JPH01119679A - Method for administrating chemical copper plating liquid - Google Patents
Method for administrating chemical copper plating liquidInfo
- Publication number
- JPH01119679A JPH01119679A JP27891887A JP27891887A JPH01119679A JP H01119679 A JPH01119679 A JP H01119679A JP 27891887 A JP27891887 A JP 27891887A JP 27891887 A JP27891887 A JP 27891887A JP H01119679 A JPH01119679 A JP H01119679A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- chamber
- plating
- plating solution
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007747 plating Methods 0.000 title claims abstract description 105
- 239000010949 copper Substances 0.000 title claims abstract description 87
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 86
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 86
- 239000000126 substance Substances 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims description 8
- 239000007788 liquid Substances 0.000 title abstract 5
- 238000000909 electrodialysis Methods 0.000 claims abstract description 35
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910001431 copper ion Inorganic materials 0.000 claims abstract description 29
- 238000006243 chemical reaction Methods 0.000 claims abstract description 26
- 230000008929 regeneration Effects 0.000 claims abstract description 26
- 238000011069 regeneration method Methods 0.000 claims abstract description 26
- 239000012528 membrane Substances 0.000 claims abstract description 17
- 239000003957 anion exchange resin Substances 0.000 claims abstract description 12
- 150000002500 ions Chemical class 0.000 claims abstract description 12
- 230000001172 regenerating effect Effects 0.000 claims abstract description 11
- 239000006227 byproduct Substances 0.000 claims abstract description 8
- 239000003729 cation exchange resin Substances 0.000 claims abstract description 6
- 238000004458 analytical method Methods 0.000 claims abstract description 5
- 230000000694 effects Effects 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims description 73
- 239000007864 aqueous solution Substances 0.000 claims description 14
- 239000005749 Copper compound Substances 0.000 claims description 7
- 150000001880 copper compounds Chemical class 0.000 claims description 7
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 5
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 claims description 5
- 239000008151 electrolyte solution Substances 0.000 claims description 3
- -1 hydroxyl ions Chemical class 0.000 abstract description 18
- 239000003014 ion exchange membrane Substances 0.000 abstract description 2
- 150000001768 cations Chemical class 0.000 abstract 1
- 239000003792 electrolyte Substances 0.000 abstract 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 25
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000003638 chemical reducing agent Substances 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 229910000365 copper sulfate Inorganic materials 0.000 description 6
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 4
- 238000000502 dialysis Methods 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 3
- BQJTUDIVKSVBDU-UHFFFAOYSA-L copper;sulfuric acid;sulfate Chemical compound [Cu+2].OS(O)(=O)=O.[O-]S([O-])(=O)=O BQJTUDIVKSVBDU-UHFFFAOYSA-L 0.000 description 3
- 238000005705 Cannizzaro reaction Methods 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000008139 complexing agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1617—Purification and regeneration of coating baths
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Water Supply & Treatment (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Urology & Nephrology (AREA)
- Chemically Coating (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は化学銅めっき液の管理方法に関し、詳しくは化
学めっき反応によって生成されるめっき反応阻害成分の
蓄積を抑え、化学銅めっき液の組成を一定に管理する方
法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for managing a chemical copper plating solution, and more specifically, it suppresses the accumulation of plating reaction inhibiting components produced by a chemical plating reaction, and improves the composition of the chemical copper plating solution. It is related to a method of managing the
銅イオン、銅イオンの錯化剤、銅イオンの還元剤および
PH調整剤を主成分として含む化学銅めっき液は、化学
銅めっき液中で化学めっき反応により消費される銅イオ
ン、銅イオンの還元剤およびPH調整剤をそれら各成分
の最適濃度を維持するために、それらの成分を補充しな
がら長時間使用される。A chemical copper plating solution containing copper ions, a complexing agent for copper ions, a reducing agent for copper ions, and a PH adjuster as its main components reduces the copper ions and copper ions consumed by the chemical plating reaction in the chemical copper plating solution. The agents and PH adjusters are used for extended periods of time with replenishment of their respective components in order to maintain their respective optimal concentrations.
一般に、広く用いられている化学銅めっき液は、銅イオ
ンは硫酸銅等の銅化合物として、銅イオンの錯化剤はエ
チレンジアミン四酢酸のナトリウム塩等を、銅イオンの
還元剤はホルムアルデヒド等を、PH調整剤は水酸化ナ
トリウム等のアルカリ金属の水酸化物として含んでいる
。In general, the widely used chemical copper plating solution uses a copper compound such as copper sulfate as the copper ion, a sodium salt of ethylenediaminetetraacetic acid as the complexing agent for the copper ion, and formaldehyde as the reducing agent for the copper ion. The pH adjuster is contained as an alkali metal hydroxide such as sodium hydroxide.
