JPH01119682A - Pure titanium for titanium alloy member - Google Patents

Pure titanium for titanium alloy member

Info

Publication number
JPH01119682A
JPH01119682A JP62276917A JP27691787A JPH01119682A JP H01119682 A JPH01119682 A JP H01119682A JP 62276917 A JP62276917 A JP 62276917A JP 27691787 A JP27691787 A JP 27691787A JP H01119682 A JPH01119682 A JP H01119682A
Authority
JP
Japan
Prior art keywords
titanium
layer
titanium alloy
oxygen
hardened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62276917A
Other languages
Japanese (ja)
Inventor
Norioki Uehara
上原 紀興
Akihiro Suzuki
昭弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP62276917A priority Critical patent/JPH01119682A/en
Publication of JPH01119682A publication Critical patent/JPH01119682A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • F01L3/04Coated valve members or valve-seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials

Abstract

PURPOSE:To form a cured layer having excellent wear resistance by forming engine parts for automobiles of Ti or Ti alloy and heating the surface to the melting temp. or above in an oxidative atmosphere to absorb and solutionize the Ti in O2. CONSTITUTION:The valve or connecting rod or the like of an engine for automobiles is made of the Ti or Ti alloy. A gaseous mixture composed of oxidative gas such as O2 or CO2 and inert gas for dilution such as Ar of He is supplied from a nozzle 6 to a part 1 where wear resistance is required while an arc 5 is generated between a W electrode 3 as a positive electrode and the Ti part 1 as a negative electrode by using a TIG device which has internally the W electrode 3 and is formed wit the gas nozzle 6 on the outside thereof and by impressing voltage to the above-mentioned two electrodes. The Ti part 1 is partly melted by the arc 5 by which the molten part 1a is formed. The O2 is absorbed and solutionized therein. This molten part is solidified by cooling, by which the relatively thick O2-solutionized layer having the high hardness and excellent wear resistance is formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、表面硬化処理を施した純チタンまたはチタン
合金部材に関し、特に自動車用エンジン部品を構成する
純チタンまたはチタン合金からなるバルブ、コネクティ
ングロッド等に表面硬化処理を施したものに関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to surface-hardened pure titanium or titanium alloy members, particularly valves and connections made of pure titanium or titanium alloy that constitute automobile engine parts. It relates to rods etc. that have been subjected to surface hardening treatment.

(従来の技術) 純チタンおよびチタン合金は、軽量、かつ高強度で耐食
性が良好であるため、各種の機械部品、構造部品等に利
用されているが、反面、鋼に比べ耐摩耗性が劣るという
欠点がある。そのため、従来より次に述べる種々の表面
硬化処理法を用いて表面硬化することにより、チタンま
たはチタン合金の軽量・高強度かつ耐食性が良好等の利
点を活かしている。
(Conventional technology) Pure titanium and titanium alloys are used for various mechanical parts, structural parts, etc. because they are lightweight, have high strength, and have good corrosion resistance. However, on the other hand, they have inferior wear resistance compared to steel. There is a drawback. Therefore, the advantages of titanium or titanium alloys, such as light weight, high strength, and good corrosion resistance, are utilized by surface hardening using various surface hardening treatment methods described below.

ガス窒化法は、窒素ガスまたはアンモニアガス雰囲気中
で800℃以上に数時間ないし数十時間加熱保持するこ
とにより、最表層部にTiNからなる硬化層を形成する
ものである。TiNイオンブレーティング法は、陰極上
に置いたTiに陽イオン化した粒子を蒸着し、TiNか
らなる硬化層を形成するものである。クロムメツキ法は
サージェント浴中でCrをTi上に電解析出し、Tiの
表層にCrからなる安定な不動体被膜を形成するもので
ある。溶射法は、プラズマ熱、アーク熱等により溶融な
いし半溶融状態にしたWCやセラミックスの液滴をTi
表面上に吹き付け、Ti表面にWC、セラミックス等の
被膜を形成するものである。
In the gas nitriding method, a hardened layer made of TiN is formed on the outermost layer by heating and holding at 800° C. or higher for several hours to several tens of hours in a nitrogen gas or ammonia gas atmosphere. In the TiN ion blating method, cationized particles are deposited on Ti placed on a cathode to form a hardened layer made of TiN. The chrome plating method is a method in which Cr is electrolytically deposited on Ti in a Sargent bath to form a stable passive film made of Cr on the surface layer of Ti. The thermal spraying method uses Ti droplets of WC or ceramics that have been molten or semi-molten by plasma heat, arc heat, etc.
It is sprayed onto the surface to form a coating of WC, ceramics, etc. on the Ti surface.

