JPH01119958A - Disk driving device - Google Patents

Disk driving device

Info

Publication number
JPH01119958A
JPH01119958A JP62278569A JP27856987A JPH01119958A JP H01119958 A JPH01119958 A JP H01119958A JP 62278569 A JP62278569 A JP 62278569A JP 27856987 A JP27856987 A JP 27856987A JP H01119958 A JPH01119958 A JP H01119958A
Authority
JP
Japan
Prior art keywords
rotating body
shaft
fixed shaft
shaft hole
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62278569A
Other languages
Japanese (ja)
Inventor
Ryuhei Ishikawa
石川 竜平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON FERROFLUIDICS KK
Original Assignee
NIPPON FERROFLUIDICS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON FERROFLUIDICS KK filed Critical NIPPON FERROFLUIDICS KK
Priority to JP62278569A priority Critical patent/JPH01119958A/en
Publication of JPH01119958A publication Critical patent/JPH01119958A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the swing of disks under rotation by supporting a fixed shaft and the disks, fitting simultaneously the shaft into a shaft hole formed on a rotating body and supporting freely rotatably the rotating body in the dynamic pressure action of a fluid arranged in a space between the inner wall of the shaft hole and the opposite outer peripheral part of the fixed shaft. CONSTITUTION:The rotating body 4 is freely rotatably supported at the fixed shaft 1, where the shaft hole 5 with a somewhat larger diameter than pressure receiving parts 3 of the fixed shaft 1 is formed in an axial center part of the rotating body 4. The rotating body 4 is fitted in its shaft hole 5 by the fixed shaft 1, whereas the inner wall of the shaft hole 5 of the rotating body 4 is opposite to the individual pressure receiving parts 3 of the fixed shaft 1. Then, the fluid such as a lubricating oil is arranged in the space between the individual pressure receiving parts 3 of the fixed shaft 1 and the inner wall of the shaft hole 5 of the rotating body 4, and at the time of rotating the rotating body 4, the rotating body 4 is supported by the dynamic pressure of this fluid. By this method, the swing of the disks under rotation can be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はディスク用駆動装置に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a disk drive device.

(従来の技術) 面と面との相対運動によって隙間に流体圧力を発生させ
、この流体圧力によって部材を受ける動圧軸受は、一般
によ(知られている。この動圧軸受は、面と面とが非接
触の状態を維持するので、玉軸受等の接触型の軸受のよ
うに摩耗粉等の異物の発生がない。そのため例えば、磁
気ディスク装置の駆動部における軸受として適用するよ
うにすれば、磁気ディスクをきわめてクリーンな環境下
に置くことができるという利点を生じることになる。
(Prior Art) Dynamic pressure bearings are generally known as dynamic pressure bearings, which generate fluid pressure in a gap through relative motion between surfaces, and receive a member by this fluid pressure. Since the bearings maintain a non-contact state, there is no generation of foreign matter such as abrasion particles unlike contact type bearings such as ball bearings.Therefore, for example, if it is applied as a bearing in the drive part of a magnetic disk drive. This has the advantage that the magnetic disk can be placed in an extremely clean environment.

第6図には、そのようなディスク用駆動装置の一例を概
略的に示している。このディスク用駆動装置は、磁気デ
ィスクを配置する空間41を有するケーシング42に、
上記空間41の内外を連通ずる円筒部43を形成し、電
動機のロータ44に基端部を接続したシャフト45を上
記ケーシング42の外側から円筒部43に通し、シャフ
ト45の先端側を円筒部43の内端から突出させてケー
シング42内に位置させ、この先端部に、磁気ディスク
46・・を支持するカップ状の回転体47を固着する一
方、上記円筒部43の内周部と、これに対向する上記シ
ャフト45の外周部との間の隙間に流体(例えば潤滑油
)を配した構成を有するものであって、上記ロータ44
の回転に伴うシャフト45の回転で流体に動圧を発生さ
せ、この動圧でシャフト45を支持するのである。
FIG. 6 schematically shows an example of such a disk drive. This disk drive device includes a casing 42 having a space 41 in which a magnetic disk is placed.
A cylindrical part 43 is formed that communicates the inside and outside of the space 41, and a shaft 45 whose base end is connected to the rotor 44 of the electric motor is passed through the cylindrical part 43 from the outside of the casing 42, and the distal end side of the shaft 45 is passed through the cylindrical part 43. is positioned inside the casing 42 protruding from the inner end thereof, and a cup-shaped rotary body 47 that supports the magnetic disk 46 is fixed to the tip thereof, while the inner circumferential portion of the cylindrical portion 43 and the The rotor 44 has a structure in which a fluid (for example, lubricating oil) is arranged in a gap between the outer circumference of the opposing shaft 45.
Dynamic pressure is generated in the fluid by the rotation of the shaft 45 as the shaft 45 rotates, and the shaft 45 is supported by this dynamic pressure.

