は1.9eV あり光吸収はおこらず、特性上はとん
ど問題とならない。
Active layer G ao,s I n formed by MOVPE method
o, s The forbidden band width of the P layer 6 is 1.85e, V,
The first A710.7 Ga cLsAs cladding layer 3 and the second Alo,2(ja O,3I no,s
Both of the forbidden band widths of the P cladding layer 5 are 2.1 eV or more, and sufficient light confinement is achieved at the above film thickness. The Ga(,,51n.,5P) oxidation preventing layer 4 is sufficiently thin and formed by the LPE method, has a forbidden band width of 1.9 eV, does not absorb light, and does not cause any problems in terms of characteristics.

尚、以上の説明において第2の結晶成長工程でAlGa
InP系ダブルへテロ構造を形成する場合について示し
たが、A 73 G a A s 系でもよく、更には
量子井戸構造の活性層であっても適用されるのは言うま
でもない。
In addition, in the above explanation, AlGa
Although the case of forming an InP-based double heterostructure has been described, it goes without saying that it may be applied to an A 73 Ga As-based structure or even an active layer having a quantum well structure.

また、本発明はp−GaAs基板上に上記実施例とは反
対の導電型の各層を形成する場合や更にG a A s
基板上には凹溝部で貫通された反対導電型電流狭窄層が
設けられていても良い。
Further, the present invention is applicable to cases in which layers of conductivity type opposite to those in the above embodiments are formed on a p-GaAs substrate, and in addition, GaAs
A current confinement layer of an opposite conductivity type may be provided on the substrate and penetrated by a groove portion.

発明の効果 上述したように本発明によれば、凹溝ケ利用した単一横
モードの短波長半導体レーザが容易に得られ、実用上効
果は犬である。
Effects of the Invention As described above, according to the present invention, a single transverse mode short wavelength semiconductor laser utilizing a concave groove can be easily obtained, and the practical effects are excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の半導体レーザの断面図、第
2図は実施例の半導体レーザの製造工程全工程順に示し
た断面図、第3図は従来による横モードを制御した半導
体レーザの断面図である。 1・・・・・・−n−GaAs基板、2・・・・・・凹
溝、3・・・・・・第1のn −All 、Ga 、 
−xAs層クラッド層、4・・印・n Gao、sIn
。、5醸化防止層、6・・・・・・第2のn−A10.
2G”0.3”0.5Pクラツド層、6・・自・・ノン
ドープG a o、s I n o、s P活性層、7
 ・・・・・・p−Al1 o、2Ga O,s I 
n o、s Pクラッド層、8・・・・・・n −G 
a A sキャンプ層、9・・・・・・Zn拡散層、1
o・・・・・・n側電極、11・・・・・・p側電極、
12・・・・・・n−AlyGa1−yAAlラッド層
、13・・・・・・ノンドープA l yG a 1 
弓A s活性層、14・・・・・・p−AlGalGa
八ツクラッ ド層人の氏名 弁理士 中 尾 敏 男 ほか1名/ 
−−−n −Q−a−As基才反 ?−凹糞 3−一一第 / Q n−AJlty7Ga−o3As
クラッド層4− 几−らo、slル05β醗化訪止層S
−’@ 2のn−−Al6.2 (7a、a、、31n
nsβクラフト16−−−ノンドーブCrcLo、s 
L?La、sF ’/古性、屑7−−− F−A1.o
、z (rra31fLa、sβクラット贋β′−n−
Qa−As千タップ層 9−・−27拡散1 / −= n−craAs基板 2−一一回溝 3−−− 第1 ty> rt−ALo、7(:ra、
o、aハS7う・・ノド眉4−几−眞σ51xθ5F酸
化坊止贋 s−12/1yt−ハフ0.2Qa−o、3ko、sP
クラツド贋6− ノンドープCta−o、s IfLo
、sP 5tsa層/2−−−ルーバLy(tαt−y
Asクラッド層13−  ノンドープALy’眞l−グ
丸石樺1/4−−− P−AJ−7cra−t−IAs
 7 ラッド1第 3 図
Fig. 1 is a cross-sectional view of a semiconductor laser according to an embodiment of the present invention, Fig. 2 is a cross-sectional view showing the entire manufacturing process of the semiconductor laser according to the embodiment in order, and Fig. 3 is a conventional semiconductor laser with controlled transverse mode. FIG. 1...-n-GaAs substrate, 2...-concave groove, 3...-first n-All, Ga,
-xAs layer cladding layer, 4...mark/n Gao, sIn
. , 5 anti-fouling layer, 6... second n-A10.
2G"0.3"0.5P cladding layer, 6... Self-undoped Ga o, s I no, s P active layer, 7
・・・・・・p-Al1 o, 2Ga O,s I
no, s P cladding layer, 8...n-G
a A s camp layer, 9...Zn diffusion layer, 1
o...n side electrode, 11...p side electrode,
12...n-AlyGa1-yAAl rad layer, 13...Non-doped AlyG a 1
Bow A s active layer, 14...p-AlGalGa
Name of Yatsuclad: Patent attorney Toshio Nakao and 1 other person/
---n -Q-a-As basic talent? -Concave shit 3-11 / Q n-AJlty7Ga-o3As
Cladding layer 4- 几-rao, slru05β oxidation stop layer S
-'@2n--Al6.2 (7a, a, 31n
nsβ Craft 16---Nondove CrcLo, s
L? La, sF'/Ancient, Scrap 7 --- F-A1. o
, z (rra31fLa, sβcrat fake β'-n-
Qa-As 1,000-tap layer 9--27 diffusion 1/-= n-craAs substrate 2-11 groove 3--- 1st ty> rt-ALo, 7(:ra,
o, aha S7... throat eyebrow 4-几-shin σ51xθ5F oxidation bodhi counterfeit s-12/1yt-hough 0.2Qa-o, 3ko, sP
Clothed counterfeit 6- Non-dope Cta-o,s IfLo
, sP 5tsa layer/2---louver Ly(tαt-y
As cladding layer 13--Non-doped ALy'-G Cobblestone Birch 1/4---P-AJ-7cra-t-IAs
7 Rad 1 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも溝を有する第1導電型GaAs基板上
に液相成長法により前記溝を埋めかつ平坦な上面を有す
るような、活性層よりも禁制帯幅が大きく屈折率が小さ
い第1導電型Al_xGa_1_−_xAs層からなる
第1のクラッド層と、前記第1のクラッド層上に第1導
電型Ga_zIn_1_−_zP酸化防止層(z〜0.
5)を順次形成する第1の結晶成長工程と、前記Ga_
zIn_1_−_zP酸化防止層上に少なくとも第1導
電型の第2のクラッド層、活性層、及び第2導電型のク
ラッド層とを順次形成する第2の結晶成長工程を含む半
導体レーザの製造方法。
(1) A first conductivity type GaAs substrate having at least a groove, which fills the groove by a liquid phase growth method and has a flat upper surface, and which has a larger forbidden band width and a lower refractive index than the active layer. A first cladding layer made of an Al_xGa_1_-_xAs layer, and a first conductivity type Ga_zIn_1_-_zP anti-oxidation layer (z~0.
5) a first crystal growth step of sequentially forming the Ga_
A method for manufacturing a semiconductor laser, comprising a second crystal growth step of sequentially forming at least a second cladding layer of a first conductivity type, an active layer, and a cladding layer of a second conductivity type on a zIn_1_-_zP oxidation prevention layer.
(2)第2の結晶成長工程が有機金属気相成長法もしく
は分子線成長法などの熱非平衡状態での結晶成長法によ
り形成される特許請求の範囲第1項記載の半導体レーザ
の製造方法。
(2) The method for manufacturing a semiconductor laser according to claim 1, wherein the second crystal growth step is formed by a crystal growth method in a thermal non-equilibrium state such as a metal organic vapor phase epitaxy method or a molecular beam growth method. .
JP27760287A 1987-11-02 1987-11-02 Manufacture of semiconductor laser Pending JPH01120084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27760287A JPH01120084A (en) 1987-11-02 1987-11-02 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27760287A JPH01120084A (en) 1987-11-02 1987-11-02 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01120084A true JPH01120084A (en) 1989-05-12