(発明が解決しようとする問題点) しかしながら、上述した従来の表面硬化処理法には、次
のような欠点がある。
(Problems to be Solved by the Invention) However, the conventional surface hardening treatment method described above has the following drawbacks.

すなわち、ガス窒化法によれば、TiNからなる硬化層
が数μmの薄い薄層であり、また高温加熱による素材の
熱変形も生じる。またTiNイオンブレーティング法に
よれば、TiN層がl〜3μm程度の薄い膜厚となり、
これを厚膜にしようとするとTiN層が剥離しやすいと
いう欠点がある。さらにクロムメツキ法によると、メツ
キ前の前処理が難しく、メツキ後はメツキ膜の密着性が
十分でなく剥離しやすいという欠点がある。さらには溶
射法によると、処理待被膜が急冷されるため、被膜が破
損したり剥離しやすいという欠点がある。
That is, according to the gas nitriding method, the hardened layer made of TiN is a thin layer of several micrometers, and thermal deformation of the material occurs due to high temperature heating. Furthermore, according to the TiN ion blating method, the TiN layer becomes thin with a thickness of about 1 to 3 μm,
If an attempt is made to make this a thick film, there is a drawback that the TiN layer is likely to peel off. Furthermore, the chrome plating method has the disadvantage that pretreatment before plating is difficult, and after plating, the adhesion of the plating film is insufficient and it is easy to peel off. Furthermore, according to the thermal spraying method, the coating to be treated is rapidly cooled, so there is a drawback that the coating is easily damaged or peeled off.

本発明は、このような問題点にかんがみなされたもので
、表面硬化層が比較的厚くかつこの硬化層が剥離する恐
れのない表面硬化処理を施した純チタンまたはチタン合
金部材を提供することを目的とする。
The present invention was conceived in view of these problems, and it is an object of the present invention to provide a pure titanium or titanium alloy member that has a relatively thick surface hardened layer and has been subjected to surface hardening treatment without the risk of the hardened layer peeling off. purpose.

(問題点を解決するための手段) そのために、本発明の純チタンまたはチタン合金部材で
は、酸素または酸素化合物を含有する不活性ガス雰囲気
のもとで純チタンまたはチタン合金の表層を溶融温度以
上に加熱し、この溶融部に酸素を吸収固溶し、表面硬化
層を形成することを特徴とする。
(Means for Solving the Problems) For this purpose, in the pure titanium or titanium alloy member of the present invention, the surface layer of pure titanium or titanium alloy is heated to a temperature higher than the melting temperature in an inert gas atmosphere containing oxygen or an oxygen compound. It is characterized in that it is heated to a temperature of 100%, and oxygen is absorbed and dissolved in the molten part to form a hardened surface layer.

本発明の実施態様としては、純チタンまたはチタン合金
からなる部材例えばエンジンバルブの金属表層に前記表
面硬化層を形成する。この場合。
In an embodiment of the present invention, the hardened surface layer is formed on the metal surface layer of a member made of pure titanium or a titanium alloy, such as an engine valve. in this case.

エンジンバルブのフェース面、軸部または軸端部の各金
属表層に前記表面硬化層を形成してもよい。
The surface hardening layer may be formed on each metal surface layer of the face, shaft, or shaft end of the engine valve.

さらには、エンジンのチタン合金からなるコネクティン
グロッド大端部および小端部に前記表面硬化層を形成す
るようにしてもよい。
Furthermore, the surface hardening layer may be formed on the large end and small end of the connecting rod made of a titanium alloy of the engine.

(発明の効果) 本発明によれば、純チタンまたはチタン合金部材の表層
をいったん溶融し、この溶融表層に酸素を吸収固溶して
硬化層を形成したので、比較的厚い硬化層を形成するこ
とができ、しかもこの硬化層が剥離する心配は全く無く
、密着性の良好な表面硬化層を形成することができると
いう効果がある。
(Effects of the Invention) According to the present invention, a hardened layer is formed by once melting the surface layer of a pure titanium or titanium alloy member and absorbing oxygen into the melted surface layer to form a solid solution, thereby forming a relatively thick hardened layer. Moreover, there is no fear that this cured layer will peel off, and there is an effect that a surface cured layer with good adhesion can be formed.