上記の化学銅めっき液を管理する方法としては、一般に
はPH,銅濃度、銅イオンの還元剤の濃度をそれぞれ分
析し最適濃度からの不足分をそれぞれの補充液よりポン
プを通して直接化学銅めっき液中に添加するという一連
の操作のくり返しで行われている。これら化学めっき反
応で消費される水酸イオン、銅イオン、銅イオンの還元
剤の各成分の補充液としては、一般に水酸イオンは水酸
化ナトリウム等のアルカリ金属の水酸化物の水溶液が、
銅イオンは硫酸銅等の銅化合物の水溶液が、銅イオンの
還元剤は、例えばホルムアルデヒドの場合は、37重量
%ホルマリンが用いられている。In general, the method of controlling the chemical copper plating solution mentioned above is to analyze the pH, copper concentration, and concentration of the copper ion reducing agent, respectively, and then add the chemical copper plating solution directly to the chemical copper plating solution by pumping each replenisher to correct the shortfall from the optimum concentration. This is done by repeating a series of operations. As a replenisher for each component of hydroxide ion, copper ion, and copper ion reducing agent consumed in these chemical plating reactions, hydroxide ion is generally replaced with an aqueous solution of alkali metal hydroxide such as sodium hydroxide.
For the copper ions, an aqueous solution of a copper compound such as copper sulfate is used, and for the reducing agent for the copper ions, for example, in the case of formaldehyde, 37% by weight formalin is used.
しかし、上記従来技術では銅イオンの補充方法として銅
化合物の水溶液を直接化学銅めっき液中に補充している
ため、化学銅めっき液の長時間の使用により、銅イオン
の対陰イオンが化学銅めっき液中に蓄積されることにな
る。また、銅イオンの還元剤の酸化反応生成物イオンも
同様に化学銅めっき液の長時間の使用により、化学銅め
っき液中に蓄積される。銅化合物として主として硫酸銅
が用いられるので銅イオンの対陰イオンである硫酸イオ
ンが化学銅めっき液中に蓄積する。また銅イオンの還元
剤として主としてホルムアルデヒドが用いられ、この酸
化反応生成物イオはギ酸イオンであり、これが化学銅め
っき液中に蓄積される。However, in the above conventional technology, as a method of replenishing copper ions, an aqueous solution of a copper compound is directly replenished into the chemical copper plating solution. It will accumulate in the plating solution. Furthermore, ions produced by the oxidation reaction of the copper ion reducing agent are similarly accumulated in the chemical copper plating solution due to long-term use of the chemical copper plating solution. Since copper sulfate is mainly used as the copper compound, sulfate ions, which are counter anions to copper ions, accumulate in the chemical copper plating solution. Further, formaldehyde is mainly used as a reducing agent for copper ions, and the oxidation reaction product ions are formate ions, which are accumulated in the chemical copper plating solution.
硫酸イオン、ギ酸イオン等の副生成物イオンが化学銅め
っき液中に蓄積し、増加すると化学銅めっき液の状態は
不安定になり、分解されやすくなる。また、めっき皮膜
の抗張力、伸び率等の物性の低下および異常析出等の問
題が生じる。When by-product ions such as sulfate ions and formate ions accumulate in the chemical copper plating solution and increase, the state of the chemical copper plating solution becomes unstable and becomes easily decomposed. Further, problems such as a decrease in physical properties such as tensile strength and elongation of the plated film and abnormal precipitation occur.
また、従来の化学銅めっき液の管理方法では、分析して
から補充を行うため、補充方法が間欠であり、化学銅め
っき液中の各成分の濃度の変動が大きくなってしまうと
いう問題がある。In addition, in the conventional method of managing chemical copper plating solutions, replenishment is performed after analysis, which results in intermittent replenishment, which poses the problem of large fluctuations in the concentration of each component in the chemical copper plating solution. .
本発明の目的は、硫酸イオン、ギ酸イオン等の副生成物
イオンの蓄積を抑え、水酸イオンの補充液を必要とせず
、化学めっき反応によって消費される各成分の消費量と
同等の量を連続的に補充することができる化学銅めっき
液の管理方法を提供することにある。The purpose of the present invention is to suppress the accumulation of by-product ions such as sulfate ions and formate ions, eliminate the need for a hydroxide ion replenisher, and reduce the amount of each component consumed in a chemical plating reaction. An object of the present invention is to provide a method for managing a chemical copper plating solution that can be continuously replenished.