Family

ID=17585719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27760287A Pending JPH01120084A (en) 1987-11-02 1987-11-02 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01120084A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02305486A (en) * 1989-05-19 1990-12-19 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02305486A (en) * 1989-05-19 1990-12-19 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JP3510305B2 (en) Semiconductor laser manufacturing method and semiconductor laser
US4852110A (en) Semiconductor laser of a refractive index-guided type and a process for fabricating the same
EP0209387B1 (en) Semiconductor laser device
JP2783947B2 (en) Semiconductor laser
JPH01120084A (en) Manufacture of semiconductor laser
JP2564813B2 (en) A (1) GaInP semiconductor light emitting device
JP3326283B2 (en) Semiconductor laser device
JP2792177B2 (en) Semiconductor laser
US6171878B1 (en) Method of fabricating semiconductor laser using selective growth
JPH02172287A (en) Semiconductor laser device
JPH06188513A (en) Semiconductor laser and fabrication thereof
JPS637692A (en) Semiconductor light-emitting device
JPS62176183A (en) Semiconductor laser device
JP3109481B2 (en) Semiconductor laser device and method of manufacturing the same
JP3022351B2 (en) Optical semiconductor device and method of manufacturing the same
JPH07235725A (en) Semiconductor laser element and its manufacture
JPS6129183A (en) Semiconductor laser
JPH11154775A (en) Manufacture of semiconductor laser
JP2975762B2 (en) Semiconductor laser device and method of manufacturing the same
JPH01132191A (en) Semiconductor laser element
JPH07321395A (en) Self oscillation semiconductor laser element
JPH0831652B2 (en) Semiconductor laser
JP3307600B2 (en) Semiconductor laser device and method of manufacturing the same
JPS62134986A (en) Manufacture of semiconductor laser
JPH0666525B2 (en) Semiconductor laser