JPH01119602A - Production of silver-coated copper powder - Google Patents

Production of silver-coated copper powder

Info

Publication number
JPH01119602A
JPH01119602A JP62277689A JP27768987A JPH01119602A JP H01119602 A JPH01119602 A JP H01119602A JP 62277689 A JP62277689 A JP 62277689A JP 27768987 A JP27768987 A JP 27768987A JP H01119602 A JPH01119602 A JP H01119602A
Authority
JP
Japan
Prior art keywords
copper powder
silver
weight
coated copper
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62277689A
Other languages
Japanese (ja)
Other versions
JPH0246641B2 (en
Inventor
Mayumi Tokita
時田 真由美
Tsutomu Omotani
力 重谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP62277689A priority Critical patent/JPH01119602A/en
Publication of JPH01119602A publication Critical patent/JPH01119602A/en
Publication of JPH0246641B2 publication Critical patent/JPH0246641B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal

Landscapes

  • Powder Metallurgy (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To produce silver-coated copper powder having an excellent electrical conductivity, oxidation resistance and moisture resistance by dispersing the copper powder to a chelating agent soln., and adding a silver ion soln. thereto, then adding a reducing agent to the soln. to deposit silver films on the surface of the copper powder. CONSTITUTION:The copper powder is dispersed into the weakly acidic or neutral soln. of 1 or >=2 kinds of the chelating agents selected from ethylenediaminetetracetate, triethylenediamine and diethylenediaminepentaacetic acid. The amt. of the chelating agents to be used is 1-50wt.% of the weight of the copper powder in this case. The silver ion soln. consisting of a silver nitrate soln. is added to this liquid dispersion to accelerate reduction reaction; further, the reducing agent consisting of polyvalent carboxylic acids is added thereto at 0.1-10wt.% of the weight of the copper powder to cause the perfect reduction deposition, by which the silver films of 0.01-80wt.% of the weight of the copper powder are formed on the copper surfaces. The silver-coated copper powder utilizable for conductive fillers for a cold during conductive paste etc. is thereby obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、銀被覆銅粉を製造する方法に関し、より詳
細には、低温硬化型導電性ペースト用の導電性フィラー
等として利用することができる導電性、耐酸化性および
耐湿性に優れた銀被覆銅粉の製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing silver-coated copper powder, and more specifically, to a method for producing silver-coated copper powder, and more specifically, it relates to a method for producing silver-coated copper powder, and more specifically, it can be used as a conductive filler for a low-temperature curing conductive paste. This invention relates to a method for producing silver-coated copper powder with excellent conductivity, oxidation resistance, and moisture resistance.

〔従来の技術〕[Conventional technology]

従来より、銀粉を主体とする導電性金属粉末をフェノー
ル樹脂系などの有機樹脂に配合した導電性ペーストがあ
る。このペーストは300℃以下の低温で焼成できるた
めに、プリント配線板基板のスルーホール用、配線用あ
るいはクロスオーバー用に使用されている。
Conventionally, there has been a conductive paste made by blending conductive metal powder, mainly silver powder, with an organic resin such as a phenolic resin. Since this paste can be fired at a low temperature of 300° C. or lower, it is used for through holes in printed wiring boards, wiring, and crossovers.

銀粉を使用する導電性ペーストは導電性に優れかつ耐酸
化性にも優れているが、銀は高価でありまた安定した入
手が困難である。他方、銅粉を用いる場合、銅は安価で
ありかつ銀に匹敵する導電性を示すが、酸化し易く品質
の安定性に問題がある。
Conductive pastes using silver powder have excellent conductivity and oxidation resistance, but silver is expensive and difficult to obtain stably. On the other hand, when using copper powder, although copper is inexpensive and exhibits conductivity comparable to silver, it is easily oxidized and has problems with quality stability.

銅粉の欠点を補い銀粉並の導電性および耐酸化性を有す
る導電性フィラーとして、銀を被覆した銅粉が提案され
ている。
Copper powder coated with silver has been proposed as a conductive filler that compensates for the drawbacks of copper powder and has conductivity and oxidation resistance comparable to silver powder.

この銀を被覆した銅粉の製造法として一般的に、銅と銀
の置換反応を利用した無電解置換メツキ法、ホルマリン
の銀鏡反応を利用した還元型無電解メツキ法がある。例
えば、硝酸銀、炭酸アンモニウム塩およびエチレンジア
ミン四酢酸二ナトリウム塩の銀錯塩溶液を用いて金属銅
粉の表面に金属銀を置換析出させる方法(特公昭57−
59283号公報)、硝酸銀、アンモニア水およびエチ
レンジアミン四酢酸のナトリウム塩の銀錯塩溶液を用い
て金属銅粉の表面に金属銀を置換析出させる方法(特開
昭61−3802号公報)、シアン化銀の浴を利用する
方法などが提案されている。
Generally, methods for producing this silver-coated copper powder include an electroless substitution plating method that utilizes a substitution reaction between copper and silver, and a reduction type electroless plating method that utilizes a silver mirror reaction of formalin. For example, a method in which metallic silver is precipitated by substitution on the surface of metallic copper powder using a silver complex salt solution of silver nitrate, ammonium carbonate, and disodium ethylenediaminetetraacetic acid (Japanese Patent Publication No. 57-197-1)
59283), a method of displacing and depositing metallic silver on the surface of metallic copper powder using silver nitrate, aqueous ammonia and a silver complex salt solution of sodium salt of ethylenediaminetetraacetic acid (Japanese Unexamined Patent Publication No. 61-3802), silver cyanide Methods such as using a bath have been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の銅粉表面に金属銀を置換析出させ
る方法では、製造された銀被覆銅粉が初期の導電性に優
れていても経時変化によって特性が落ち、特に耐湿性に
劣る。シアン化銀の浴を用いる場合は、劇薬を用いるた
めに危険性が高く、ホルマリンなどで還元析出する方法
では、導電性、耐湿性とも良好ではない。
However, in the conventional method of displacing and depositing metallic silver on the surface of copper powder, even if the produced silver-coated copper powder has excellent initial conductivity, its properties deteriorate over time, and its moisture resistance is particularly poor. When using a silver cyanide bath, there is a high risk of using a powerful chemical, and when using formalin or the like for reduction and precipitation, both conductivity and moisture resistance are not good.

この発明は上述の背景に基づきなされたものであり、そ
の目的とするところは、耐湿性および耐酸化性に優れ、
経時変化を受けず安定した特性を示すと共に、良好な導
電性を有する銀被覆銅粉を製造することができる方法を
提供することである。
This invention was made based on the above-mentioned background, and its purpose is to provide excellent moisture resistance and oxidation resistance,
An object of the present invention is to provide a method for producing silver-coated copper powder that exhibits stable characteristics without being subject to changes over time and has good conductivity.