本発明の化学銅めっき液の管理方法は、2枚の陰イオン
交換樹脂膜を用いて陽極室、めっき液再生室、陰極室の
3つの小部屋に仕切っためっき液再生用の電気透析槽と
、陽イオン交換樹脂膜および陰イオン交換樹脂膜を用い
て陽極室、銅補充室、陰極室の3つの小部屋に仕切った
銅補充用の電気透析槽とを設け、銅イオン、銅イオンの
錯化剤、銅イオンの還元剤、PH調整剤を主成分として
含む化学銅めっき液をめつき槽から前記めっき液再生室
および前記銅補充室に、前記めっき液再生用の電気透析
槽の陽極室に電解質水溶液を、前記銅補充用の電気透析
槽の陽極室に水素イオン濃度を一定範囲内に管理してあ
る銅化合物の水溶液を、前記めっき液再生用および前記
銅補充用の電気透析槽の両陰極室にアルカリ性の水溶液
を、それぞれ導入し、前記めっき液再生用および前記銅
補充用の電気透析槽の陽極室および陰極室に設置した電
極間に直流電圧を印加するための電源を設け、前記めつ
き槽中の前記化学銅めっき液の主成分の濃度、活性等を
測定する分析機構の分析値から化学めっき反応速度を求
め、化学めっき反応と同じ速さで前記化学めっき反応に
よる副生成物イオンの除去および銅イオンの補充を行う
ように、前記めっき液再生用および前記銅補充用の電気
透析槽のそれぞれの電極間に流す電流値をコントロール
することを特徴とする。The chemical copper plating solution management method of the present invention includes an electrodialysis tank for plating solution regeneration that is divided into three small chambers, an anode chamber, a plating solution regeneration chamber, and a cathode chamber, using two anion exchange resin membranes. , an electrodialysis tank for copper replenishment is installed, which is divided into three small chambers: an anode chamber, a copper replenishment chamber, and a cathode chamber using a cation exchange resin membrane and an anion exchange resin membrane. A chemical copper plating solution containing a chemical copper plating agent, a copper ion reducing agent, and a PH adjusting agent as main components is transferred from the plating tank to the plating solution regeneration chamber and the copper replenishment chamber to the anode chamber of the electrodialysis tank for regenerating the plating solution. An aqueous electrolyte solution is added to the anode chamber of the electrodialysis tank for replenishing copper, and an aqueous solution of a copper compound whose hydrogen ion concentration is controlled within a certain range is added to the electrodialysis tank for regenerating the plating solution and for replenishing copper. Introducing an alkaline aqueous solution into each of the cathode chambers, and providing a power source for applying a DC voltage between the electrodes installed in the anode chamber and the cathode chamber of the electrodialysis tank for regenerating the plating solution and for replenishing the copper, The chemical plating reaction rate is determined from the analytical values of an analytical mechanism that measures the concentration, activity, etc. of the main components of the chemical copper plating solution in the plating bath, and by-products from the chemical plating reaction are determined at the same speed as the chemical plating reaction. The present invention is characterized in that the current value flowing between the electrodes of the electrodialysis tanks for regenerating the plating solution and for replenishing copper is controlled so as to remove chemical ions and replenish copper ions.
化学銅めっき液中における主な反応としては、反応式(
1)に示す銅が析出する主反応と反応式(2)に示すホ
ルムアルデヒドの自己酸化還元反応であるカニツツァロ
反応がある。The main reactions in the chemical copper plating solution are expressed by the reaction formula (
There are two main reactions: the main reaction in which copper is precipitated, shown in 1), and the Canitzaro reaction, which is an autooxidation-reduction reaction of formaldehyde, shown in reaction formula (2).