(実施例) 本発明の実施例について述べる。(Example) Examples of the present invention will be described.

まず酸素または酸素化合物を含有する不活性ガス雰囲気
の下で純チタンまたはチタン合金部材の表面を溶融温度
以上に加熱し、酸素を吸収させ、その後室温まで冷却し
た。
First, the surface of a pure titanium or titanium alloy member was heated above its melting temperature in an inert gas atmosphere containing oxygen or an oxygen compound to absorb oxygen, and then cooled to room temperature.

第1表は、その試験例を示し、各組成の純チタンまたは
チタン合金部材を所定の酸素元素を含むガス雰囲気の下
でアーク加熱、プラズマ加熱、バーナ加熱またはレーザ
加熱を行なった。対象となる材料の形状は、平板であり
、高さ8mm、幅25mm、長さ50mmのものを用い
た。
Table 1 shows test examples, in which pure titanium or titanium alloy members of various compositions were subjected to arc heating, plasma heating, burner heating, or laser heating in a gas atmosphere containing a predetermined oxygen element. The shape of the target material was a flat plate with a height of 8 mm, a width of 25 mm, and a length of 50 mm.

第1表 試験片としては、試験No、1〜7に示すように、純T
iとTi合金の代表的2種(α+β)2相型のTi−6
Aβ−4■およびβ相型のTi −13V −1l C
r−3AI2.を用いた。不活性ガス雰囲気は、第1表
に示すように、02またはCO2ガスをArまたはHe
ガスで所定vo1%に希釈したものを用いた。試験No
、1〜6は本発明の試験例を示し、試験N007は本発
明と対比される比較例を示している。すなわち比較例で
は、不活性ガス雰囲気を酸素および酸素化合物を含まな
いArガス雰囲気としている。
As for the test pieces in Table 1, as shown in Test No. 1 to 7, pure T
i and Ti-6, two typical types of Ti alloys (α+β) two-phase type
Aβ-4■ and β-phase Ti-13V-1lC
r-3AI2. was used. As shown in Table 1, the inert gas atmosphere consists of 02 or CO2 gas and Ar or He gas.
A solution diluted with gas to a predetermined volume of 1% was used. Exam No.
, 1 to 6 show test examples of the present invention, and test No. 007 shows a comparative example to be compared with the present invention. That is, in the comparative example, the inert gas atmosphere is an Ar gas atmosphere that does not contain oxygen or oxygen compounds.

第1図は、アーク加熱法としてのティグ法による溶融処
理装置の一例を示す模式図である。
FIG. 1 is a schematic diagram showing an example of a melting processing apparatus using the TIG method as an arc heating method.

第1図において、1は表面硬化層を形成すべき純チタン
またはチタン合金からなる対象物であり、2は溶融処理
装置をあられす。タングステン電極3には、電導体4を
介して電圧が印加され、このタングステン電極3が例え
ばプラス極となり、対象物lがマイナス極となって、タ
ングステン電極3の先端部と対象物lとの間にアーク5
が飛翔するようになっている。このとき、図示矢印方向
にガスノズル6の内部に酸素または酸素化合物を含む不
活性ガスが流通し、対象物lの溶融部1aに酸素が接触
する所定の雰囲気に保持する。
In FIG. 1, 1 is an object made of pure titanium or a titanium alloy on which a hardened surface layer is to be formed, and 2 is a melting treatment device. A voltage is applied to the tungsten electrode 3 via the conductor 4, and the tungsten electrode 3 becomes, for example, a positive pole, and the object l becomes a negative pole, and the gap between the tip of the tungsten electrode 3 and the object l is arc 5
appears to be flying. At this time, an inert gas containing oxygen or an oxygen compound flows inside the gas nozzle 6 in the direction of the arrow shown in the figure, and a predetermined atmosphere is maintained in which oxygen comes into contact with the melted portion 1a of the object 1.

対象物lの溶融部1aは、不活性ガスに含有される0、
またはCO2ガスと接触し、酸素元素がこの溶融チタン
またはチタン合金中に侵入し、酸素元素が侵入型の元素
としてチタン合金中に固溶する。これにより、溶融部が
冷却されたときには、この部分に高濃度に酸素を固溶し
た硬化層を形成する。
The melted part 1a of the object 1 contains 0,
Alternatively, upon contact with CO2 gas, the oxygen element penetrates into this molten titanium or titanium alloy, and the oxygen element becomes a solid solution in the titanium alloy as an interstitial element. As a result, when the molten part is cooled, a hardened layer containing a high concentration of oxygen as a solid solution is formed in this part.