〔問題点を解決するための手段〕[Means for solving problems]

上記の課題はこの発明の銀被覆銅粉の製造法により解決
される。
The above problems are solved by the method for producing silver-coated copper powder of the present invention.

すなわち、この発明の銀被覆銅粉の製造法は、キレート
化剤溶液に銅粉を分散した後、この分散液に銀イオン溶
液を加えて還元反応を促し、更に還元剤を添加して完全
に還元析出させて、銅粉表面に銀被膜を析出させること
を特徴とするものである。
That is, the method for producing silver-coated copper powder of the present invention involves dispersing copper powder in a chelating agent solution, adding a silver ion solution to this dispersion to promote a reduction reaction, and then adding a reducing agent to completely complete the process. This method is characterized by depositing a silver film on the surface of copper powder through reduction precipitation.

この発明の好ましい態様において、被覆された銀の量を
、銅粉重量の0.01〜99重量%、好ましくは0.0
1〜80重量%、より好ましくは0.05〜10重量%
とすることができる。
In a preferred embodiment of the invention, the amount of coated silver is 0.01 to 99% by weight, preferably 0.0% by weight of the copper powder.
1 to 80% by weight, more preferably 0.05 to 10% by weight
It can be done.

この発明の好ましい態様において、用いられるキレート
化剤は、エチレンジアミンテトラ酢酸塩、トリエチレン
ジアミンおよびジエチレントリアミン五酢酸から選ばれ
る1種または2s以上のからなるものである。
In a preferred embodiment of the present invention, the chelating agent used is one or more selected from ethylenediaminetetraacetate, triethylenediamine, and diethylenetriaminepentaacetic acid.

この発明の好ましい態様において、キレート化剤の使用
量を、銅粉重量の0.1〜80重二%、好ましくは1〜
50重量%、より好ましくは2〜25重量%とすること
ができる。
In a preferred embodiment of this invention, the amount of the chelating agent used is 0.1 to 80% by weight, preferably 1 to 80% by weight, based on the weight of the copper powder.
It can be 50% by weight, more preferably 2 to 25% by weight.

この発明の好ましい態様において、キレート化剤溶液を
、弱酸性または中性とすることができる。
In preferred embodiments of this invention, the chelating agent solution can be weakly acidic or neutral.

これらのpH域で、銅の水酸化物を形成せず、また一般
的なキレート剤は銀キレートを形成しにくいからである
This is because copper hydroxide is not formed in these pH ranges, and common chelating agents are difficult to form silver chelates.

この発明の好ましい態様において、銀イオン溶液を、硝
酸銀溶液、好ましくは酸性硝酸銀溶液とすることができ
る。
In a preferred embodiment of the invention, the silver ion solution can be a silver nitrate solution, preferably an acidic silver nitrate solution.

この発明の好ましい態様において、用いる還元剤を、多
価カルボン酸類とすることができ、その使用量を、少量
、例えば、銅粉重量の0.01〜20重量%、好ましく
は0. 1〜10重量%、より好ましくは0.5〜5重
量%とすることかできる。
In a preferred embodiment of this invention, the reducing agent used can be a polyhydric carboxylic acid, and the amount used is small, for example 0.01 to 20% by weight of the copper powder, preferably 0.01 to 20% by weight of the weight of the copper powder. It can be 1 to 10% by weight, more preferably 0.5 to 5% by weight.

以下、この発明をより詳細に説明する。This invention will be explained in more detail below.

銅粉 この発明に用いることできる銅粉としては、通常の電解
法、還元法、アトマイズ法、機械的粉砕法等から得られ
る銅粉であり、その形状は樹枝状、針状、球状、フレー
ク状または粒状などである。
Copper powder The copper powder that can be used in this invention is copper powder obtained by ordinary electrolytic method, reduction method, atomization method, mechanical pulverization method, etc., and its shape can be dendritic, acicular, spherical, or flaky. or granular, etc.

また、V型ミキサーなどを用いて樹枝状銅粉と、粒状ま
たは球状銅粉とを混合して使用することができる。
Furthermore, dendritic copper powder and granular or spherical copper powder can be mixed and used using a V-type mixer or the like.

さらに、この発明に銅粉を使用する前に、前処理として
選別、希硫酸による洗浄、アルカリ性溶液による脱脂、
脱スコツト処理などの処理をすることもできるが、この
発明においてこれらの処理を行なう必要性はない。
Furthermore, before using copper powder in this invention, pre-treatments include sorting, cleaning with dilute sulfuric acid, degreasing with alkaline solution,
Although treatments such as de-scotting treatment can be performed, there is no need to perform these treatments in the present invention.

キレート化剤溶液 この発明で用いられるキレート化剤は、銅イオンと安定
な錯体を形成するものであり、好ましくは銀イオンと反
応し難いものである。そのようなものとして、例えば、
エチレンジアミンテトラ酢酸塩、トリエチレンジアミン
、ジエチレントリアミン五酢酸、N、N、N’ 、N’
 −テトラエチルエチレンジアミン、ジエチレンジアミ
ン、フェナントロリン、エチレンジオキシビス(エチル
アミン’)−N、N、N’ 、N’ −四酢酸、ニトリ
ロ三酢酸、ピコリン酸など、およびこれらの組合せがあ
る。これらの内、好ましいキレート化剤は、エチレンジ
アミンテトラ酢酸塩(以下、EDTAと1113する)
およびトリエチレンジアミン(以下、Tr i enと
略する)、ジエチレントリアミン五酢酸(以下、DTP
Aと略する)、またはこれらの組合わせである。これは
、銅のキレート錯体の安定性、試薬の価格、作業性など
で優れているからである。なお、EDTAが安価である
ことから、後述する実施例では、キレート化剤の代表例
としてEDTAおよびTrienを使用する。
Chelating Agent Solution The chelating agent used in this invention forms a stable complex with copper ions and is preferably one that does not easily react with silver ions. As such, for example,
Ethylenediaminetetraacetate, triethylenediamine, diethylenetriaminepentaacetic acid, N, N, N', N'
-tetraethylethylenediamine, diethylenediamine, phenanthroline, ethylenedioxybis(ethylamine')-N,N,N',N'-tetraacetic acid, nitrilotriacetic acid, picolinic acid, and combinations thereof. Among these, a preferred chelating agent is ethylenediaminetetraacetate (hereinafter referred to as EDTA).
and triethylenediamine (hereinafter abbreviated as Trien), diethylenetriaminepentaacetic acid (hereinafter referred to as DTP),
(abbreviated as A), or a combination thereof. This is because the copper chelate complex is superior in terms of stability, reagent cost, workability, etc. Note that since EDTA is inexpensive, EDTA and Trien are used as representative examples of chelating agents in the Examples described below.

