JPH01119753A - Immunity sensor and preparation thereof - Google Patents

Immunity sensor and preparation thereof

Info

Publication number
JPH01119753A
JPH01119753A JP62275860A JP27586087A JPH01119753A JP H01119753 A JPH01119753 A JP H01119753A JP 62275860 A JP62275860 A JP 62275860A JP 27586087 A JP27586087 A JP 27586087A JP H01119753 A JPH01119753 A JP H01119753A
Authority
JP
Japan
Prior art keywords
electrode
antibody
epoxy group
immunosensor
immune antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62275860A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kumagai
熊谷 善博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAIFU TECHNOL KENKYUSHO
Original Assignee
RAIFU TECHNOL KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAIFU TECHNOL KENKYUSHO filed Critical RAIFU TECHNOL KENKYUSHO
Priority to JP62275860A priority Critical patent/JPH01119753A/en
Publication of JPH01119753A publication Critical patent/JPH01119753A/en
Pending legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To enable the highly sensitive detection of a specified antigen alone without any hindrance by others, by selecting and fixing an antibody for the antigen to be detected. CONSTITUTION:An immune antibody is fixed by a covalent bonding on the surface of an electrode, particularly on the surface of a gate electrode of FET or the like. The electrode, e.g. the gate electrode of FET, is prepared by a publicly-known semiconductor manufacturing technique of ion implantation, evaporation, photoetching or the like with a silicon wafer or the like used, for instance. In order to fix the immune antibody on the surface of the electrode by the covalent bond, a method is employed wherein an epoxy group is fixed on the surface of the electrode by making a silane compound having the epoxy group and a group connected with a silicon atom and being active in reaction, such as hydrogen, alkyl or alkoxy, react with a hydroxyl group existing on the surface, the immune antibody is made to contact with the fixed epoxy group subsequently and thereby the epoxy group and an amino group in the immune antibody are made to react with each other, so as to produce the covalent bonding.

Description

【発明の詳細な説明】 〔発明の目的〕 産業上の利用分野 本発明は抗原抗体反応を利用して生理活性物質等の存在
量を検知するためのセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] Industrial Field of Use The present invention relates to a sensor for detecting the amount of a physiologically active substance, etc., using an antigen-antibody reaction.

従来の技術 微量の化学物質の存在を検知して、これを電気信号とし
て出力するための、いわゆるバイオセンサが知られてい
る。かかるバイオセンサは、物質が生物または酵素など
によって反応する部分と、この反応による物理的・化学
的変化を電気信号に変換する部分(トランスジユーザ)
とから構成されている。このようなバイオセンサのトラ
ンスジユーザは、酸素電極やイオン電極、さらにはサー
ミスタや光センサなどを利用したものが知られており、
化学物質と反応する生体物質は種々の状態でかかるトラ
ンスジユーザの感応部上に固定されているのが普通であ
る。
2. Description of the Related Art A so-called biosensor is known that detects the presence of a trace amount of a chemical substance and outputs it as an electrical signal. Such a biosensor consists of a part where a substance reacts with an organism or an enzyme, and a part that converts the physical and chemical changes caused by this reaction into an electrical signal (transuser).
It is composed of. Transusers of such biosensors are known to use oxygen electrodes, ion electrodes, thermistors, optical sensors, etc.
Biological substances that react with chemical substances are usually immobilized on the sensitive parts of such transusers in various states.

近時、半導体製造技術の進歩によって、半導体化学セン
サが製作されるようになり、その代表的なものとして水
素イオンに感応するイオン感応性電界効果トランジスタ
(ISFET)がある。このようなl5FETは、金属
酸化物半導体型電界効果トランジスタ(MOSFET)
におけるゲート電極部位にイオン感応膜たとえば窒化ケ
イ素薄層などを設けたもので、水溶液中に浸漬されると
たとえば水素イオンの濃度に応じてイオン感応膜に電位
を生ずるから、水溶液に対して電位の固定された参照電
極とl5FETのたとえばベースとの間に一定の電圧を
加えておくことにより、pHに対応した電気出力が得ら
れるものである。
With recent advances in semiconductor manufacturing technology, semiconductor chemical sensors have come to be manufactured, and a representative example thereof is an ion-sensitive field effect transistor (ISFET) that is sensitive to hydrogen ions. Such an 15FET is a metal oxide semiconductor field effect transistor (MOSFET).
An ion-sensitive membrane, such as a thin layer of silicon nitride, is provided at the gate electrode part of the ion-sensitive membrane, and when immersed in an aqueous solution, a potential is generated on the ion-sensitive membrane depending on the concentration of hydrogen ions, so the potential is different from that of the aqueous solution. By applying a constant voltage between a fixed reference electrode and, for example, the base of the 15FET, an electrical output corresponding to the pH can be obtained.