Cu2” +2HCHO+408−
→Cu +2 HCOO−+ H2+ 2 H20・・
・(1)2HCHO+OH−→CH30H+ HCOO
−・・・(2)
主反応において、銅が1モル析出すると、水酸イオンが
4モル消費され、ギ酸イオンが2モル生成される。また
、カニッツアロ反応では水酸イオンが1モル消費される
と、ギ酸イオンが1モル生成される。2枚の陰イオン交
換樹脂膜を用いて陽極室、めっき液再生室、陰極室の3
つの小部屋に仕切っためっき液再生用の電気透析槽と、
陽イオン交換樹脂膜および陰イオン交換樹脂膜を用いて
陽極室、銅補充室、陰極室の3つの小部屋に仕切った銅
補充用の電気透析槽を用いて、化学銅めっき液の再生お
よび銅補充を行うと、主反応で生成されるギ酸イオン2
モルを再生で除去を行うと水酸イオンが2モル補充され
、銅補充で銅イオンを1モル補充されると、水酸イオン
も2モル補充される。また、カニツツアロ反応で生成さ
れるギ酸イオンを1モルを再生で除去すると水酸イオン
が1モル補充される。つまり、めっき主反応、カニッツ
アロ反応によって消費される銅イオンを補充し、生成さ
せるギ酸イオンを除去すれば、反応に必要な水酸イオン
が補充されることになる。Cu2" +2HCHO+408- →Cu +2 HCOO-+ H2+ 2 H20...
・(1) 2HCHO+OH-→CH30H+ HCOO
- (2) In the main reaction, when 1 mole of copper is precipitated, 4 moles of hydroxide ions are consumed and 2 moles of formate ions are produced. Furthermore, in the Cannizzaro reaction, when 1 mole of hydroxide ion is consumed, 1 mole of formate ion is produced. Three anode chambers, a plating solution regeneration chamber, and a cathode chamber are constructed using two anion exchange resin membranes.
An electrodialysis tank for plating solution regeneration divided into two small rooms,
An electrodialysis tank for copper replenishment, which is divided into three small chambers, an anode chamber, a copper replenishment chamber, and a cathode chamber, using a cation exchange resin membrane and an anion exchange resin membrane, is used to regenerate chemical copper plating solution and remove copper. When replenishment is performed, formate ion 2 produced in the main reaction
When moles are removed by regeneration, 2 moles of hydroxide ions are replenished, and when 1 mole of copper ions are replenished by copper replenishment, 2 moles of hydroxide ions are also replenished. Furthermore, when 1 mole of formate ions produced in the Canitzaro reaction is removed by regeneration, 1 mole of hydroxide ions are replenished. In other words, by replenishing the copper ions consumed by the main plating reaction, the Cannizzaro reaction, and removing the generated formate ions, the hydroxide ions necessary for the reaction will be replenished.
したがって、化学銅めっき液の銅濃度、P H。Therefore, the copper concentration of the chemical copper plating solution, PH.
ホルムアルデヒド濃度の分析値より再生および銅補充で
の電解電流値を設定することにより連続的に銅、水酸イ
オンを補充することが可能であり、水酸イオンの補充は
必要なくなる。また、銅イオンの対陰イオンの蓄積はさ
れない。このときめっき液再生用の電気透析槽の陽極室
に導入する溶液として水酸化ナトニウム水溶液か、また
は硫酸水溶液が適当であり、銅補充用の電気透析槽の陽
極室に導入する溶液としては、水素イオン濃度を一定範
囲内に管理された銅化合物の水溶液、例えば硫酸銅水溶
液等を用いる。By setting the electrolytic current value for regeneration and copper replenishment based on the analytical value of formaldehyde concentration, it is possible to continuously replenish copper and hydroxide ions, and replenishment of hydroxide ions is no longer necessary. Further, counteranions of copper ions are not accumulated. At this time, a sodium hydroxide aqueous solution or a sulfuric acid aqueous solution is suitable as the solution introduced into the anode chamber of the electrodialysis tank for regenerating the plating solution, and hydrogen An aqueous solution of a copper compound whose ion concentration is controlled within a certain range, such as an aqueous copper sulfate solution, is used.
また、めっき液再生用および銅補充用の電気透析槽の両
方の陰極室に導入する溶液として水酸化ナトリウム水溶
液が適当である。In addition, an aqueous sodium hydroxide solution is suitable as the solution introduced into the cathode chambers of both the electrodialysis tank for plating solution regeneration and copper replenishment.
次に、本発明の実施例について図面を参照して説明する
。第1図は本発明の実施例1のフロー シートを示すも
のである。Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a flow sheet of Example 1 of the present invention.