このようにして表面硬化層を形成した試験NO1〜7に
ついてその硬化層を硬さ試験した。第2図に示すグラフ
は、その硬さ試験結果を示している。横軸は金属表面か
らの距離をあられし、縦軸はビッカース硬さをあられし
ている。第2図に示すグラフから明らかなように、比較
例としての試験No、7については、試験片を一旦溶融
したものの溶融雰囲気中に酸素元素がないことから表層
に硬化層が生成されず、このため冷却された後の表層の
硬さは金属表面からの距離に関係なくほぼ一定の硬さに
なっている。
For test Nos. 1 to 7 in which the surface hardened layers were formed in this way, the hardness of the hardened layers was tested. The graph shown in FIG. 2 shows the hardness test results. The horizontal axis represents the distance from the metal surface, and the vertical axis represents the Vickers hardness. As is clear from the graph shown in Figure 2, in Test No. 7 as a comparative example, a hardened layer was not formed on the surface layer because there was no oxygen element in the melting atmosphere even though the test piece was once melted. Therefore, the hardness of the surface layer after cooling remains almost constant regardless of the distance from the metal surface.

これに対し、試験No、1〜6では、金属表面から約1
.5mm以内の範囲において、硬くなっていることが判
る。試験N006では、金属表面から1.2mmの範囲
において著しく硬さが向上しているが、これは溶融ガス
雰囲気中の酸素濃度が高いことから、溶融時に表層部に
侵入した酸素元素の相対濃度が他の試験No、のものに
比べ高いことに起因しているものと考えられる。
On the other hand, in Test Nos. 1 to 6, approximately 1
.. It can be seen that the hardness is increased within a range of 5 mm. In test No. 006, the hardness was significantly improved within 1.2 mm from the metal surface, but this was due to the high oxygen concentration in the molten gas atmosphere, and the relative concentration of oxygen that entered the surface layer during melting. This is thought to be due to the fact that it is higher than those of other test Nos.

次に、自動車用エンジン部品を構成するチタン合金から
なるエンジンバルブに上記表面硬化層を形成した実施例
について説明する。
Next, an example will be described in which the above hardened surface layer is formed on an engine valve made of a titanium alloy constituting an engine part for an automobile.

第3図は、表面硬化処理を施す対象となるエンジンバル
ブの模式図を示している。図中、7はバルブ本体、8は
エンジンの吸排気ボートに当接するフェース面であり、
9はバルブ本体7が往復動する際摺動案内される軸部で
あり、10はバルブ開閉のための駆動力が伝達される軸
端部を示している。
FIG. 3 shows a schematic diagram of an engine valve to be subjected to surface hardening treatment. In the figure, 7 is the valve body, 8 is the face that comes into contact with the intake and exhaust boat of the engine,
Reference numeral 9 indicates a shaft portion to which the valve body 7 is slidably guided when it reciprocates, and reference numeral 10 indicates a shaft end portion to which a driving force for opening and closing the valve is transmitted.

バルブ本体7の材料は、T 1−6AI2−4Vを用い
た。表面硬化層を形成した部位は、フェース面、軸部お
よび軸端部である。これらの各部位に第2表に示す処理
条件により表面硬化層を形成し、その表面硬化層の硬さ
および硬化層の深さを測定した。硬化層の深さは、ビッ
カース硬さHvが400以上の範囲を対象とした。結果
は第2表に示すとおりである。
The material of the valve body 7 was T1-6AI2-4V. The areas on which the surface hardening layer was formed are the face, the shaft, and the shaft end. A hardened surface layer was formed on each of these parts under the treatment conditions shown in Table 2, and the hardness and depth of the hardened surface layer were measured. The depth of the hardened layer was determined to have a Vickers hardness Hv of 400 or more. The results are shown in Table 2.