(発明が解決しようとする問題点) ところで上記装置においては、シャフト45を流体の動
圧によって支持するようにしているため、シャフト45
や回転体47の持つ重量のアンバランス、シャフト45
と回転体47との取着時に生じる重量のアンバランス等
が原因で、回転中にシャフト45に振れを生じ、それに
連動して磁気ディスク46・・に振れが生じるという問
題がある。
(Problems to be Solved by the Invention) However, in the above device, since the shaft 45 is supported by the dynamic pressure of the fluid, the shaft 45
, unbalance of weight of rotating body 47, shaft 45
There is a problem in that the shaft 45 oscillates during rotation due to the unbalance of weight that occurs when it is attached to the rotating body 47, and the magnetic disk 46 . . . oscillates accordingly.

このようなシャフト45の振れには、大別して、パラレ
ルな振れと、コニカルな振れとがある。パラレルな振れ
とは、上記装置に基づいて説明すれば、例えば回転体4
7の第6図における右上部分及び電動機ロータ44の右
下部分の重量が大きい等のパラレルアンバランスのため
に、円筒部43の中心軸線とシャフト45の中心軸線と
が平行な状態で、シャフト45の中心軸線が円筒43の
中心軸線のまわりを回るような振れをいい、一方コニカ
ルな振れとは、例えば回転体47の同図における右上部
分及び電動機ロータ44の左下部分の重量が大きい等の
コニカルアンバランスのために、円筒部43の中心軸線
とシャフト45の中心軸線とが交差した状態で、シャフ
ト45の中心軸線が円筒部43の中心軸線まわりを回る
ような振れをいう。
Such vibrations of the shaft 45 can be broadly classified into parallel vibrations and conical vibrations. Parallel runout can be explained based on the above device, for example, when the rotating body 4
7, the upper right portion and the lower right portion of the electric motor rotor 44 have a large weight and other parallel imbalances, so the shaft 45 A conical runout refers to a runout in which the center axis of the cylinder rotates around the center axis of the cylinder 43. On the other hand, a conical runout is a runout in which the weight of the upper right portion of the rotating body 47 and the lower left portion of the motor rotor 44 in the figure is large, for example. This is a runout in which the center axis of the shaft 45 rotates around the center axis of the cylindrical portion 43 in a state where the center axis of the cylindrical portion 43 and the center axis of the shaft 45 intersect due to luan balance.

この発明は上記従来の問題に鑑みてなされたものであっ
て、その目的は、回転中にディスクに振れの生じるのを
軽減することが可能なディスク用、駆動装置を提供する
ことにある。
The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to provide a drive device for a disk that can reduce the occurrence of wobbling of the disk during rotation.

(問題点を解決するための手段) そこでこの発明のディスク用駆動装置は、固定シャフト
と、ディスクを支持すると共に回転駆動される回転体に
形成した軸孔とを嵌合し、上記軸孔の内壁上、これに対
向する上記固定シャフトの外周部との間に配した流体の
動圧作用によって、上記回転体を回転自在に支持してい
る。
(Means for Solving the Problems) Therefore, in the disk drive device of the present invention, a fixed shaft and a shaft hole formed in a rotating body that supports the disk and is rotationally driven are fitted, and the shaft hole is The rotary body is rotatably supported by the dynamic pressure action of a fluid placed between the inner wall and the outer peripheral portion of the fixed shaft facing the inner wall.