2枚の陰イオン交換樹脂膜24によって陽極室21、め
っき液再生室22、陰極室23の3つの小部屋に仕切っ
である再生用電気透析槽2および陽イオン交換樹脂膜3
4、陰イオン交換樹脂膜35によって陽極室31、銅補
充室32、陰極室33の3つの小部屋に仕切っである銅
補充用電気透析槽3を設けてめっき槽1、めっき液再生
室22および銅補充室32に、硫酸銅Log/l!、エ
チレンジアミン四酢酸40” g / l、ホルムアル
デヒド2g/eを主成分として含むPH=12の化学銅
めっき液を入れ、ポンプP3.P4によってめっき槽1
より化学銅めっき液をくみあげ熱交換器6C16dによ
り冷却し、めっき液再生室22および銅補充室32に入
れる。ポンプP1゜P2によりそれぞれめっき液再生室
22、銅補充室32の化学銅めっき液をくみあげ熱交換
器6a、6bにより加温しめっき槽1に入れ、常時循環
させる。再生用電気透析槽2の陽極室21に10 g/
l硫酸水溶液を入れ、銅補充用透析槽3の陽極室31に
硫酸銅200g//、硫酸s o g/lの硫酸−硫酸
銅水溶液を入れる。The electrodialysis tank 2 for regeneration and the cation exchange resin membrane 3 are partitioned into three small rooms: an anode chamber 21, a plating solution regeneration chamber 22, and a cathode chamber 23 by two anion exchange resin membranes 24.
4. An electrodialysis tank 3 for copper replenishment, which is a partition between three small rooms, an anode chamber 31, a copper replenishment chamber 32, and a cathode chamber 33, is provided by an anion exchange resin membrane 35, and the plating tank 1, plating solution regeneration chamber 22, and Copper sulfate Log/l in the copper replenishment chamber 32! A chemical copper plating solution with a pH of 12 containing 40" g/l of ethylenediaminetetraacetic acid and 2 g/e of formaldehyde as main components was added to the plating tank 1 using pumps P3 and P4.
The chemical copper plating solution is pumped up and cooled by the heat exchanger 6C16d, and then put into the plating solution regeneration chamber 22 and copper replenishment chamber 32. The chemical copper plating solutions in the plating solution regeneration chamber 22 and copper replenishment chamber 32 are pumped up by pumps P1 and P2, respectively, heated by heat exchangers 6a and 6b, and put into the plating tank 1, where they are constantly circulated. 10 g/
1 sulfuric acid aqueous solution is put into the anode chamber 31 of the dialysis tank 3 for copper replenishment, and a sulfuric acid-copper sulfate aqueous solution of 200 g/l of copper sulfate and s og/l of sulfuric acid is put into the anode chamber 31 of the dialysis tank 3 for copper replenishment.
また、再生用電気透析槽2と銅補充用電気透析゛槽3の
陰極室23.33に4g/l水酸化ナトリウム水溶液を
入れる。再生用電気透析槽2の陽極室21、陰極室23
にそれぞれ陽極電極25、陰極電極26を配置しこの両
電極間に直流電源E1によって直流電圧を印加する。陽
極電極25、陰極電極26として白金めっきチタンが適
当である。銅補充用透析槽3の陽極室31には、アノー
ド溶解によって銅イオンを供給するために陽極電極36
に銅を用い、水素イオン発生用電極に白金めつきチタン
を用い、電流コントロール器39によって陽極室31の
硫酸−硫酸銅水溶液中の水素イオン濃度、銅イオン濃度
を一定範囲内に管理する。陰極室33に配置する陰極電
極37としては白金めっきチタンが適当である。E2は
陽極電極36および水素イオン発生用電極38と陰極電
極37との間に直流電圧を印加する直流電源である。In addition, 4 g/l aqueous sodium hydroxide solution is introduced into the cathode chambers 23 and 33 of the electrodialysis tank 2 for regeneration and the electrodialysis tank 3 for copper replenishment. Anode chamber 21 and cathode chamber 23 of electrodialysis tank 2 for regeneration
An anode electrode 25 and a cathode electrode 26 are respectively disposed at the two electrodes, and a DC voltage is applied between the two electrodes by a DC power source E1. Platinum-plated titanium is suitable for the anode electrode 25 and the cathode electrode 26. The anode chamber 31 of the dialysis tank 3 for copper replenishment has an anode electrode 36 for supplying copper ions through anode dissolution.
Copper is used for the sulfuric acid-copper sulfate aqueous solution in the anode chamber 31, and the hydrogen ion concentration and copper ion concentration in the sulfuric acid-copper sulfate aqueous solution in the anode chamber 31 are controlled within a certain range by a current controller 39. Platinum-plated titanium is suitable for the cathode electrode 37 disposed in the cathode chamber 33. E2 is a DC power supply that applies a DC voltage between the anode electrode 36 and the hydrogen ion generating electrode 38 and the cathode electrode 37.