第2表 この実施例では、バルブの材料としてTi−6Aj2−
4Vを用いたが、本発明としては、他のチタン合金例え
ばTi−6Aj2−23n−42r−2Mo−0,IS
i等を用いることもできる。また表面硬化層は、バルブ
のフェース面、軸部および軸端部の3箇所に形成したが
、場合によってはこれらのうちの1箇所あるいは2箇所
に表面硬化層を形成するようにしてもよい。
Table 2 In this example, Ti-6Aj2- is used as the material of the valve.
4V was used, but in the present invention, other titanium alloys such as Ti-6Aj2-23n-42r-2Mo-0, IS
i etc. can also be used. Furthermore, although the surface hardening layer was formed at three locations, namely the face surface, the shaft portion, and the shaft end portion of the valve, the surface hardening layer may be formed at one or two of these locations depending on the case.

一般に、レース用自動車に搭載されるエンジンでは、従
来の耐熱鋼製のバルブに替わってチタン合金製のバルブ
を用いることにより、バルブ本体の軽量化を計ってエン
ジンの出力を向上させていることが多いが、この場合、
例えばバルブのフェース面では硬化処理を施さず、軸部
にMo溶射、C「メツキ等の処理を施し、軸端部にはス
テライトチップをろう付したり肌焼鋼浸炭材を摩擦圧接
したりしていた。しかしこれらの硬化処理法では、例え
ばMo溶射ではMO原料のコストが高く、またCrメツ
キ法ではメツキ部の密着性が劣り、さらにはステライト
チップのろう付や肌焼鋼浸炭材の摩擦圧接法では加工工
程が複雑であるという問題点があった。
In general, engines installed in racing cars use titanium alloy valves instead of conventional heat-resistant steel valves to reduce the weight of the valve body and improve engine output. Often, in this case,
For example, the face of the valve is not hardened, but the shaft is treated with Mo spraying, C plating, etc., and the shaft end is brazed with stellite chips or friction welded with carburized case hardened steel. However, with these hardening methods, for example, the cost of MO raw materials is high in Mo thermal spraying, and the adhesion of the plating part is poor in Cr plating, and furthermore, it is difficult to braze Stellite chips and to reduce the friction of case hardened steel carburized materials. The pressure welding method has a problem in that the processing process is complicated.

これに対し、本発明によれば、こめような問題点はなく
、チタン合金表面を酸素または酸素化合物を含む不活性
ガス雰囲気中で溶融するという簡単な操作で以て、チタ
ン合金の表層に高硬度のTi酸化物等を形成し、剥離の
心配のない硬化層を形成している。したがって表面硬化
処理としては、低コストで加工工程が簡単であるという
利点がある。本発明をエンジンバルブ、コネクティング
ロッド等に適用すれば、従来の表面処理よりも安価でか
つ量産実用可能なチタン合金製エンジンを提供すること
ができる。
On the other hand, according to the present invention, there are no major problems and the surface layer of the titanium alloy can be heated to high temperatures by simply melting the surface of the titanium alloy in an inert gas atmosphere containing oxygen or oxygen compounds. A hard Ti oxide or the like is formed to form a hardened layer with no fear of peeling. Therefore, the surface hardening treatment has the advantage of being low cost and having simple processing steps. If the present invention is applied to engine valves, connecting rods, etc., it is possible to provide a titanium alloy engine that is cheaper than conventional surface treatments and that can be practically mass-produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のティグ法による溶融処理装置
をあられす概略構成図、第2図は金属表面からの距離と
硬さの関係を示すグラフ、第3図はエンジンバルブをあ
られす概略構成図である。 !・・・対象物、 la・・・溶融部、 2・・・溶融処理装置、 3・・・タングステン電極、 6・・・ガスノズル、 7・・・バルブ本体、 8・・・フェース面、 9・・・軸部、 10・・・軸端部。
Figure 1 is a schematic configuration diagram of a melting processing apparatus using the TIG method according to an embodiment of the present invention, Figure 2 is a graph showing the relationship between the distance from the metal surface and hardness, and Figure 3 is a diagram showing the relationship between the hardness and the distance from the metal surface. It is a schematic block diagram. ! ...Target, la... Melting part, 2... Melting processing device, 3... Tungsten electrode, 6... Gas nozzle, 7... Valve body, 8... Face surface, 9... ...Shaft part, 10...Shaft end part.