(作用) 上記の装置においては、理論的には必ずしも明らかでは
ないが、従来装置に比較して、コニカルアンバランスに
よって生ずる振れは大差ないものの、パラレルアンバラ
ンスによって生ずる振れは大幅に減少する。したがって
このような現象を利用して、この回転体にパラレルアン
バランスを生ずるような重量の付加をなすようにすれば
、コニカルアンバランスが打消されることになり、その
結果、パラレルな振れを小さく維持したまま、コニカル
な振れの発生を防止することができる。
(Function) In the above device, although it is not necessarily theoretically clear, compared to the conventional device, the runout caused by conical unbalance is not much different, but the runout caused by parallel unbalance is significantly reduced. Therefore, if we take advantage of this phenomenon and add weight to the rotating body that causes parallel unbalance, the conical unbalance will be canceled, and as a result, the parallel runout will be reduced. It is possible to prevent the occurrence of conical runout while maintaining the same.

(実施例) 次にこの発明のディスク用駆動装置の具体的な実施例に
ついて、図面を参照しつつ詳細に説明する。
(Example) Next, a specific example of the disk drive device of the present invention will be described in detail with reference to the drawings.

第1図にはこの発明の一実施例を示している。FIG. 1 shows an embodiment of the present invention.

同図において、lは固定シャフトであって、この固定シ
ャツ)1は、磁気ディスク2・・の配置されるケーシン
グ(図示せず)の内部に突設されている。この固定シャ
フト1には、図示するように、その外周部の軸方向に離
れた2箇所の位置に、後述する流体の動圧受圧面を構成
する径大な受圧部3.3が形成されている。一方この固
定シャフトlには回転体4が回転自在に支持されている
。この回転体4は、縦断面が図示するように略H字状を
なす円柱状のもので、その内周側の長さが上記固定シャ
フト1の両受圧部3.3間の長さに略−致するようにさ
れている。そしてこの回転体40軸心部に、上記固定シ
ャフトlの受圧部3.3よりもやや径大な軸孔5が形成
されている。回転体゛4はこの軸孔4を固定シャフト1
に嵌合し、回転体4の軸孔5の内壁が固定シャフト1の
各受圧部3.3に対向するようにされているのである。
In the figure, reference numeral 1 denotes a fixed shaft, and this fixed shaft 1 projects inside a casing (not shown) in which magnetic disks 2, . . . are arranged. As shown in the figure, this fixed shaft 1 has large-diameter pressure receiving portions 3.3 formed at two positions separated in the axial direction on its outer periphery, which constitute a fluid dynamic pressure receiving surface, which will be described later. There is. On the other hand, a rotating body 4 is rotatably supported on this fixed shaft l. This rotary body 4 is a columnar member whose vertical cross section is approximately H-shaped as shown in the figure, and the length on the inner circumferential side thereof is approximately the length between both pressure receiving portions 3.3 of the fixed shaft 1. - It is designed to meet the A shaft hole 5 having a slightly larger diameter than the pressure receiving portion 3.3 of the fixed shaft l is formed in the axial center of the rotating body 40. The rotating body 4 connects this shaft hole 4 to the fixed shaft 1.
The inner wall of the shaft hole 5 of the rotating body 4 faces each pressure receiving portion 3.3 of the fixed shaft 1.

すなわち軸孔5の内壁に゛おいて受圧部3.3と対向す
る部分は、後述するように、流体の受圧面を構成するの
である。そして固定シャフト1の各受圧部3.3と回転
体4の軸孔5の内壁との間の隙間には、潤滑油等の流体
が配され、これによって回転体4の回転時にこの流体に
生じる動圧で、回転体4を支持するようなされているの
である。なお回転体4の軸方向の支持及び潤滑油のシー
ルは、図示しないが適当な手段によってなされているも
のとする。
That is, the portion of the inner wall of the shaft hole 5 that faces the pressure receiving portion 3.3 constitutes a fluid pressure receiving surface, as will be described later. A fluid such as lubricating oil is disposed in the gap between each pressure receiving part 3.3 of the fixed shaft 1 and the inner wall of the shaft hole 5 of the rotary body 4, so that fluid such as lubricating oil is generated in this fluid when the rotary body 4 rotates. The rotating body 4 is supported by dynamic pressure. Note that the axial support of the rotating body 4 and the sealing of lubricating oil are provided by appropriate means, although not shown.