分析機構5によってめっき槽1の化学銅めっき液のPH
1銅濃度、ホルムアルデヒド濃度の分析を行い、めっき
反応と同じ速さで水酸イオン、銅イオンを補充するよう
に直流電源El、E2で流す電流値をコントロールする
。またホルムアルデヒドはホルマリン補充タンク4より
ポンプP5により補充する。The pH of the chemical copper plating solution in the plating tank 1 is determined by the analysis mechanism 5.
1 Analyze the copper concentration and formaldehyde concentration, and control the current values flowing through the DC power supplies El and E2 so that hydroxide ions and copper ions are replenished at the same speed as the plating reaction. Further, formaldehyde is replenished from the formalin replenishment tank 4 by a pump P5.
条件として、めっき温度70℃、負荷量1dm2/l、
めっき槽容量301.イオン交換膜有効面積1000c
m2でめっき厚40ALmまで析出させて1サイクルと
し3サイクルまで使用したところ、水酸イオンを補充し
なくてもめつき速度は2μm/hとほぼ一定となり、硫
酸イオン、ギ酸イオンは初期にそれぞれO,0,4mo
1/e。The conditions were: plating temperature 70℃, load amount 1dm2/l,
Plating tank capacity 301. Ion exchange membrane effective area 1000c
When plating was performed for up to 3 cycles by depositing a plating thickness of 40 ALm at m2, the plating speed was almost constant at 2 μm/h without replenishing hydroxide ions, and sulfate ions and formate ions were initially mixed with O and formate, respectively. 0.4mo
1/e.
0.01mol/4’であったものが3サイクル終了後
は、それぞれ0.02mo 1/ff、0.01m o
l / l!であり、化学銅めっき液の組成を一定に
維持管理することができた。What was 0.01mol/4' becomes 0.02mo 1/ff and 0.01mo after 3 cycles, respectively.
l/l! This made it possible to maintain and manage the composition of the chemical copper plating solution at a constant level.
第2図は本発明の実施例2のフローシートを示すもので
ある。実施例1は、再生用電気透析槽2と銅補充用電気
透析槽3を並列にめつき槽1につないだものだが、実施
例2では2つの透析槽を直列につないだものである。FIG. 2 shows a flow sheet of Example 2 of the present invention. In Example 1, an electrodialysis tank 2 for regeneration and an electrodialysis tank 3 for copper replenishment are connected in parallel to the plating tank 1, but in Example 2, two dialysis tanks are connected in series.
めっき槽1中の化学銅めっき液をポンプP1によってく
みあげ熱交換器6aによって冷却し、銅補充用電気透析
槽3の銅補充室32に入れる。ポンプP2より銅補充室
32中の化学銅めっき液をくみあげ、再生用電気透析槽
2のめっき液再生室22に入れる。ポンプP3によりめ
っき液再生室22中の化学銅めっき液をくみあげ熱交換
器6bによって加温しめつき槽1に入れ、常時循環させ
る。The chemical copper plating solution in the plating tank 1 is pumped up by the pump P1, cooled by the heat exchanger 6a, and put into the copper replenishment chamber 32 of the electrodialysis tank 3 for copper replenishment. The chemical copper plating solution in the copper replenishment chamber 32 is pumped up from the pump P2 and put into the plating solution regeneration chamber 22 of the electrodialysis tank 2 for regeneration. The chemical copper plating solution in the plating solution regeneration chamber 22 is pumped up by the pump P3 and put into the heating and tightening tank 1 by the heat exchanger 6b, where it is constantly circulated.
実施例1と同じ組成の溶液を用い、同じ条件でめっきを
行ったところ実施例1と同様に副生成物イオンの蓄積は
なく、化学鋼めっき液の組成を一定に維持管理すること
ができた。When plating was performed using a solution with the same composition as in Example 1 and under the same conditions, there was no accumulation of by-product ions as in Example 1, and the composition of the chemical steel plating solution could be maintained constant. .
実施例2は実施例1に対し、化学銅めっき液の循環用の
ポンプを1ヶ、熱交換器を2ケ省略でき、配管が容易に
なる等の利点がある。Embodiment 2 has advantages over Embodiment 1 in that one pump for circulating the chemical copper plating solution and two heat exchangers can be omitted, and piping can be simplified.