キレート化剤は、この発明の方法において、適当な溶媒
で溶解して用いる。その溶媒としては、例えば、水など
のがある。用いる水は、銅粉の所望の性能により種々の
水準のものを用いることができ、例えば、工業用水を用
いることができるが、好ましくはイオン交換水または純
水である。
The chelating agent is used in the method of this invention after being dissolved in a suitable solvent. Examples of the solvent include water. Water of various levels can be used depending on the desired performance of the copper powder. For example, industrial water can be used, but ion exchange water or pure water is preferable.

好ましいキレート化剤の使用量は、銅粉重量の0.1〜
80重量26、好ましくは1〜50重量%、より好まし
くは2〜25重量%とすることができる。この使用量に
よって、銅粉表面上の銅の水酸化物や酸化物を銅のキレ
ート錯体に変えて銅粉表面に銀被覆を速やかにかつ完全
に行うことができる。
The preferred amount of the chelating agent used is 0.1 to 0.1 to the weight of the copper powder.
80% by weight, 26% by weight, preferably 1-50% by weight, more preferably 2-25% by weight. Depending on the amount used, the copper hydroxide or oxide on the surface of the copper powder can be converted into a copper chelate complex, and the surface of the copper powder can be quickly and completely coated with silver.

キレート化剤溶液には、必要に応じて種々の添加剤を加
えることができる。そのようなものとして、光沢剤、属
性延性向上のための塩化鉛、フェロシアン化カリウムの
極少量、例えばラウリン酸ナトリウムなどの分散剤など
がある。
Various additives can be added to the chelating agent solution as necessary. These include brighteners, lead chloride to improve ductility, minimal amounts of potassium ferrocyanide, and dispersants such as sodium laurate.

キレート化剤溶液の液性は、好ましくは酸性、特に弱酸
性または中性である。このような液性で、銅粉表面に水
酸化物が形成するのを防ぐことができ、かつ銀イオンが
錯体を形成しにくいpH域だからである。
The liquid nature of the chelating agent solution is preferably acidic, particularly weakly acidic or neutral. This is because such liquid properties can prevent the formation of hydroxides on the surface of the copper powder, and the pH range is such that silver ions are difficult to form complexes.

銀イオン溶液 この発明の方法で用いられる銀イオン溶液は、この発明
の目的に反しない限り任意である。代表的な銀イオン溶
液として、硝酸銀水溶液などがある。
Silver Ion Solution The silver ion solution used in the method of this invention is arbitrary as long as it does not contradict the purpose of this invention. A typical silver ion solution includes a silver nitrate aqueous solution.

この発明で用いられる銀イオン溶液は、好ましくは中性
または弱酸性である。無電解メツキで用いられているよ
うなアンモニア性硝酸銀溶液では、銀イオンが安定なア
ンモニア錯体にされているが、そのアルカリ性によって
銅粉表面に銅の水酸化物が形成される恐れがあるからで
ある。
The silver ion solution used in this invention is preferably neutral or weakly acidic. In the ammoniacal silver nitrate solution used in electroless plating, silver ions are made into a stable ammonia complex, but its alkalinity may cause the formation of copper hydroxide on the surface of the copper powder. be.

°硝酸銀溶液の濃度は、この発明において特に限定され
ないが、例えば、10〜200g/II)程度に調整す
る。用いる水は、銅粉の所望の性能により種々の水準の
ものを用いることができ、例えば、工業用水を用いるこ
とができるが、好ましくはイオン交換水または純水であ
る 還元剤 この発明において用いることができる還元剤として、種
々の還元剤をもちいることができる。好ま・しい還元剤
は、弱い還元剤である。これは、銀イオン添加による置
換析出により銀被覆が形成されるが、その置換反応の副
生物として酸化物(Cub、Cu  O,Ago、Ag
20)が生成し、これを還元する必要があるからである
が、銅の錯イオンまでも還元させないためである。
The concentration of the silver nitrate solution is not particularly limited in the present invention, but is adjusted to, for example, about 10 to 200 g/II). Water of various levels can be used depending on the desired performance of the copper powder, for example, industrial water can be used, but preferably ion exchange water or pure water. Various reducing agents can be used as the reducing agent capable of. Preferred reducing agents are weak reducing agents. A silver coating is formed by displacement precipitation due to the addition of silver ions, but oxides (Cub, CuO, Ago, Ag
This is because 20) is generated and it is necessary to reduce it, but also to prevent copper complex ions from being reduced.

この発明で用いることができる弱い還元剤として還元性
有機化合物があり、そのようなものとして、例えば、グ
ルコースなどの炭水化物類、マロン酸、コハク酸、グリ
コール酸、乳酸、リンゴ酸、酒石酸、シュウ酸などの多
価カルボン酸類およびその塩類、ホルマリンなどのアル
デヒド類などがある。
Weak reducing agents that can be used in this invention include reducing organic compounds, such as carbohydrates such as glucose, malonic acid, succinic acid, glycolic acid, lactic acid, malic acid, tartaric acid, oxalic acid. These include polyhydric carboxylic acids and their salts, and aldehydes such as formalin.

還元剤の使用量は、還元に必要な量で十分であり、用い
る銅粉、キレート化剤、銀イオン溶液および反応条件な
どに応じて適宜選択することができる。例えば、還元剤
の使用量は、銅粉重量の0.01〜20重量%、好まし
くは0.1〜10重量%、より好ましくは0,5〜5重
量%である。
The amount of reducing agent used is sufficient for reduction, and can be appropriately selected depending on the copper powder, chelating agent, silver ion solution, reaction conditions, etc. used. For example, the amount of the reducing agent used is 0.01 to 20% by weight, preferably 0.1 to 10% by weight, and more preferably 0.5 to 5% by weight based on the weight of the copper powder.

製造法 この発明の銀被覆銅粉の製造法は、キレート化剤溶液に
銅粉を分散した後、この分散液(スラリー)に銀イオン
溶液を加えて還元反応を促し、更に還元剤を添加して完
全に還元析出させて、銅粉表面に銀被膜を析出させるか
らなる。
Manufacturing method The method for manufacturing silver-coated copper powder of the present invention involves dispersing copper powder in a chelating agent solution, adding a silver ion solution to this dispersion (slurry) to promote a reduction reaction, and then adding a reducing agent. The copper powder is completely reduced and precipitated to deposit a silver film on the surface of the copper powder.