さらに、このようなl5FETを従来の酸素電極やpl
+電極に代えてトランスジユーザとして用い、これと種
々の固定化酵素膜とを組合せて、化学物質がこれらの酵
素と反応して生成する特定イオンたとえば水素イオンの
濃度をl5FETによって検出する複合型センサが提案
されている。この形式のセンサに於てはまた、固定化酵
素膜を形成したセンサと固定化酵素膜を形成していない
センサとを、同一性能を有するl5FETにより作成し
て隣接するように組合せ、差動出力を得るようにしたも
のも提案されている。
Furthermore, such 15FETs can be used with conventional oxygen electrodes or PL
A complex type that is used as a transducer in place of the + electrode, and is used in combination with various immobilized enzyme membranes to detect the concentration of specific ions, such as hydrogen ions, produced when chemical substances react with these enzymes using 15FET. A sensor has been proposed. In this type of sensor, a sensor with an immobilized enzyme membrane and a sensor without an immobilized enzyme membrane are fabricated using 15FETs having the same performance and are combined adjacently to produce a differential output. Some proposals have also been made to obtain the following.

解決しようとする問題点 従来のバイオセンサにおいては、上述のように化学物質
が酵素などと反応した結果生成するイオンや熱などの蓄
積状態を、トランスジューサ部によって電気信号に変換
するものであって、応答速度が遅いという本質的な欠点
があるのみならず、測定環境条件によって出力が影響を
うけ易いという問題がある。
Problems to be Solved In conventional biosensors, as mentioned above, the accumulated state of ions and heat generated as a result of the reaction of chemical substances with enzymes etc. is converted into electrical signals by the transducer section. Not only does it have an inherent drawback of slow response speed, but it also has the problem that the output is easily affected by measurement environmental conditions.

本発明は、このような従来技術のバイオセンサにおける
問題点に鑑みて、新しい原理に基づいて本質的にかかる
欠点を有しないバイオセンサを提供しようとするもので
ある。
In view of the problems with the prior art biosensors, the present invention aims to provide a biosensor based on a new principle that essentially does not have these drawbacks.

さらに又、本発明は、測定対象物質に対する選択性が従
来よりも一層すぐれたバイオセンサを提供しようとする
ものである。
Furthermore, the present invention aims to provide a biosensor that has better selectivity for a substance to be measured than conventional biosensors.

〔発明の構成〕[Structure of the invention]

問題点を解決するだめの手段 前述のような本発明の目的は、電極表面とくに電界効果
トランジスタ(FET)のゲート電極などの表面に共有
結合によって免疫抗体を固定してなる免疫センサによっ
て達成でき、かかる免疫センサは、電極表面上に水酸基
が表面に生成し得る金属の層を形成し、次いで該金属め
層の表面を酸化すると共に水酸基を生成させ、該表面に
エポキシ基を含有するシラン化合物を接触させて該水酸
基と該シラン化合物とを反応させ、更に免疫抗体溶液を
反応条件下に接触させて該エポキシ基と該免疫抗体とを
共有結合させることにより製造できる。
Means for Solving the Problems The above-mentioned objects of the present invention can be achieved by an immunosensor in which immune antibodies are immobilized by covalent bonds on the surface of an electrode, particularly on the surface of a gate electrode of a field effect transistor (FET), etc. Such an immunosensor forms a metal layer on the surface of an electrode on which hydroxyl groups can be generated, then oxidizes the surface of the metal layer to generate hydroxyl groups, and applies a silane compound containing an epoxy group to the surface. It can be produced by bringing the hydroxyl group and the silane compound into contact with each other to react with each other, and further bringing the epoxy group into contact with the immunized antibody solution under reaction conditions to covalently bond the epoxy group and the immunized antibody.

本発明で用いられる電極たとえばFETのゲート電極は
たとえばシリコンウェハなどを用いて、従来公知のイオ
ン打込み、蒸着、フォトエツチングなどの半導体製造技
術によって製作することができる。もちろん、基板はシ
リコン金属のみならず、ゲルマニウムなどであってもよ
く、またガリウム・ヒ素などの化合物半導体材料であっ
てもよい。かかる電極たとえばF E 1’等は、製作
の最終的段階においては、電極面とくにゲート電極面が
金属層によって被覆されるが、かかる金属化電極面は酸
化して水酸基を生成するものであることが必要で、たと
えばシリコンやゲルマニウムなトカ用いられる。電極の
表面が金属シリコンで形成されているききには、表面に
含湿空気を接触させることにより水酸基が容易に生成す
るから好都合である。
The electrode used in the present invention, such as the gate electrode of an FET, can be manufactured using, for example, a silicon wafer by conventional semiconductor manufacturing techniques such as ion implantation, vapor deposition, and photoetching. Of course, the substrate may be made of not only silicon metal, but also germanium, or a compound semiconductor material such as gallium arsenide. In the final stage of fabrication of such electrodes, such as F E 1', the electrode surface, particularly the gate electrode surface, is covered with a metal layer, but such a metalized electrode surface is oxidized to generate hydroxyl groups. For example, silicon or germanium metal is used. It is advantageous for electrodes whose surfaces are made of metallic silicon because hydroxyl groups are easily generated by contacting the surface with humid air.