以上説明したように本発明は電気透析により副生成物イ
オンの選択的除去を行う化学銅めっき液の再生と、同じ
く電気透析により銅イオンの選択的補充を行う銅の補充
を行い、化学銅めっき液を管理することにより、硫酸イ
オン、ギ酸イオン等の副生成物イオンの蓄積を抑え、水
酸イオンの補充液を必要とせず、化学銅めっき液の組成
を一定に維持管理することができる効果がある。As explained above, the present invention regenerates a chemical copper plating solution by selectively removing by-product ions by electrodialysis, and replenishes copper by selectively replenishing copper ions by electrodialysis. By controlling the solution, the accumulation of by-product ions such as sulfate ions and formate ions can be suppressed, and the composition of the chemical copper plating solution can be maintained at a constant level without the need for a hydroxide ion replenisher. There is.
第1図、第2図は本発明の実施例1および実施例2によ
る化学銅めっき液の管理方法を示す装置の構成説明図で
ある。
1・・・めっき槽、2・・・再生用電気透析槽、3・・
・銅補充用電気透析槽、4・・・ホルマリン補充用タン
ク、5・・・分析機構、6 a 、 6 b 、 6
c 、 6 d−・熱交換器、21・・・陽極室、22
・・・めっき液再生室、23・・・陰極室、24・・・
陰イオン交換樹脂膜、25・・・陽極電極、26・・・
陰極電極、31・・・陽極室、32・・・銅補充室、3
3・・・陰極室、34・・・陽イオン交換樹脂膜、35
・・・陰イオン交換樹脂膜、36・・・陽極電極、37
・・・陰極電極、38・・・水素イオン発生用電極、3
9・・・電流コントロール器、El。
E2・・・直流電源、Pl、P2.P3.P4・・・ポ
ンプ。FIGS. 1 and 2 are explanatory diagrams of the configuration of an apparatus showing a method of managing a chemical copper plating solution according to Examples 1 and 2 of the present invention. 1... Plating tank, 2... Regeneration electrodialysis tank, 3...
- Electrodialysis tank for copper replenishment, 4... Tank for formalin replenishment, 5... Analysis mechanism, 6 a, 6 b, 6
c, 6 d--heat exchanger, 21... anode chamber, 22
...Plating solution regeneration chamber, 23...Cathode chamber, 24...
Anion exchange resin membrane, 25... anode electrode, 26...
Cathode electrode, 31...Anode chamber, 32...Copper replenishment chamber, 3
3... Cathode chamber, 34... Cation exchange resin membrane, 35
... Anion exchange resin membrane, 36 ... Anode electrode, 37
...Cathode electrode, 38...Hydrogen ion generation electrode, 3
9...Current controller, El. E2...DC power supply, Pl, P2. P3. P4...Pump.
Claims (1)
生室、陰極室の3つの小部屋に仕切っためっき液再生用
の電気透析槽と、陽イオン交換樹脂膜および陰イオン交
換樹脂膜を用いて陽極室、銅補充室、陰極室の3つの小
部屋に仕切った銅補充用の電気透析槽とを設け、銅イオ
ン、銅イオンの錯化剤、銅イオンの還元剤、PH調整剤
を主成分として含む化学銅めっき液をめっき槽から前記
めっき液再生室および前記銅補充室に、前記めつき液再
生用の電気透析槽の陽極室に電解質水溶液を、前記銅補
充用の電気透析槽の陽極室に水素イオン濃度を一定範囲
内に管理してある銅化合物の水溶液を、前記めっき液再
生用および前記銅補充用の電気透析槽の両陰極室にアル
カリ性の水溶液を、それぞれ導入し、前記めっき液再生
用および前記銅補充用の電気透析槽の陽極室および陰極
室に設置した電極間に直流電圧を印加するための電源を
設け、前記めっき槽中の前記化学銅めつき液の主成分の
濃度、活性等を測定する分析機構の分析値から化学めっ
き反応速度を求め、化学めっき反応と同じ速さで前記化
学めっき反応による副生成物イオンの除去および銅イオ
ンの補充を行うように、前記めっき液再生用および前記
銅補充用の電気透析槽のそれぞれの電極間に流す電流値
をコントロールすることを特徴とする化学銅めっき液の
管理方法。An electrodialysis tank for plating solution regeneration that is divided into three small rooms: an anode chamber, a plating solution regeneration chamber, and a cathode chamber using two anion exchange resin membranes, and a cation exchange resin membrane and an anion exchange resin membrane. An electrodialysis tank for copper replenishment is installed, which is divided into three small rooms: an anode chamber, a copper replenishment chamber, and a cathode chamber. A chemical copper plating solution containing as a main component is supplied from the plating tank to the plating solution regeneration chamber and the copper replenishment chamber, an aqueous electrolyte solution is supplied to the anode chamber of the electrodialysis tank for regenerating the plating solution, and an electrolyte solution is supplied to the anode chamber of the electrodialysis tank for regenerating the plating solution. An aqueous solution of a copper compound whose hydrogen ion concentration is controlled within a certain range is introduced into the anode chamber of the tank, and an alkaline aqueous solution is introduced into both cathode chambers of the electrodialysis tank for regenerating the plating solution and for replenishing the copper. , a power supply is provided for applying a DC voltage between the electrodes installed in the anode chamber and the cathode chamber of the electrodialysis tank for regenerating the plating solution and for replenishing the copper, and The chemical plating reaction rate is determined from the analytical values of the analysis mechanism that measures the concentration, activity, etc. of the main components, and by-product ions from the chemical plating reaction are removed and copper ions are replenished at the same speed as the chemical plating reaction. A method for managing a chemical copper plating solution, which comprises controlling the current value flowing between each electrode of the electrodialysis tank for regenerating the plating solution and for replenishing the copper.