第1図に、この発明による製造例のフロー図を示す。FIG. 1 shows a flow diagram of a manufacturing example according to the present invention.

この置換析出反応および還元析出反応の反応条件(反応
時間、反応温度、雰囲気など)は、所望の銅粉の特性、
試薬の種類、に応じて適宜選択変更することができる。
The reaction conditions (reaction time, reaction temperature, atmosphere, etc.) of this displacement precipitation reaction and reduction precipitation reaction are determined based on the desired characteristics of the copper powder,
The selection can be changed as appropriate depending on the type of reagent.

例えば、銅粉の分散液への銀イオン溶液の添加は、反応
を促進するために撹拌下に実施することが望ましい。
For example, it is desirable to add a silver ion solution to a copper powder dispersion while stirring to promote the reaction.

銀イオンを置換析出および還元析出させた後、必要に応
じて銀被覆銅粉を精製水などで洗浄し、濾過し、さらに
乾燥することができる。洗浄は、通常に銅粉に精製水を
注いだり、また精製水中で撹拌して実施することができ
、乾燥は、不活性な雰囲気での乾燥炉で加熱して、また
メタノールなどの揮発水溶性液体で洗浄した後にその液
体を蒸発させて行うことができる。
After the silver ions are precipitated by substitution and precipitated by reduction, the silver-coated copper powder can be washed with purified water or the like, filtered, and further dried, if necessary. Cleaning can usually be carried out by pouring purified water onto the copper powder or stirring it in purified water, and drying can be carried out by heating it in a drying oven in an inert atmosphere or using a volatile water-soluble solution such as methanol. This can be done by washing with a liquid and then evaporating the liquid.

この発明により得られた銀被覆銅粉は、種々の用途に用
いることができ、導電性塗料、導電性ペースト、導電性
樹脂などの導電フィラーとして利用することができる。
The silver-coated copper powder obtained by this invention can be used for various purposes, and can be used as a conductive filler for conductive paints, conductive pastes, conductive resins, and the like.

〔作 用〕[For production]

上記のように構成されたこの発明の銀被覆銅粉(’)’
A 造”aでは、次のようなメカニズムで製造される。
Silver-coated copper powder (')' of this invention configured as above
A is manufactured using the following mechanism.

キレート化剤溶液に銅粉を作用させると、キレート化剤
は、銅イオンを非常に安定な錯体を形成し、銅の酸化物
や有機物との銅化合物(スマ・ソト)などの化合物であ
ってもこの結合を切って錯体を形成する。従って、微量
な銅イオンを溶液中(こ残すこと無く、また銅粉表面の
汚染(酸化物被膜など)を除去することができる。この
ように銀被覆させるべき銅粉表面は、良好に洗浄され、
最も反応性に富む活性点を表面に出すことができる。
When copper powder is applied to a chelating agent solution, the chelating agent forms a very stable complex with copper ions, and forms compounds such as copper oxides and copper compounds with organic substances (suma-soto). also breaks this bond to form a complex. Therefore, it is possible to remove trace amounts of copper ions in the solution (without leaving traces) and to remove contamination (oxide film, etc.) on the surface of the copper powder.In this way, the surface of the copper powder to be coated with silver can be well cleaned. ,
The most reactive active sites can be exposed to the surface.

活性化された銅粉のスラリーに、銀イオン溶液を加える
と、瞬時に置換反応が起こり銅表面に銀が析出する。こ
れは、銅粉が活性化されて0るのに加えて、この発明に
おいて、用いられる銀イオンが錯体化されていない不安
定な状態だからでもある。
When a silver ion solution is added to a slurry of activated copper powder, a substitution reaction occurs instantly and silver is deposited on the copper surface. This is because, in addition to the fact that the copper powder is activated, the silver ions used in this invention are in an uncomplexed and unstable state.

上記のように、銀イオン添加による置換析出により銀被
覆が形成されるが、その置換反応の副生物として酸化物
(Cu O−Cu 20、Ago。
As mentioned above, a silver coating is formed by displacement precipitation due to the addition of silver ions, but oxides (CuO-Cu20, Ago.

A g 20 )が生成し、この副生物が銅粉の耐酸化
性を損なう恐れがある。この発明では、次いで、還元剤
が添加されこの副生物を還元し除去する。
A g 20 ) is generated, and this by-product may impair the oxidation resistance of the copper powder. In this invention, a reducing agent is then added to reduce and remove this by-product.

この発明の好ましい態様で用いられる弱い還元剤では、
残留する銀イオンは還元するが、銅の錯イオンまでも還
元しない。
The weak reducing agent used in the preferred embodiment of this invention includes:
Although the remaining silver ions are reduced, even the copper complex ions are not reduced.

上述のようにこの発明において、銀析出は、置換反応と
還元反応で起こり、この組合わせにより優れた特性を銀
被覆銅粉に付与する。
As described above, in this invention, silver precipitation occurs through a substitution reaction and a reduction reaction, and this combination provides excellent properties to the silver-coated copper powder.

〔発明の効果〕〔Effect of the invention〕

この発明により次の効果を得ることができる。 The following effects can be obtained by this invention.

(a)  耐湿性および耐酸化性に優れ、経時変化を受
けず安定した特性を示すと共に、良好な導電性を有する
銀被覆銅粉を製造することができる。
(a) It is possible to produce silver-coated copper powder that has excellent moisture resistance and oxidation resistance, exhibits stable characteristics without being subject to changes over time, and has good electrical conductivity.

(b)  従来、銅粉の前処理として洗浄や脱脂などが
行われているが、この前処理の洗浄や濾過工程で銅粉の
表面に多少でも水酸化物や酸化物などが形成され、前処
理の効果が半減される。しかし。
(b) Conventionally, cleaning and degreasing are performed as pre-treatments for copper powder, but during these pre-treatment cleaning and filtration steps, hydroxides and oxides may be formed on the surface of the copper powder, causing The effect of processing is halved. but.

この発明において、キレート化剤溶液で処理するために
、洗浄などの前処理を特に必要とせずに、活性な銅粉を
準備することができる。従って、作業性もよく、工程コ
ストを低減することができる。
In this invention, active copper powder can be prepared for treatment with a chelating agent solution without requiring any particular pretreatment such as washing. Therefore, workability is good and process costs can be reduced.

(c)  この発明の銀被覆銅粉は、銀被覆量に制限が
なく、例えばわずか1%であっても特性に影響しない。
(c) In the silver-coated copper powder of the present invention, there is no limit to the amount of silver coating; for example, even if it is only 1%, the properties are not affected.

これは、キレート化剤で銅粉表面が洗浄され、活性な表
面に確実に銀が析出し被覆するからである。従って、銀
使用量を少なくすることができる。
This is because the surface of the copper powder is washed with the chelating agent, and silver is reliably deposited and coated on the active surface. Therefore, the amount of silver used can be reduced.

(d)  従来の銅粉では窒素雰囲気などの不活性雰囲
気下での保存が必要であるが、この発明においては、高
温、高湿の悪環境でも変化なく保存することができる。
(d) Conventional copper powder requires storage under an inert atmosphere such as a nitrogen atmosphere, but in the present invention, it can be stored without change even in adverse environments of high temperature and high humidity.

(e)  使用する試薬がすべて安価でかつ量が少なく
、この発明の方法は工業的価値が高い。
(e) All the reagents used are inexpensive and in small amounts, and the method of the present invention has high industrial value.

〔実施例〕〔Example〕

この発明を実施例により具体的に説明する。 This invention will be specifically explained by examples.

実施例1 銅粉(三井金属鉱業製、MFP−1110)493.3
grを、EDTA5gを溶解した液量4.8gの浴に分
散させ、20Orpmで約5分間撹拌した。
Example 1 Copper powder (manufactured by Mitsui Mining & Co., Ltd., MFP-1110) 493.3
gr was dispersed in a 4.8 g bath containing 5 g of EDTA and stirred at 20 rpm for about 5 minutes.

撹拌しながら、この分散液に、硝酸銀15.7gを純水
200mgに溶解した硝酸銀溶液を、−度に短時間で添
加した。液温は25〜50℃であり、特に制限はない。
A silver nitrate solution prepared by dissolving 15.7 g of silver nitrate in 200 mg of pure water was added to this dispersion in a short period of time while stirring. The liquid temperature is 25 to 50°C, and is not particularly limited.

約30分間撹拌を続けた。Stirring was continued for approximately 30 minutes.

次いで、還元剤である酒石酸10gを添加した。Then, 10 g of tartaric acid as a reducing agent was added.

さらに、約30分間撹拌を続けた。Furthermore, stirring was continued for about 30 minutes.

次いで、濾過し、純水で濾液が透明になるまで洗浄し、
1時間真空ポンプで吸引し、70℃の乾燥機に入れた。
Next, filter and wash with pure water until the filtrate becomes clear.
It was evacuated with a vacuum pump for 1 hour and placed in a dryer at 70°C.

なお、大気中での乾燥で十分である。Note that drying in the air is sufficient.

銀被覆銅粉の収量は、492.5gであり、収率は98
.5%であり、銀含有量は2.0%であった。
The yield of silver-coated copper powder was 492.5 g, and the yield was 98
.. 5%, and the silver content was 2.0%.

得られた銅粉50gと下記組成のフェノール樹脂系溶液
11.26gを三本ロールミルで、30回混練してペー
ストを調製した。得られたペーストをスクリーン印刷で
紙フエノール基板上に塗布した。このペーストを空気中
160℃、30分間乾燥して回路基板を形成した。
A paste was prepared by kneading 50 g of the obtained copper powder and 11.26 g of a phenolic resin solution having the composition shown below in a three-roll mill 30 times. The resulting paste was applied onto a paper phenol substrate by screen printing. This paste was dried in air at 160° C. for 30 minutes to form a circuit board.

フェノール樹脂系溶液組成(wt%) フェノール樹脂        49.4メチルカルピ
トール      37.3トルエン        
    4.5アセトン            8゜
8塗膜の比抵抗値は、1.94X10””Ωamであり
、極めた良好な導電性を示した。この塗膜にハンダ付け
して90°プル強度を測定したところ1.29kg/m
ばであった。
Phenol resin solution composition (wt%) Phenol resin 49.4 Methylcarpitol 37.3 Toluene
The specific resistance value of the 4.5 acetone 8°8 coating film was 1.94×10″Ωam, indicating extremely good electrical conductivity. The 90° pull strength measured by soldering to this coating was 1.29 kg/m.
It was.

また、銅粉の耐湿性および耐酸化性を調べるために、得
られた粉末100gを40℃、相対湿度95%の恒温恒
湿機に24時間保管し、取出して後、上記方法でペース
ト化しその比抵抗値を1111J定してその変化率を求
めた。比抵抗値は1. 93X10−4Ω(1であり、
全く変化がないことが認めれらた。さらに、粉末の酸素
の食付率も耐湿試験の前後で全く変化がないことが認め
れらた。
In addition, in order to examine the moisture resistance and oxidation resistance of copper powder, 100 g of the obtained powder was stored in a constant temperature and humidity chamber at 40°C and 95% relative humidity for 24 hours, taken out, and made into a paste using the above method. The specific resistance value was set at 1111 J and its rate of change was determined. The specific resistance value is 1. 93X10-4Ω (1,
It was observed that there was no change at all. Furthermore, it was observed that the oxygen attack rate of the powder did not change at all before and after the moisture resistance test.

同様に、塗膜の抵抗の変化と耐熱性、高温耐湿性を調査
した。その結果、耐熱性は全く問題がなかった。85℃
、相対湿度95%のエージング特性は若干の劣化が認め
られるにすぎなかった。
Similarly, changes in resistance, heat resistance, and high temperature and humidity resistance of the coating film were investigated. As a result, there were no problems with heat resistance. 85℃
, only slight deterioration was observed in the aging characteristics at a relative humidity of 95%.

85℃、相対湿度95%、100時間放置の場合の比抵
抗値は、2.86X10’Ωcmであり、極めて良好な
導電性を示していた。
The specific resistance value when left for 100 hours at 85° C. and 95% relative humidity was 2.86×10′Ωcm, indicating extremely good conductivity.

第1表に測定結果を纏めて示す。Table 1 summarizes the measurement results.

実施例2 実施例1と同様の操作により、銀被覆置駒196の銀被
覆銅粉を製造した。
Example 2 Silver-coated copper powder of silver-coated mounting piece 196 was produced by the same operation as in Example 1.

得られた銅粉を実施例1と同様にその特性を測定し、そ
の結果を第1表に示す。
The properties of the obtained copper powder were measured in the same manner as in Example 1, and the results are shown in Table 1.

この結果から、全ての特性において、特に優れた結果を
示し、銀被覆量がわずか1%でも申し分のない特性を有
することがわかる。
The results show that all properties are particularly excellent, and even with a silver coating of only 1%, the properties are satisfactory.