Claims (4)

【特許請求の範囲】[Claims] (1)酸素または酸素化合物を含有する不活性ガス雰囲
気のもとで純チタンまたはチタン合金の表層を溶融温度
以上に加熱し、この溶融部に酸素を吸収固溶し、表面硬
化層を形成したことを特徴とする純チタンまたはチタン
合金部材。
(1) The surface layer of pure titanium or titanium alloy is heated above the melting temperature in an inert gas atmosphere containing oxygen or oxygen compounds, and oxygen is absorbed and dissolved in the molten part to form a hardened surface layer. A pure titanium or titanium alloy member characterized by:
(2)前記表面硬化層をエンジンバルブに形成したこと
を特徴とする特許請求の範囲第1項記載の純チタンまた
はチタン合金部材。
(2) The pure titanium or titanium alloy member according to claim 1, wherein the hardened surface layer is formed on an engine valve.
(3)前記表面硬化層をエンジンバルブのフェース面、
軸部または軸端部のうちの少なくとも一箇所に形成した
ことをと特徴とする特許請求の範囲第1項記載の純チタ
ンまたはチタン合金部材。
(3) The hardened surface layer is applied to the face surface of the engine valve,
The pure titanium or titanium alloy member according to claim 1, characterized in that it is formed at at least one of the shaft portion or the shaft end portion.
(4)前記表面硬化層をエンジンのコネクティングロッ
ド大端部および小端部に形成したことを特徴とする特許
請求の範囲第1項記載の純チタンまたはチタン合金部材
(4) The pure titanium or titanium alloy member according to claim 1, wherein the surface hardening layer is formed on a large end portion and a small end portion of a connecting rod of an engine.
JP62276917A 1987-10-30 1987-10-30 Pure titanium for titanium alloy member Pending JPH01119682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62276917A JPH01119682A (en) 1987-10-30 1987-10-30 Pure titanium for titanium alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62276917A JPH01119682A (en) 1987-10-30 1987-10-30 Pure titanium for titanium alloy member

Publications (1)

Publication Number Publication Date
JPH01119682A true JPH01119682A (en) 1989-05-11

Family

ID=17576192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62276917A Pending JPH01119682A (en) 1987-10-30 1987-10-30 Pure titanium for titanium alloy member

Country Status (1)

Country Link
JP (1) JPH01119682A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2661424A1 (en) * 1990-04-27 1991-10-31 Pechiney Recherche Process for surface nitriding of an article made of titanium alloy and article obtained
JPH0726387A (en) * 1993-07-09 1995-01-27 Mitsubishi Steel Mfg Co Ltd Method for reforming surface of titanium or titanium alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2661424A1 (en) * 1990-04-27 1991-10-31 Pechiney Recherche Process for surface nitriding of an article made of titanium alloy and article obtained
JPH0726387A (en) * 1993-07-09 1995-01-27 Mitsubishi Steel Mfg Co Ltd Method for reforming surface of titanium or titanium alloy

Similar Documents

Publication Publication Date Title
US4434189A (en) Method and apparatus for coating substrates using a laser
FR2582973A1 (en) ARC ELECTRODE
US3675310A (en) Soldering method
JPH04214879A (en) Protective layer of metal substrate and its manufacture
US3473216A (en) Method of joining aluminum to stainless steel
JPH01119682A (en) Pure titanium for titanium alloy member
US3339269A (en) Method of bonding
JP2926240B2 (en) Sliding material and surface treatment method
JPH0570708B2 (en)
JPH0683901B2 (en) Spatter adhesion prevention welding torch nozzle
JPS62103357A (en) Surface treatment of thermally sprayed film
JPS6179783A (en) Formation of graphitized layer onto member surface
JP3091971B2 (en) Electrodes using reinforced copper
JPS61113757A (en) Treatment of film of different metals formed on surface of metallic substrate with laser
JPS60215753A (en) Coating method by thermal spray and melt diffusion
JPH0480986B2 (en)
SU494440A1 (en) The method of complex chemical heat treatment
SU1661227A1 (en) Method of heat treatment of steel parts
JPS57148013A (en) Method of manufacturing rocker arm of aluminum
US3368057A (en) Method of bonding
SU1514823A1 (en) Method of chemico-thermal treatment of pipes
RU2000888C1 (en) Method for application of corrosion-resistant coating to carbon, cast and powder steels
JPS61253357A (en) Method for restoring hardness of thermally sprayed film
DE2552199B2 (en) Process for the production of ultra-high vacuum-tight welded joints between aluminum and steel, in particular stainless steel
Lucas Jr Brazing of stainless steels