電極表面に免疫抗体を共有結合によって固定するには、
表面に存在する水酸基に対してエポキシ基とケイ素原子
に結合した反応活性な水素、アルキル基、アルコキシ基
などの基とを有しているシラン化合物を反応させて電極
面にエポキシ基を固定し、次いでこ゛れに免疫抗体を接
触させることによりエポキシ基と免疫抗体の中のアミノ
基とを反応させて共有結合を生成させる方法を用いるこ
とができる。
To covalently immobilize immune antibodies on the electrode surface,
The epoxy group is fixed on the electrode surface by reacting the hydroxyl group existing on the surface with a silane compound having an epoxy group and a reactively active group such as hydrogen, alkyl group, or alkoxy group bonded to a silicon atom. Next, a method can be used in which an immunizing antibody is brought into contact with the epoxy group and an amino group in the immunizing antibody is reacted with each other to form a covalent bond.

このように免疫抗体を固定するに用いられるシラン化合
物は、電極表面の水酸基と反応活性な基゛とが反応して
Si−0結合を生成するに当って未反応のままで残るエ
ポキシ基を少なくとも1個以上有するものがよく、たと
えばγ−グリシドキシプロビル・トリメトキシシランな
どが好ましく用いられる。このようなシラン化合物は、
そのまま、または適宜の溶剤で希釈して水酸基を有する
電極表面と接触させ、必要な時間保持することによって
反応させる。この際、温度を高めることにより反応時間
を短縮することが可能である。
The silane compound used to immobilize the immune antibody in this way has at least one epoxy group that remains unreacted when the hydroxyl group on the electrode surface reacts with the reactive group to form a Si-0 bond. Those having one or more are preferred, and for example, γ-glycidoxyprobyl trimethoxysilane and the like are preferably used. Such silane compounds are
It is brought into contact with the electrode surface having a hydroxyl group either as it is or diluted with an appropriate solvent, and allowed to react for a required period of time. At this time, the reaction time can be shortened by increasing the temperature.

このようにして反応性のエポキシ基を表面に固定した電
極上に所望の免疫抗体を固定するには、たとえば適当な
値のpHを有する緩衝溶液に溶解した免疫抗体または免
疫抗体を結合したペプチド化合物等を電極面に接触させ
、必要な時間保持することによって免疫抗体等のアミノ
基と電極上のエポキシ基とを反応させる。この際、pH
が低すぎるとエポキシ基が加水分解を起してアミノ基と
の共有結合が少くなり、またpl+が高すぎるとエポキ
シ基を電極表面に固定しているSi−0結合が切断され
るから、免疫抗体を共有結合により確実に固定するため
には、p(18〜1oの緩衝溶液を用いることが望まし
い。また、固定のための反応時間は、適宜温度を高める
ことによって短縮することが可能である。
In order to immobilize a desired immune antibody onto an electrode on which a reactive epoxy group is immobilized on the surface in this way, for example, the immune antibody or a peptide compound bound to the immune antibody is dissolved in a buffer solution having an appropriate pH value. etc. is brought into contact with the electrode surface and held for a required period of time to cause the amino groups of the immune antibody and the like to react with the epoxy groups on the electrode. At this time, pH
If pl+ is too low, the epoxy group will be hydrolyzed and the number of covalent bonds with amino groups will decrease, and if pl+ is too high, the Si-0 bond that fixes the epoxy group to the electrode surface will be severed, resulting in In order to reliably immobilize antibodies by covalent bonding, it is desirable to use a buffer solution of p(18 to 1o).In addition, the reaction time for immobilization can be shortened by appropriately increasing the temperature. .

本発明の免疫センサを得るために用いられる免疫抗体は
、センサによって検知しようとする物質の生理活性構造
に対して相補的な、抗原抗体結合部位を有しているもの
を選択して用いることが必要であり、かかる抗体として
たとえばマウスに抗原となる物質を注射し、それにより
増殖したリンパ球が産生ずる免疫グロブリンを分離、精
製して用いることができる。こうして得た免疫抗体を電
極上に共有結合により固定した免疫センサは、特定の抗
原物質とのみ選択的に結合し他種の物質とは全く結合し
ない特性をそなえている。
The immune antibody used to obtain the immunosensor of the present invention can be selected from those having an antigen-antibody binding site that is complementary to the physiologically active structure of the substance to be detected by the sensor. If necessary, such an antibody can be used, for example, by injecting a substance that serves as an antigen into a mouse, and then separating and purifying the immunoglobulin produced by the proliferated lymphocytes. An immunosensor in which the thus obtained immune antibody is covalently immobilized on an electrode has the property of selectively binding only to a specific antigenic substance and not binding to other types of substances at all.

作用 本発明の免疫センサを抗原物質が含まれる溶液に接触さ
せると、特定の抗原物質のみが免疫センサの電極上に結
合される。このとき、抗原物質が電荷を有するものであ
るときは電極上に電荷層が形成され、電極電位が変化す
る。一方、抗原に対する結合能力がない点のみが異なる
比較電極を有するセンサを相互に絶縁した状態で隣接配
置しておき、これら2個のセンサの電極電位を差動的に
検出することにより、抗原物質の検出をすることができ
る。また、抗原物質が電荷を有しないものであるときは
、あらかじめ電荷を有する物質と結合させるなどの前処
理をすることにより電荷を有する抗原物質に転化すれば
よい。
Operation When the immunosensor of the present invention is brought into contact with a solution containing an antigenic substance, only the specific antigenic substance is bound onto the electrodes of the immunosensor. At this time, if the antigen substance has a charge, a charge layer is formed on the electrode, and the electrode potential changes. On the other hand, sensors with reference electrodes that differ only in that they do not have the ability to bind to antigens are placed adjacent to each other in a mutually insulated state, and by differentially detecting the electrode potentials of these two sensors, it is possible to detect antigenic substances. can be detected. Furthermore, when the antigenic substance does not have a charge, it may be converted into a charged antigenic substance by pretreatment such as binding with a charged substance.

更に電極電位の変化の検出は、単極電位の変化として差
動的に検出してもよいが、電極をFETのゲー)!極と
して構成して電極電位の変化をFETの出力として検出
することもでき、この場合には2個のFETを相互に絶
縁した状態で隣接配置しておいてこれらの出力の差を検
出することが好ましい。
Furthermore, changes in electrode potential may be detected differentially as changes in unipolar potential; It is also possible to configure it as a pole and detect changes in electrode potential as the output of the FET. In this case, two FETs can be placed adjacent to each other in a mutually insulated state and the difference in their outputs can be detected. is preferred.

実施例1 (1)  抗原の調製 牛血清アルブミン100mgをpH7,5の0.1 M
リン酸ナトリウム緩衝溶液10m1!に溶解し、ダンシ
ルクロリド2mgを含むアセトン溶液0.5 meを混
合して、4℃で1昼夜反応させた。得られた反応生成物
を、pH7,2の10mMリン酸ナトリウム緩衝溶液で
1週nn透析して低分子も士物質を除去し、ダンシル化
牛血清アルブミン溶液を得た。
Example 1 (1) Preparation of antigen 100 mg of bovine serum albumin was diluted with 0.1 M at pH 7.5.
10ml of sodium phosphate buffer solution! The mixture was mixed with 0.5 me of an acetone solution containing 2 mg of dansyl chloride, and reacted at 4° C. for one day and night. The obtained reaction product was dialyzed against a 10 mM sodium phosphate buffer solution at pH 7.2 for 1 week to remove low-molecular weight substances and obtain a dansylated bovine serum albumin solution.

こうして得られたダンシル化牛血清アルブミンを061
M炭酸水素ナトリウム溶液中に1mg/mlとなるよう
に希釈し、0.1M炭酸水素ナトリウム溶液で1日間透
析してリン酸イオン等を除去し精製溶液とした。又別に
調製したビオチンのN−サクシニミドエステルの1mg
/mjジメチルスルホキシド溶液を、前記のダンシル化
牛血清アルブミンの精製溶液1容に対して0.06容の
割合で混合°し、室温で4時間反応させた。得られた反
応生成物をpH7,2の10mMUン酸すトリウl、緩
衝溶液で3日間透析して溶剤その他の低分子量物質およ
び他種の塩類を除去して精製した。
The dansylated bovine serum albumin thus obtained was 061
The solution was diluted to 1 mg/ml in M sodium hydrogen carbonate solution, and dialyzed for 1 day against 0.1 M sodium hydrogen carbonate solution to remove phosphate ions and the like to obtain a purified solution. 1 mg of N-succinimide ester of biotin prepared separately
/mj dimethyl sulfoxide solution was mixed at a ratio of 0.06 volume to 1 volume of the purified dansylated bovine serum albumin solution, and reacted at room temperature for 4 hours. The obtained reaction product was purified by dialysis for 3 days against a 10mMU triurium chloride buffer solution at pH 7.2 to remove solvents, other low molecular weight substances, and other types of salts.

(2)抗体の調製 上記のビオチン結合ダンシル化牛血清アルブミンを抗原
としてマウスに注射した後、細胞融合法により得たダン
シルに対するモノクローン抗体を産生ずる雑種細胞をマ
ウス腹腔内に107個接挿し、3週間乃至1ケ月後に蓄
積した腹水を採取し、遠心分離にかけて上澄液を得た。
(2) Preparation of antibodies After injecting the biotin-bound dansylated bovine serum albumin described above into mice as an antigen, 107 hybrid cells producing monoclonal antibodies against dansyl obtained by the cell fusion method were injected into the abdominal cavity of the mouse. After 3 weeks to 1 month, the accumulated ascites was collected and centrifuged to obtain a supernatant.

一方、IgGタイプの抗体と特異的に結合するプロティ
ンAをセファロース上に固定した充填剤を充填し、あら
かじめpH7,2の10mMリン酸す) +Jウム緩衝
生理食塩水で膨潤させておいたカラムに対し、腹水上澄
液を通してその中に含まれている免疫グロブリン(抗体
)を吸着分離し、次いで0.1M酢酸(pH3,1)で
溶出して抗体を脱離回収した。得られた抗体の溶液は、
同量のpl+6.5の0.5 M IJン酸ナナトリウ
ム緩衝溶液混合してpl+を7.2にpA整した。抗体
の含有量は約1mg/mI!であった。溶液は4℃以下
で保存し、以下の実験に使用した。
On the other hand, fill a column with a packing material in which Protein A, which specifically binds to IgG type antibodies, is immobilized on Sepharose, and swell it with 10mM phosphoric acid (pH 7.2)+Jum buffered saline. On the other hand, the immunoglobulin (antibody) contained therein was adsorbed and separated through the ascites supernatant, and then eluted with 0.1M acetic acid (pH 3,1) to remove and recover the antibody. The obtained antibody solution was
The pA of pl+ was adjusted to 7.2 by mixing the same amount of pl+6.5 with 0.5 M IJ sodium phosphate buffer solution. The antibody content is approximately 1 mg/mI! Met. The solution was stored at below 4°C and used in the following experiments.

(3)センサの作成 高純度のシリコン多結晶ウェーハから切出した16mn
+X16mmのシリコンチップを室内条件の空気にB露
して、表面に水酸基を生成させたものを用意した。
(3) Creation of sensor 16mm cut from a high-purity silicon polycrystalline wafer
A +X16 mm silicon chip was prepared by exposing it to air under indoor conditions to generate hydroxyl groups on the surface.

このシリコンチップの裏面にリード線を取り付けたのち
に、表面に径10mmの窓を残してすべてを覆うように
シリコーンゴムの防水被膜を付けた。
After a lead wire was attached to the back surface of this silicon chip, a waterproof coating of silicone rubber was applied to cover the entire surface, leaving a window with a diameter of 10 mm on the surface.

こレヲトリクロルエチレン、アセトン、エタノールを用
いて順次洗浄し、乾燥したのちT−グリシドキシプロピ
ル・トリメトキシシランを表面上に100μ1滴下し、
90℃の恒温器中で15分反応させ、エポキシ化シリコ
ンチップを得た。
This was washed sequentially with trichloroethylene, acetone, and ethanol, and after drying, 100 μl of T-glycidoxypropyl trimethoxysilane was added onto the surface.
The mixture was reacted for 15 minutes in a constant temperature chamber at 90° C. to obtain epoxidized silicon chips.

次に、(2)で得た抗体溶液をpH9,5のIM炭酸ナ
トリウム緩゛衝溶液に混合して抗体濃度0.2 mg/
meの溶液を調製し、これを前記のエポキシ化シリコン
チップ上に夫々50μm滴下し、湿度100%の雲囲気
内で室温で16時間反応し、その後牛血清アルブミンの
10mMリン酸ナトリウム緩衝生理食塩水中1%溶液に
1時間浸漬して未反応のエポキシ基を封鎖した。さらに
未反応のペプチドなどを10mMリン酸ナトリウム緩衝
生理食塩水で5回洗浄することにより除去し、抗体固定
シリコンチップを得た。
Next, the antibody solution obtained in (2) was mixed with IM sodium carbonate buffer solution of pH 9.5 to give an antibody concentration of 0.2 mg/
A solution of me was prepared, and each drop of 50 μm was dropped on the epoxidized silicon chip, reacted for 16 hours at room temperature in a clouded atmosphere with 100% humidity, and then added to bovine serum albumin in 10 mM sodium phosphate buffered saline. Unreacted epoxy groups were blocked by immersion in a 1% solution for 1 hour. Further, unreacted peptides and the like were removed by washing five times with 10 mM sodium phosphate buffered saline to obtain an antibody-immobilized silicon chip.

(4)標準抗原の調製 ビオチンのN−サクシニミドエステルとα−リジンとを
0.1M炭炭酸水ナナトリウム水溶液中モル比で10=
1となるように溶解し、塩酸によってpHを7.6に調
整して50℃で3時間反応させた。反応終了後凍結乾燥
し、クロロホルム−メタノール−水(2:1:1)溶媒
を用いて薄層クロマトグラフィーにより反応物を分離し
た。生成物と結合した固定相部分をジメチルホルムアミ
ドを用いて抽出し、凍結乾燥してビオチン結合リジンを
得た。
(4) Preparation of standard antigen N-succinimide ester of biotin and α-lysine were mixed in a molar ratio of 10=10 in a 0.1M sodium carbonate aqueous solution.
1, the pH was adjusted to 7.6 with hydrochloric acid, and the mixture was reacted at 50° C. for 3 hours. After completion of the reaction, the reaction product was lyophilized and separated by thin layer chromatography using a chloroform-methanol-water (2:1:1) solvent. The stationary phase portion bound to the product was extracted using dimethylformamide and lyophilized to obtain biotin-bound lysine.

次に、ダンシルクロリド10mgを含むアセトン溶液5
mlとビオチン結合リジンImgを含むジメチルホルム
アミド溶液1mpとを、0.1M炭酸ナトリウム−炭酸
水素ナトリウム水溶液(pl+9゜5〜10.0)5m
l?中に加えて溶解し、室温で4時間反応させた。反応
終了後、前記同様に薄石クロマトグラフィーにより反応
物を分離し、固定相からメタノールによってビオチン結
合ダンシル化リジンを抽出した。
Next, an acetone solution containing 10 mg of dansyl chloride 5
ml and 1 mp of a dimethylformamide solution containing biotin-bound lysine Img were added to 5 ml of a 0.1 M sodium carbonate-sodium hydrogen carbonate aqueous solution (pl+9°5 to 10.0).
l? was added to the solution, dissolved, and reacted at room temperature for 4 hours. After the reaction was completed, the reactants were separated by thin stone chromatography in the same manner as described above, and biotin-bound dansylated lysine was extracted from the stationary phase with methanol.

続いて、アビジンl10ff1をpH7,4の2mM)
リス(7’ris)緩衝溶液2rr7中に溶解したもの
の中へ、前記のビオチン結合ダンシル化リジン1mgを
メタノール−水(1: 1)溶媒0.5mi中に溶解し
たものを加え、室温で30分反応させた。
Subsequently, add avidin l10ff1 to 2mM at pH 7.4)
1 mg of the biotin-bound dansylated lysine dissolved in 0.5 mi of methanol-water (1:1) solvent was added to the solution dissolved in 7'ris buffer solution 2rr7, and the mixture was incubated at room temperature for 30 minutes. Made it react.

反応終了後、タンパク質分離用ゲル(ファルマシア社製
、セファデックスG−25)を充填したカラムに通して
吸着させ、次に10mMUン酸ナトリウム緩衝生理食塩
水を用いて溶出し、該当するアビジン−ビオチン結合ダ
ンシル化リジン画分を蛍゛光モニタリングすることによ
り分離回収した。これを以後、標準抗原として以下の実
験に使用した。
After the reaction is complete, the protein is adsorbed through a column filled with a gel for protein separation (Sephadex G-25, manufactured by Pharmacia), and then eluted using 10mMU sodium phosphate buffered saline to remove the corresponding avidin-biotin. The bound dansylated lysine fraction was separated and collected by fluorescence monitoring. This was subsequently used as a standard antigen in the following experiments.

(5)比較電極の作成 (3)におい”Cセンサ用としての抗体固定シリコンチ
ップを作成するのと同様の手順により、抗体を固定する
代りに牛血清アルブミンをpl+7.2の10mMリン
酸ナトリウム緩衝溶液に0.2 mg/m7!となるよ
う溶解したものを用いて、牛血清アルブミン固定シリコ
ンチップを得、これを比較電極とした。
(5) Creation of reference electrode (3) Using the same procedure as in creating the antibody-immobilized silicon chip for the odor C sensor, instead of immobilizing the antibody, bovine serum albumin was added in 10 mM sodium phosphate buffer at pl+7.2. A silicon chip fixed with bovine serum albumin was obtained by dissolving it in a solution at a concentration of 0.2 mg/m7!, and this was used as a reference electrode.

(6)センサ作動試験 (3)で作成した抗体固定シリコンチップ電極と(5)
で作成した牛血清アルブミン固定シリコンチップ比較電
極とを高入力インピーダンス差動増幅回路の端子に結び
、銀/塩化銀電極を参照電極として、これらの電極をp
H7,4の2mMトリス−塩酸−緩衝溶液50m1を入
れた容器に浸漬した。
(6) Antibody-fixed silicon chip electrode prepared in sensor operation test (3) and (5)
Connect the bovine serum albumin-fixed silicon chip reference electrode prepared above to the terminals of a high input impedance differential amplifier circuit, use the silver/silver chloride electrode as a reference electrode, and connect these electrodes to the
It was immersed in a container containing 50 ml of a 2mM Tris-HCl buffer solution of H7,4.

溶液を25℃に保ち安定した電位値が出力されるように
なったのちに(4)で作成した標準抗原を溶解した2m
M)!Jス緩衝溶液を少しずつ加え°C1比較電極に対
するセンサ電極の電位差と溶液中の標準抗原濃度との関
係を調べ、第1図に示すような結果を得た。
After keeping the solution at 25°C and outputting a stable potential value, add 2m containing the standard antigen prepared in (4).
M)! A JS buffer solution was added little by little, and the relationship between the potential difference of the sensor electrode with respect to the reference electrode at °C1 and the standard antigen concentration in the solution was investigated, and the results shown in FIG. 1 were obtained.

これにより、本発明の免疫センサは、抗原の濃度に対応
して、再現性よく電位出力を与えることがわかる。
This shows that the immunosensor of the present invention provides a potential output with good reproducibility in response to the antigen concentration.

実施例2 P型シリコンウェーハを用い、公知のNMO3製造技術
を適用して、チップ寸法が7.2 X 3.6 mmの
FETを製造した。この際、ソース、ドレンおよびゲー
ト上にはCVD法によりポリシリコン石を設け、ソース
およびドレン電極にはアルミニウムの配線を蒸着したの
ち、厚さ1.2μmの窒化シリコンの絶縁層で被覆し、
その後ゲート電極上の窒化シリコン層を除去して1.5
 X 3 mlの窓を形成した。ゲート電極上のポリシ
リコンの表面には、室内の空気に暴露することにより水
酸基が形成されていることを確認した。
Example 2 Using a P-type silicon wafer and applying a known NMO3 manufacturing technique, an FET with chip dimensions of 7.2 x 3.6 mm was manufactured. At this time, polysilicon stones were provided on the source, drain, and gate by the CVD method, and aluminum wiring was deposited on the source and drain electrodes, and then covered with a 1.2 μm thick silicon nitride insulating layer.
After that, the silicon nitride layer on the gate electrode was removed and the
A window of X 3 ml was created. It was confirmed that hydroxyl groups were formed on the surface of the polysilicon on the gate electrode due to exposure to indoor air.

ゲート電極上″には、実施例1の(3)の手法に亭じて
r−グリシドキシプロビル・トリメトキシシランを90
℃で15分の条件で反応させてエポキシ化層を形成し、
次いでこの表面をアセトンで充分に洗浄したのち抗体を
0.2mg/mem度で含むp)19゜5の1M炭酸す
) IJウム溶液の0.5μβを滴下して抗体を固定し
、さらに未反応のエポキシ基は牛血清アルブミンにより
封鎖した。その他の手順は、実施例1の(3)と同様に
してFETセンサを得た。
On the gate electrode, 90% of r-glycidoxypropyl trimethoxysilane was applied using the method (3) of Example 1.
React at ℃ for 15 minutes to form an epoxidized layer,
Next, this surface was thoroughly washed with acetone, and then 0.5 μβ of 1M carbonic acid solution containing the antibody at 0.2 mg/mem was added dropwise to fix the antibody, and further unreacted The epoxy groups of were blocked by bovine serum albumin. Other procedures were the same as in Example 1 (3) to obtain an FET sensor.

また、対照側のFETのゲート電極面は、実施例1の(
5)の手法によりエポキシ化したのち牛血清アルブミン
を固定した。
In addition, the gate electrode surface of the FET on the control side was
After epoxidation using the method described in 5), bovine serum albumin was fixed.

このようにして得た一組のFETの出力をそれぞれ増幅
して差動出力回路に入力し、抗原濃度に対する免疫セン
サの出力を調べたところ、抗原の電荷に対応する出力が
得られることが確められた。
The outputs of the pair of FETs obtained in this way were each amplified and inputted to a differential output circuit, and the output of the immunosensor was examined with respect to the antigen concentration. It was confirmed that an output corresponding to the charge of the antigen was obtained. I was caught.

(発明の効果) 本発明の免疫センサは、電極表面に免疫抗体を共有結合
により固定してなり、特定の抗原のみと結合する能力を
有するので、抗原が有する電荷の量に対応する電気出力
を示すものである。従って、検出対象の抗原に対する抗
体を選択して固定することにより、特定抗原のみを池か
ら妨害を受けることなく高感度で検出することが可能と
なった。
(Effects of the Invention) The immunosensor of the present invention is made by covalently immobilizing an immune antibody on the electrode surface and has the ability to bind only to a specific antigen, so it generates an electrical output corresponding to the amount of charge that the antigen has. It shows. Therefore, by selecting and immobilizing an antibody against the antigen to be detected, it has become possible to detect only a specific antigen with high sensitivity without interference from the pond.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の免疫センサの例における抗原の濃度と
出力電位差との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between antigen concentration and output potential difference in an example of the immunosensor of the present invention.

Claims (6)