第2図には、上記構成のディスク用駆動装置のパラレル
アンバランスとコニカルアンバランスとの不つりあい振
動応答等を測定し、それを上記従来のディスク用駆動装
置の不つりあい振動応答と比較した結果をグラフにして
示している。同図は横軸に軸受半径隙間(受圧部3.3
と軸孔5の内壁との間の隙間、又はシャフト45の外周
部と円筒部43の内周部との間の隙間)を取り、縦軸に
不つりあい振動応答、損失トルク、軸受剛性及び軸受減
衰係数をとり、軸受半径隙間を変化させた場の不つりあ
い振動応答等の変化を示している。
Figure 2 shows the results of measuring the unbalance vibration response between the parallel unbalance and conical unbalance of the disk drive device with the above configuration and comparing it with the unbalance vibration response of the conventional disk drive device described above. is shown in a graph. The figure shows the bearing radius clearance (pressure receiving part 3.3) on the horizontal axis.
and the inner wall of the shaft hole 5, or the gap between the outer periphery of the shaft 45 and the inner periphery of the cylindrical part 43. It shows changes in the unbalanced vibration response of the field when the damping coefficient is taken and the bearing radius clearance is changed.

同図のように、シャフト固定型のパラレルアンバランス
に対する不つりあい振動応答は、シャフト回転型のパラ
レルアンバランスに対する不つりあい振動応答に比べて
大幅に小さくなる。またシャフト固定型のコニカルアン
バランスに対する応答もシャフト回転型のコニカルアン
バランスに対する振動応答よりも小さくなっている。し
たがって、上記装置においては、積極的にパラレルアン
バランスが生ずるようにしてコニカルアンバランスの発
生を防止すれば、不つり合ル)振動応答を大幅に低減で
きることになるはずである。すなわち、回転体4の外周
部一端(同図下端)には径方向外方に拡がるつば状部6
が形成され、磁気ディスク2と環状のスペーサ7とが交
互に複数個嵌入され、環状の締付部材8と、つば状部6
との間で各磁気ディスク2・・を締付、固定するように
されている訳であるが、これら磁気ディスク2とスペー
サ7とを一方の側に偏心した状態で固定し、これにより
パラレルアンバランスを発生させるのである。
As shown in the figure, the unbalance vibration response to a parallel unbalance of a fixed shaft type is significantly smaller than the unbalance vibration response to a parallel unbalance of a rotating shaft type. Further, the response to a conical unbalance of a fixed shaft type is also smaller than the vibration response to a conical unbalance of a rotating shaft type. Therefore, in the above device, if conical imbalance is prevented from occurring by actively generating parallel imbalance, the vibration response due to unbalance can be significantly reduced. That is, at one end of the outer circumferential portion of the rotating body 4 (lower end in the figure), there is a collar-shaped portion 6 that expands outward in the radial direction.
is formed, a plurality of magnetic disks 2 and annular spacers 7 are inserted alternately, and an annular tightening member 8 and a collar portion 6 are inserted.
The magnetic disks 2 and the spacer 7 are fixed eccentrically to one side, and thereby the parallel antenna It creates balance.

なおこの場合、磁気ディスク2・・及びスペーサ7・・
は、回転体4を横にした状態で嵌入し、締付、固定する
ようにして、各磁気ディスク2・・及びスペーサ7・・
を、その自重によって、一方の側に集め、積極的にパラ
レルアンバランスの生ずる構成とするのが好ましい。こ
れにより回転体4自体の有するコニカルアンバランスが
打消されることになり、その結果、パラレルな振れを小
さく維持したまま、コニカルな振れをなくすことができ
る。この結果、磁気ディスク2・・の振れを軽減するこ
とが可能である。
In this case, the magnetic disk 2... and the spacer 7...
are fitted with the rotating body 4 lying on its side, tightened and fixed, and each magnetic disk 2... and spacer 7...
It is preferable to have a configuration in which, by their own weight, they are gathered to one side, and a parallel imbalance is actively generated. As a result, the conical unbalance of the rotating body 4 itself is canceled out, and as a result, the conical runout can be eliminated while the parallel runout is kept small. As a result, it is possible to reduce the vibration of the magnetic disk 2.