実施例3 キレート化剤としてTrien45gを、還元剤として
の酒石酸2gを用いたこと以外、実施例1と同様の操作
により、銀被覆量的2%の銀被覆銅粉を製造した。
Example 3 A silver-coated copper powder having a silver coverage of 2% was produced in the same manner as in Example 1 except that 45 g of Trien was used as a chelating agent and 2 g of tartaric acid was used as a reducing agent.

得られた銅粉を実施例1と同様にその特性を測定し、そ
の結果を第1表に示す。
The properties of the obtained copper powder were measured in the same manner as in Example 1, and the results are shown in Table 1.

この結果から、初期特性が多少劣るが、全ての特性にお
いて優れた結果を示めしていることがわかる。
From this result, it can be seen that although the initial characteristics are somewhat inferior, the results are excellent in all characteristics.

比較例1 還元剤を用いなかったこと以外、実施例1と同様の操作
により、銀被覆量的2%の銀被覆銅粉を製造した。
Comparative Example 1 A silver-coated copper powder having a silver coating of 2% was produced by the same operation as in Example 1 except that no reducing agent was used.

得られた銅粉を実施例1と同様にその特性を測定し、そ
の結果を第1表に示す。
The properties of the obtained copper powder were measured in the same manner as in Example 1, and the results are shown in Table 1.

この結果から、銅粉および塗膜の耐エージング性に多少
劣ることが分かった。これは品質の安定性に悪影響を及
ぼす恐れがある。
From this result, it was found that the aging resistance of the copper powder and the coating film was somewhat inferior. This may have an adverse effect on quality stability.

比較例2 銀イオンが錯体化されたアンモニア性硝酸銀溶液を用い
たこと以外、実施例1と同様の操作により、銀波5f量
約2%の銀被覆銅粉を製造した。
Comparative Example 2 Silver-coated copper powder having a silver wave 5f amount of about 2% was produced by the same operation as in Example 1 except that an ammoniacal silver nitrate solution in which silver ions were complexed was used.

得られた銅粉を実施例1と同様にその特性を測定し、そ
の結果を第1表に示す。
The properties of the obtained copper powder were measured in the same manner as in Example 1, and the results are shown in Table 1.

この結果から、銅粉および塗膜の初期特性、ハンダの密
着性、銅粉および塗膜の耐湿性、耐酸化性に劣ることが
分かった。
From this result, it was found that the initial characteristics of the copper powder and coating film, solder adhesion, moisture resistance, and oxidation resistance of the copper powder and coating film were inferior.

比較例3 比較例2と同様の操作により、銀波ff1ffi約1%
の銀被覆銅粉を製造した。
Comparative Example 3 By the same operation as Comparative Example 2, silver wave ff1ffi was approximately 1%.
silver-coated copper powder was produced.

得られた銅粉を実施例1と同様にその特性を1(IIJ
定し、その結果を第1表に示す。
The properties of the obtained copper powder were determined in the same manner as in Example 1.
The results are shown in Table 1.

その耐湿試験の結果から、初期特性が良好であるが、経
時変化が大きく耐湿性に劣ることがわかった。したがっ
て、この発明の好ましい態様である酸性硝酸銀の使用に
おいて、銀被覆銅粉が特に優れていることがわかった。
The results of the moisture resistance test showed that although the initial properties were good, the changes over time were large and the moisture resistance was poor. Therefore, it was found that silver-coated copper powder is particularly excellent in the use of acidic silver nitrate, which is a preferred embodiment of the present invention.

比較例4 従来の製造法(特公昭57−59283号公報)に従っ
て銀被覆銅粉を製造した。
Comparative Example 4 Silver-coated copper powder was produced according to a conventional production method (Japanese Patent Publication No. 57-59283).

すなわち、前処理として希硫酸で酸化被膜を除去した銅
粉500gを、20Orpmの撹拌下に室温で硝酸銀1
6.24gの水溶液(A液)32ccと、炭酸アンモニ
ウム81.2gおよびEDTA−3Na塩65gを純水
350ccに溶解したB液を混合した銀イオン溶液を5
分間で添加し60分間反応させた。
That is, 500 g of copper powder from which the oxide film was removed with dilute sulfuric acid as a pretreatment was mixed with 1 ml of silver nitrate at room temperature while stirring at 20 rpm.
A silver ion solution prepared by mixing 32 cc of an aqueous solution of 6.24 g (liquid A) and liquid B in which 81.2 g of ammonium carbonate and 65 g of EDTA-3Na salt were dissolved in 350 cc of pure water was mixed with 5 ml of silver ion solution.
The mixture was added for 60 minutes and reacted for 60 minutes.

得られた銅粉を実施例1と同様にその特性を測定し、そ
の結果を第1表に示す。
The properties of the obtained copper powder were measured in the same manner as in Example 1, and the results are shown in Table 1.

その試験の結果から、初期特性が良好であるが、経時変
化が大きく耐酸化性および耐湿性に劣ることがわかった
The test results showed that although the initial properties were good, the changes over time were large and the oxidation resistance and moisture resistance were poor.

比較例5 従来の製造法(特開昭61’−3802号公報)に従っ
て銀被覆銅粉を製造した。
Comparative Example 5 Silver-coated copper powder was produced according to a conventional production method (Japanese Unexamined Patent Publication No. 61'-3802).

すなわち、前処理としてアルカリで脱脂し、希硫酸で酸
化被膜除去した銅粉500gを純水11)に加えて、4
00rpmの撹拌下に分散した。硝酸銀15.19gお
よびEDTA・2Na塩101.2gを純水2リツトル
に溶解させ、アンモニア(25w t%)147mlを
添加し、全体として2.5リツトルに調整した。この銀
イオン溶液を400 rpmの撹拌下に銅粉分散液に5
分間で添加し、1時間反応させた。次いで、濾過して濾
液がpHが7になるまで純水で洗浄し、1時間の吸引後
、50℃の真空乾燥機で1時間乾燥して銀被覆銅粉を得
た。
That is, 500 g of copper powder, which had been degreased with alkali as a pretreatment and whose oxide film was removed with dilute sulfuric acid, was added to pure water 11).
The mixture was dispersed under stirring at 00 rpm. 15.19 g of silver nitrate and 101.2 g of EDTA.2Na salt were dissolved in 2 liters of pure water, and 147 ml of ammonia (25 wt%) was added to adjust the total amount to 2.5 liters. This silver ion solution was added to the copper powder dispersion while stirring at 400 rpm.
The mixture was added over a period of 1 minute and reacted for 1 hour. Next, it was filtered, and the filtrate was washed with pure water until the pH became 7, and after suction for 1 hour, it was dried for 1 hour in a vacuum dryer at 50° C. to obtain silver-coated copper powder.

得られた銅粉を実施例1と同様にその特性を測定し、そ
の結果を第1表に示す。
The properties of the obtained copper powder were measured in the same manner as in Example 1, and the results are shown in Table 1.

その試験の結果から、初期特性が良好であるが、経時変
化が太き(耐酸化性および耐湿性に劣るこ
The test results show that the initial properties are good, but the aging is significant (oxidation resistance and moisture resistance are poor).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明による製造法のフロー図である。 出願人代理人  佐  藤  −雄 曳肚」」囲 第1図 FIG. 1 is a flow diagram of the manufacturing method according to the present invention. Applicant's agent: Mr. Sato ``Hikidu'' Figure 1

Claims (1)

【特許請求の範囲】 1、キレート化剤溶液に銅粉を分散し、該分散液に銀イ
オン溶液を加え、次いで還元剤を添加して銅粉表面に銀
被膜を析出させることを特徴とする銀被覆銅粉の製造法
。 2、被覆された銀の量が銅粉重量の0.01〜80重量
%である特許請求の範囲第1項記載の銀被覆銅粉の製造
法。 3、キレート化剤がエチレンジアミンテトラ酢酸塩、ト
リエチレンジアミンおよびジエチレントリアミン五酢酸
から選ばれた1種または2種以上のものからなる特許請
求の範囲第1項または第2項記載の銀被覆銅粉の製造法
。 4、キレート化剤の使用量が銅粉重量の1〜50重量%
である特許請求の範囲第3項記載の銀被覆銅粉の製造法
。 5、キレート化剤溶液が弱酸性または中性である特許請
求の範囲第4項に記載の銀被覆銅粉の製造法。 6、銀イオン溶液が硝酸銀溶液である特許請求の範囲第
1項乃至第5項のいずれかに記載の銀被覆銅粉の製造法
。 7、硝酸銀溶液が酸性である特許請求の範囲第6項記載
の銀被覆銅粉の製造法。 8、還元剤が多価カルボン酸類である特許請求の範囲第
1項乃至第7項のいずれかに記載の銀被覆銅粉の製造法
。 9、還元剤の使用量が銅粉重量の0.1〜10重量%で
ある第8項記載の銀被覆銅粉の製造法。
[Claims] 1. Copper powder is dispersed in a chelating agent solution, a silver ion solution is added to the dispersion, and a reducing agent is then added to deposit a silver film on the surface of the copper powder. Method for producing silver-coated copper powder. 2. The method for producing silver-coated copper powder according to claim 1, wherein the amount of coated silver is 0.01 to 80% by weight of the weight of the copper powder. 3. Production of silver-coated copper powder according to claim 1 or 2, in which the chelating agent is one or more selected from ethylenediaminetetraacetate, triethylenediamine, and diethylenetriaminepentaacetic acid. Law. 4. The amount of chelating agent used is 1 to 50% by weight of the copper powder.
A method for producing silver-coated copper powder according to claim 3. 5. The method for producing silver-coated copper powder according to claim 4, wherein the chelating agent solution is weakly acidic or neutral. 6. The method for producing silver-coated copper powder according to any one of claims 1 to 5, wherein the silver ion solution is a silver nitrate solution. 7. The method for producing silver-coated copper powder according to claim 6, wherein the silver nitrate solution is acidic. 8. The method for producing silver-coated copper powder according to any one of claims 1 to 7, wherein the reducing agent is a polyhydric carboxylic acid. 9. The method for producing silver-coated copper powder according to item 8, wherein the amount of the reducing agent used is 0.1 to 10% by weight based on the weight of the copper powder.
JP62277689A 1987-11-02 1987-11-02 Production of silver-coated copper powder Granted JPH01119602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62277689A JPH01119602A (en) 1987-11-02 1987-11-02 Production of silver-coated copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62277689A JPH01119602A (en) 1987-11-02 1987-11-02 Production of silver-coated copper powder

Publications (2)

Publication Number Publication Date
JPH01119602A true JPH01119602A (en) 1989-05-11
JPH0246641B2 JPH0246641B2 (en) 1990-10-16

Family

ID=17586931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62277689A Granted JPH01119602A (en) 1987-11-02 1987-11-02 Production of silver-coated copper powder

Country Status (1)

Country Link
JP (1) JPH01119602A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5178909A (en) * 1990-07-24 1993-01-12 Mitsui Kinzoku Kogyo Kabushiki Kaisha Production of silver-coated copper-based powders
JPH10501025A (en) * 1993-10-08 1998-01-27 アメリカ合衆国 Acid assisted cold welding and intermetallic formation and its dental applications
JP2006161081A (en) * 2004-12-03 2006-06-22 Dowa Mining Co Ltd Silvered copper powder, its manufacturing method, and conductive paste
US7156928B2 (en) 2001-11-20 2007-01-02 Shin-Etsu Chemical Co., Ltd. Corrosion-resistant rare earth element magnet
KR100791231B1 (en) * 2000-12-20 2008-01-03 도와 홀딩스 가부시끼가이샤 Silver-dispersed copper powder, process for producing the powder, and conductive paste and a conductor for a printed electronic circuit utilizing the powder
CN101887767A (en) * 2010-06-11 2010-11-17 山东大学 Method for preparing conductive paste by taking copper powder with surface coverage silver nanostructures as packing
JP2011058068A (en) * 2009-09-11 2011-03-24 Toyobo Co Ltd Method for producing copper thin film and copper thin film
JP2011082145A (en) * 2009-09-11 2011-04-21 Toyobo Co Ltd Copper thin film and copper thin film laminate
CN103128308A (en) * 2013-03-06 2013-06-05 东南大学 Method for preparing compact silver-coated copper powder by using one pot method
JP2013185213A (en) * 2012-03-08 2013-09-19 Tokyo Institute Of Technology Metal nanoparticle, method for producing the same, and conductive ink
US8617688B2 (en) 2005-05-30 2013-12-31 Sumitomo Electric Industries, Ltd. Conductive paste and multilayer printed wiring board using the same
CN103890966A (en) * 2011-10-18 2014-06-25 迪睿合电子材料有限公司 Conductive adhesive, solar cell module using same, and method for manufacturing solar cell module
JP2014118589A (en) * 2012-12-14 2014-06-30 Unitika Ltd Coated fibrous copper fine particle aggregate
JP2014118590A (en) * 2012-12-14 2014-06-30 Unitika Ltd Fibrous silver fine particle aggregate
CN105127449A (en) * 2015-10-20 2015-12-09 陈键 Method for preparing copper powder with silver-plated surface
CN105598468A (en) * 2016-03-17 2016-05-25 中国科学院深圳先进技术研究院 Preparation method of silver coated copper nanoparticles capable of being used for conductive ink
JP2017150086A (en) * 2012-01-17 2017-08-31 Dowaエレクトロニクス株式会社 Silver coated copper alloy powder and manufacturing method therefor
CN110551995A (en) * 2019-09-16 2019-12-10 上海交通大学 Method for preparing smooth and compact silver-coated copper powder by chemical plating method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640099A (en) * 1992-07-23 1994-02-15 Pfu Ltd Printer device
JP6076249B2 (en) * 2011-06-14 2017-02-08 ユニチカ株式会社 Coated fibrous copper fine particles, and conductive coating agent and conductive film containing the coated fibrous copper fine particles
JP5631910B2 (en) * 2011-10-21 2014-11-26 三井金属鉱業株式会社 Silver coated copper powder
WO2015194347A1 (en) * 2014-06-16 2015-12-23 三井金属鉱業株式会社 Copper powder, method for producing same and conductive composition comprising same
CN110523973A (en) * 2019-09-21 2019-12-03 深圳市百柔新材料技术有限公司 Surface coats the sheet silver-bearing copper powder of fine and close silver layer, preparation method and applications

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5178909A (en) * 1990-07-24 1993-01-12 Mitsui Kinzoku Kogyo Kabushiki Kaisha Production of silver-coated copper-based powders
JPH10501025A (en) * 1993-10-08 1998-01-27 アメリカ合衆国 Acid assisted cold welding and intermetallic formation and its dental applications
KR100791231B1 (en) * 2000-12-20 2008-01-03 도와 홀딩스 가부시끼가이샤 Silver-dispersed copper powder, process for producing the powder, and conductive paste and a conductor for a printed electronic circuit utilizing the powder
US7156928B2 (en) 2001-11-20 2007-01-02 Shin-Etsu Chemical Co., Ltd. Corrosion-resistant rare earth element magnet
JP2006161081A (en) * 2004-12-03 2006-06-22 Dowa Mining Co Ltd Silvered copper powder, its manufacturing method, and conductive paste
US8617688B2 (en) 2005-05-30 2013-12-31 Sumitomo Electric Industries, Ltd. Conductive paste and multilayer printed wiring board using the same
JP2011058068A (en) * 2009-09-11 2011-03-24 Toyobo Co Ltd Method for producing copper thin film and copper thin film
JP2011082145A (en) * 2009-09-11 2011-04-21 Toyobo Co Ltd Copper thin film and copper thin film laminate
CN101887767A (en) * 2010-06-11 2010-11-17 山东大学 Method for preparing conductive paste by taking copper powder with surface coverage silver nanostructures as packing
CN103890966A (en) * 2011-10-18 2014-06-25 迪睿合电子材料有限公司 Conductive adhesive, solar cell module using same, and method for manufacturing solar cell module
CN103890966B (en) * 2011-10-18 2016-10-12 迪睿合电子材料有限公司 Conductive adhesive and use solar module and the manufacture method thereof of this conductive adhesive
JP2017150086A (en) * 2012-01-17 2017-08-31 Dowaエレクトロニクス株式会社 Silver coated copper alloy powder and manufacturing method therefor
JP2013185213A (en) * 2012-03-08 2013-09-19 Tokyo Institute Of Technology Metal nanoparticle, method for producing the same, and conductive ink
JP2014118589A (en) * 2012-12-14 2014-06-30 Unitika Ltd Coated fibrous copper fine particle aggregate
JP2014118590A (en) * 2012-12-14 2014-06-30 Unitika Ltd Fibrous silver fine particle aggregate
CN103128308A (en) * 2013-03-06 2013-06-05 东南大学 Method for preparing compact silver-coated copper powder by using one pot method
CN105127449A (en) * 2015-10-20 2015-12-09 陈键 Method for preparing copper powder with silver-plated surface
CN105598468A (en) * 2016-03-17 2016-05-25 中国科学院深圳先进技术研究院 Preparation method of silver coated copper nanoparticles capable of being used for conductive ink
CN110551995A (en) * 2019-09-16 2019-12-10 上海交通大学 Method for preparing smooth and compact silver-coated copper powder by chemical plating method
CN110551995B (en) * 2019-09-16 2022-01-25 上海交通大学 Method for preparing smooth and compact silver-coated copper powder by chemical plating method

Also Published As

Publication number Publication date
JPH0246641B2 (en) 1990-10-16

Similar Documents

Publication Publication Date Title
JPH01119602A (en) Production of silver-coated copper powder
JPH0480303A (en) Manufacture of copper powder coated with silver
CN104040026B (en) Chemical plating copper plating solution without formaldehyde
TWI457462B (en) Electroless gold plating bath, electroless gold plating method and electronic parts
JP4117016B1 (en) Electroless palladium plating solution
US5503877A (en) Complex oligomeric or polymeric compounds for the generation of metal seeds on a substrate
US5552031A (en) Palladium alloy plating compositions
CN1924091A (en) Aqueous solution for surface treatment of tin films and method for preventing discoloration of a tin film surface
KR101733119B1 (en) Reduction-type electroless gold plating solution and electroless gold plating method using said plating solution
JP2001519477A (en) Methods and solutions for producing a gold layer
JP4189532B2 (en) Method for activating catalyst for electroless plating
US10822704B2 (en) Electroless platinum plating bath
KR20200023541A (en) Method for forming nickel plating film
JPH10229280A (en) Manufacture of printed wiring board
KR20030051236A (en) Plating method
JP3437980B2 (en) Electroless palladium-nickel plating bath, plating method using the same, and plated product obtained by this method
JPS60243277A (en) Manufacture of copper powder coated with silver
JP4230813B2 (en) Gold plating solution
JP7297771B2 (en) Electroless gold plating bath
JPH02294487A (en) Tetraaza-ligand system as complex formation agent for nonelectrolytic deposition of cop- per
JP3426817B2 (en) Electroless gold plating solution
JPH05295558A (en) High-speed substitutional electroless gold plating solution
JP3824770B2 (en) Tin-silver alloy electroplating bath
JP3093259B2 (en) Complex compounds having oligomer or polymer properties
JP2003147542A (en) Electroless substitution type gold plating solution

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 18

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 18