【特許請求の範囲】[Claims] (1)電極表面に共有結合によって免疫抗体を固定して
なる免疫センサ。
(1) An immunosensor in which immune antibodies are immobilized on the electrode surface by covalent bonds.
(2)共有結合が、Si−O結合をその一部として含ん
だものである、特許請求の範囲第1項記載の免疫センサ
(2) The immunosensor according to claim 1, wherein the covalent bond includes an Si-O bond as a part thereof.
(3)共有結合が、C−N−C結合をその一部として含
んだものである、特許請求の範囲第1項または第2項記
載の免疫センサ。
(3) The immunosensor according to claim 1 or 2, wherein the covalent bond includes a C-N-C bond as a part thereof.
(4)電極が、電界効果トランジスタのゲート電極であ
る、特許請求の範囲第1項ないし第3項のいづれかに記
載の免疫センサ。
(4) The immunosensor according to any one of claims 1 to 3, wherein the electrode is a gate electrode of a field effect transistor.
(5)相互に絶縁された電極を隣接配置し、その一方の
表面に共有結合によって免疫抗体を固定してなる免疫セ
ンサ。
(5) An immunosensor in which mutually insulated electrodes are arranged adjacent to each other and an immune antibody is immobilized on one surface of the electrodes by covalent bonding.
(6)電極表面上に水酸基が表面に生成しうる金属の層
を形成し、次いで該金属の層の表面を酸化すると共に水
酸基を生成させ、該表面にエポキシ基を含有するシラン
化合物を接触させて該水酸基と該シラン化合物とを反応
させ、更に免疫抗体溶液を反応条件下に接触させて該エ
ポキシ基と該免疫抗体とを共有結合させることを特徴と
する免疫センサの製造法。
(6) Form a metal layer on the electrode surface on which hydroxyl groups can be generated, then oxidize the surface of the metal layer and generate hydroxyl groups, and contact the surface with a silane compound containing an epoxy group. A method for producing an immunosensor, which comprises reacting the hydroxyl group with the silane compound, and further contacting the epoxy group with an immune antibody solution under reaction conditions to covalently bond the epoxy group and the immune antibody.
JP62275860A 1987-11-02 1987-11-02 Immunity sensor and preparation thereof Pending JPH01119753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62275860A JPH01119753A (en) 1987-11-02 1987-11-02 Immunity sensor and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62275860A JPH01119753A (en) 1987-11-02 1987-11-02 Immunity sensor and preparation thereof

Publications (1)

Publication Number Publication Date
JPH01119753A true JPH01119753A (en) 1989-05-11

Family

ID=17561439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62275860A Pending JPH01119753A (en) 1987-11-02 1987-11-02 Immunity sensor and preparation thereof

Country Status (1)

Country Link
JP (1) JPH01119753A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133800A (en) * 2007-12-03 2009-06-18 Fujifilm Corp Measuring method of target material
JP2010133948A (en) * 2008-12-05 2010-06-17 Korea Electronics Telecommun Biosensor and biomolecule detection method using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54161992A (en) * 1978-06-13 1979-12-22 Asahi Glass Co Ltd Immunity sensor and making method thereof
JPS5928648A (en) * 1982-08-11 1984-02-15 Kuraray Co Ltd Immunoassay device
JPS60247151A (en) * 1984-05-23 1985-12-06 Fujitsu Ltd Fet biosensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54161992A (en) * 1978-06-13 1979-12-22 Asahi Glass Co Ltd Immunity sensor and making method thereof
JPS5928648A (en) * 1982-08-11 1984-02-15 Kuraray Co Ltd Immunoassay device
JPS60247151A (en) * 1984-05-23 1985-12-06 Fujitsu Ltd Fet biosensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133800A (en) * 2007-12-03 2009-06-18 Fujifilm Corp Measuring method of target material
JP2010133948A (en) * 2008-12-05 2010-06-17 Korea Electronics Telecommun Biosensor and biomolecule detection method using the same

Similar Documents

Publication Publication Date Title
US4562157A (en) Diagnostic device incorporating a biochemical ligand
US5160597A (en) Sensor with antigen chemically bonded to a semiconductor device
US6586232B2 (en) Substrate preparation for chemical-species-specific binding
Bergveld A critical evaluation of direct electrical protein detection methods
US3904367A (en) Contrast enhancement for immunological film detection
US5567301A (en) Antibody covalently bound film immunobiosensor
US5086002A (en) Erythrocyte agglutination assay
US4833093A (en) Method of silanization of surfaces
JPH02504069A (en) Optimal capacitive sensor for chemical analysis and measurement
JPH07117536B2 (en) Method for detecting specifically bindable substance in body fluid and ligand receptor
ES2308824T3 (en) ELIMINATION OF INTERFERENCES OF IMMUNOANALYSIS THROUGH SUBSTANCES DERIVED FROM THE FRAMEWORK REGIONS THAT INCLUDE ANTIBODIES.
Saby et al. Immobilization of antibodies onto a capacitance silicon-based transducer
Colapicchioni et al. Immunoenzymatic assay using CHEMFET devices
Sergeyeva et al. β-Lactamase label-based potentiometric biosensor for α-2 interferon detection
EP0416730B1 (en) Substrate preparation for chemical-species-specific binding
JPH01119753A (en) Immunity sensor and preparation thereof
JPS63208753A (en) Immune sensor and immune detection
JPH01209370A (en) Method and apparatus for measuring immunologically active substance
Gotoh et al. Immuno-FET sensor
EP0667897A1 (en) Method for specific immunoassay of human plasmatic glutathione peroxidase
JPH01119754A (en) Analyzing method of physiological active substance
JP3907919B2 (en) Highly sensitive detection method for antigen or antibody
EP0313161B1 (en) Sensor with immunochemical membrane chemically bound to a semiconductor device
IL87768A (en) Blood assay including erythrocyte agglutination and reagent for the assay comprising conjugate of erythrocyte binding molecule and analyte binding molecule
JPH02129542A (en) Analysis of physiologically active material