さらに上記実施例においては、回転体4の上下両端部近
傍を支持するようにしであるので、回転体4に生じるコ
ニカルな振れをも低下することができ、この点において
も磁気ディスク2・・の振れを軽減することが可能であ
る。
Furthermore, in the above embodiment, since the vicinity of both the upper and lower ends of the rotating body 4 is supported, the conical vibration that occurs in the rotating body 4 can also be reduced, and in this respect as well, the magnetic disk 2... It is possible to reduce vibration.

また上記実施例においては、回転体4に電動機のロータ
を直結することが可能であり、そのため装置の軸方向を
コンパクトに構成することも可能である。
Further, in the embodiment described above, it is possible to directly connect the rotor of the electric motor to the rotating body 4, and therefore it is also possible to configure the device compactly in the axial direction.

一方第3及び第4図には、シャフト固定型のディスク用
駆動装置及びシャフト回転型のディスク用駆動装置の各
パラレルモード及びコニカルモードの固有振動数を計算
するためのモデルを示している。第3図のモデルでは回
転体として中央部に重錘13を有する梁11を用い、こ
の梁11の両端を、軸受剛性としての機能を有するばね
12.12で支持しである。また第4図のモデルでは、
回転シャフト45としての梁48の両端にそれぞれ回転
子44としての重錘49及び回転体47としての重錘5
0を取着し、両重錘49.50間の2箇所をそれぞれ軸
受剛性としての機能を有するばね51.51で支持した
ものである。この各モデルを使用し、パラレルモードと
コニカルモードとの各固有振動数を求めた結果を第5図
に示している。同図は横軸に軸受剛性を、縦軸に固有振
動数をとったもので、同図から、シャフト固定型のコニ
カルモードの固有振動数が、他のモードの固有振動数よ
りも極めて高いのがわかる。すなわちシャフト固定型と
することにより、共振に起因する装置破損等の危険性を
より一層有効に回避し得ることになるのである。
On the other hand, FIGS. 3 and 4 show models for calculating the natural frequencies of each parallel mode and conical mode of a fixed shaft type disk drive device and a shaft rotating type disk drive device. In the model shown in FIG. 3, a beam 11 having a weight 13 in the center is used as a rotating body, and both ends of the beam 11 are supported by springs 12 and 12 which function as bearing rigidity. Also, in the model shown in Figure 4,
A weight 49 as a rotor 44 and a weight 5 as a rotating body 47 are attached to both ends of a beam 48 as a rotating shaft 45, respectively.
0 is attached, and the two weights 49 and 50 are supported by springs 51 and 51 each having a function as bearing rigidity. Using these models, the natural frequencies of the parallel mode and conical mode were determined, and the results are shown in FIG. The figure shows the bearing stiffness on the horizontal axis and the natural frequency on the vertical axis. From the figure, it can be seen that the natural frequency of the conical mode of the fixed shaft type is extremely higher than the natural frequencies of other modes. I understand. In other words, by using a fixed shaft type, it is possible to more effectively avoid the risk of damage to the device due to resonance.

以上にこの発明のディスク用駆動装置の実施例を説明し
たが、受圧部3と軸孔5の内壁との間の隙間に配される
流体は、動圧軸受としての機能を奏し得る流体であれば
、種々の流体を使用することが可能である。
Although the embodiment of the disk drive device of the present invention has been described above, the fluid disposed in the gap between the pressure receiving part 3 and the inner wall of the shaft hole 5 may be any fluid that can function as a dynamic pressure bearing. For example, it is possible to use a variety of fluids.