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27891887A JPH01119679A (en) | 1987-11-02 | 1987-11-02 | Method for administrating chemical copper plating liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27891887A JPH01119679A (en) | 1987-11-02 | 1987-11-02 | Method for administrating chemical copper plating liquid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01119679A true JPH01119679A (en) | 1989-05-11 |
Family
ID=17603901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27891887A Pending JPH01119679A (en) | 1987-11-02 | 1987-11-02 | Method for administrating chemical copper plating liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01119679A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011514936A (en) * | 2008-03-12 | 2011-05-12 | マクダーミッド インコーポレーテッド | Method of electrolytically dissolving nickel in electroless nickel plating solution |
-
1987
- 1987-11-02 JP JP27891887A patent/JPH01119679A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011514936A (en) * | 2008-03-12 | 2011-05-12 | マクダーミッド インコーポレーテッド | Method of electrolytically dissolving nickel in electroless nickel plating solution |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4111772A (en) | Process for electrodialytically controlling the alkali metal ions in a metal plating process | |
JP2000355774A (en) | Plating method and plating solution precursory used therefor | |
CN112714803B (en) | Plating solution production and regeneration process and device for insoluble anode acid copper electroplating | |
JP2004536222A (en) | Electrolysis cell for recovering metal ion concentration in electroplating process | |
US9435041B2 (en) | Method and regeneration apparatus for regenerating a plating composition | |
TW467966B (en) | Method and device for regenerating an electroless metal deposition bath by electrodialysis | |
TWI385275B (en) | Method of electrolytically dissolving nickel into electroless nickel plating solutions | |
JPH10121297A (en) | Electrolytic copper plating device using insoluble anode and copper plating method employing the device | |
US4229280A (en) | Process for electrodialytically controlling the alkali metal ions in a metal plating process | |
JP2010037573A (en) | Regenerating method and regenerating apparatus of electroless plating solution | |
JPH01119679A (en) | Method for administrating chemical copper plating liquid | |
JPH04362199A (en) | Electroplating device | |
JPH01119678A (en) | Apparatus for administrating chemical copper plating liquid | |
JPH0418919A (en) | Method and device for electrodialysis | |
ITMI20001207A1 (en) | ELECTROLYSIS CELL FOR THE RESTORATION OF THE CONCENTRATION OF METAL IONS IN ELECTRODEPOSITION PROCESSES. | |
CN117396638A (en) | Device and method for coating a component or a semifinished product with a chromium layer | |
US6391177B1 (en) | High temperature continuous electrodialysis of electroless plating solutions | |
JPS5854200B2 (en) | Method of supplying metal ions in electroplating bath | |
JPH0417693A (en) | Plating method of ni, ni-zn alloy or ni-zn-co alloy | |
JP3172898B2 (en) | Etching waste liquid treatment method | |
JP2004532352A (en) | Process for the simultaneous electrochemical production of sodium dithionite and sodium peroxodisulfate | |
JP7484407B2 (en) | Method for starting up an electrolytic sulfuric acid solution production system | |
JPH11262641A (en) | Separation membrane for electroless nickel plating liquid regenerating and method of regenerating electroless nickel plating liquid | |
JP6223282B2 (en) | Method and apparatus for regenerating electroless plating solution | |
TW202225103A (en) | Electrodialysis device, water treatment system and method |