(発明の効果) 以上のように、この発明のディスク用駆動装置において
は、上記した構成となされているので、回転中にディス
クに振れの生じるのを軽減することが可能である。
(Effects of the Invention) As described above, since the disk drive device of the present invention has the above-described configuration, it is possible to reduce the occurrence of wobbling of the disk during rotation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明のディスク用駆動装置の一実施例を示
す説明図、第2図は軸受半径隙間と不つりあい振動応答
等との関係を示すグラフ、第3図及び第4図はそれぞれ
シャフト固定型及びシャフト回転型のディスク用駆動装
置のモデル、第5図は上記モデルに基づいて求めたパラ
レルモードとコニカルモードとの各固有振動数と軸受剛
性との関係を示すグラフ、第6図は従来のディスク用駆
動装置の説明図である。 ■・・・固定シャフト、2・・・磁気ディスク、4・・
・回転体、5・・・軸孔。 特許出願人    日本フェロ−フルイデイクス株式会
FIG. 1 is an explanatory diagram showing one embodiment of the disk drive device of the present invention, FIG. 2 is a graph showing the relationship between bearing radial clearance and unbalanced vibration response, etc., and FIGS. 3 and 4 are shafts, respectively. Models of fixed type and shaft rotating type disk drive devices. Figure 5 is a graph showing the relationship between each natural frequency of parallel mode and conical mode and bearing rigidity determined based on the above model, and Figure 6 is FIG. 2 is an explanatory diagram of a conventional disk drive device. ■...Fixed shaft, 2...Magnetic disk, 4...
・Rotating body, 5... shaft hole. Patent applicant Nippon Ferrofluidics Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、固定シャフトと、ディスクを支持すると共に回転駆
動される回転体に形成した軸孔とを嵌合し、上記軸孔の
内壁と、これに対向する上記固定シャフトの外周部との
間に配した流体の動圧作用によって、上記回転体を回転
自在に支持したことを特徴とするディスク用駆動装置。
1. A fixed shaft is fitted into a shaft hole formed in a rotary body that supports a disk and is rotationally driven, and is disposed between an inner wall of the shaft hole and an outer peripheral portion of the fixed shaft facing thereto. 1. A disk drive device, wherein the rotating body is rotatably supported by the dynamic pressure action of the fluid.
JP62278569A 1987-11-04 1987-11-04 Disk driving device Pending JPH01119958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62278569A JPH01119958A (en) 1987-11-04 1987-11-04 Disk driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62278569A JPH01119958A (en) 1987-11-04 1987-11-04 Disk driving device

Publications (1)

Publication Number Publication Date
JPH01119958A true JPH01119958A (en) 1989-05-12

Family

ID=17599092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62278569A Pending JPH01119958A (en) 1987-11-04 1987-11-04 Disk driving device

Country Status (1)

Country Link
JP (1) JPH01119958A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933169A (en) * 1982-08-19 1984-02-22 Ricoh Co Ltd Controlling system for printer
JPS6026676B2 (en) * 1981-06-10 1985-06-25 不二空機株式会社 Pneumatic torque wrench tightening control device
JPS62219370A (en) * 1986-03-20 1987-09-26 Fujitsu Ltd Spindle lock mechanism for magnetic disk device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026676B2 (en) * 1981-06-10 1985-06-25 不二空機株式会社 Pneumatic torque wrench tightening control device
JPS5933169A (en) * 1982-08-19 1984-02-22 Ricoh Co Ltd Controlling system for printer
JPS62219370A (en) * 1986-03-20 1987-09-26 Fujitsu Ltd Spindle lock mechanism for magnetic disk device

Similar Documents

Publication Publication Date Title
CN103104539B (en) Vacuum pump
JPH10131962A (en) Bearing device
JPH03149430A (en) Inertial force generating apparatus
JP4040875B2 (en) Centrifuge gyro diaphragm that can maintain concentricity of motor shaft
JPH0676806B2 (en) Support assembly for rotating shaft
JPH01119958A (en) Disk driving device
CN101126323A (en) Rotor for a turbomachine
JPH05288218A (en) Auxiliary bearing device of rotary machine
JPH0289807A (en) Non-round bearing
JP6410562B2 (en) Electric motor
JP2007016859A (en) Flywheel structure
JP2003166535A (en) Magnetic bearing damping mechanism of rotary apparatus
JPH07217656A (en) Spindle with gas bearing
WO2021241042A1 (en) Journal bearing and rotating machine
JP2698648B2 (en) Electric compressor vibration absorber
JPH10246239A (en) Rolling bearing and relevant product using the same
JP3114730B2 (en) Spindle motor using bearings with different characteristics
KR100243201B1 (en) Self-compensating dynamic balancer and disk player having the same
JPS594565B2 (en) bearing device
JPH045771Y2 (en)
JP2005192385A (en) Spindle motor
JPS609734Y2 (en) Test equipment for low-power high-speed motors
JPH1096423A (en) Static pressure air bearing spindle
JPH03190693A (en) Joint structure of robot
JPH0233291Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060307

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees