JPH01119337A - Three-phase fluid reaction device - Google Patents

Three-phase fluid reaction device

Info

Publication number
JPH01119337A
JPH01119337A JP27569887A JP27569887A JPH01119337A JP H01119337 A JPH01119337 A JP H01119337A JP 27569887 A JP27569887 A JP 27569887A JP 27569887 A JP27569887 A JP 27569887A JP H01119337 A JPH01119337 A JP H01119337A
Authority
JP
Japan
Prior art keywords
liquid
gas
suction
layer
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27569887A
Other languages
Japanese (ja)
Inventor
Haruyoshi Fujita
藤田 晴義
Masami Kondo
近藤 正実
Takashi Ueda
隆 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP27569887A priority Critical patent/JPH01119337A/en
Publication of JPH01119337A publication Critical patent/JPH01119337A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • B01J8/224Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement
    • B01J8/226Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement internally, i.e. the particles rotate within the vessel

Abstract

PURPOSE:To extend the operating area of a pump and enable stable operation by separating gas and liquid efficiently at the inlet part of a liquid suction pipe in a device and suppressing the amount of gas contained in a suction liquid. CONSTITUTION:Gas and liquid are supplied to a solid particle layer 4 from a layer bottom part through a disperser 4 to form a three-phase liquid layer, and the liquid is extracted from a suction layer 11 provided penetrating vertically through the center of the liquid layer after passing through said liquid layer. After this, the liquid is caused to circulate again into a device. The inlet part of the suction pipe 11 is provided with a connection part 19 of inverted conical shape and a cylindrical suction part 18 installed at the top of the connection part 19. Then a plurality of gas and liquid rising pipe parts 16, 17 having a differing length from each other with the internal circumference coming into contact with the periphery of the suction part 18 externally and the periphery coming into contact with the internal circumference of the main unit 1 of a reactor internally, are alternately formed vertically. The operating area of a pump 13 is extended by efficiently separating gas and liquid at the inlet part of the liquid suction pipe and thereby suppressing the amount of gas contained in a suction liquid. Thus stable operation can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気体と液体の分離を効率よく行うようにし次
気体、液体、固体の三相流動反応装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a three-phase flow reactor for gas, liquid, and solid that efficiently separates gas and liquid.

〔従来の技術〕[Conventional technology]

気体、液体、固体の三相流動反応装置は、三相の接触効
率が良好でありかつ反応器内部の混合が良好であること
から、反応装置、特に触媒を用い多量の反応熱を発生す
る発熱反応系に対し有効であることが知られている。そ
の例としては、原油から分留され九重、中質留分を触媒
の存在下で水素ガスを供給しながら行なわしめる水素化
脱硫反応装置、又は水素化分解反応装置等がある。また
、他の例としては、−酸化炭素と水素とを主成分とする
混合ガスを溶媒と触媒との混合物中に供給し、メチルア
ルコールを合成させ、る友めの合成反応装置等がある。
A three-phase flow reactor for gas, liquid, and solid has good three-phase contact efficiency and good mixing inside the reactor. It is known to be effective for reaction systems. Examples include a hydrodesulfurization reactor or a hydrocracking reactor in which a nine-fold or medium fraction fractionated from crude oil is treated in the presence of a catalyst while supplying hydrogen gas. Another example is a synthetic reaction apparatus in which methyl alcohol is synthesized by supplying a mixed gas containing carbon oxide and hydrogen as main components into a mixture of a solvent and a catalyst.

三相流動反応装置の一般的流動状態は、田中栄−1化学
工学第34巻、第12号、1265頁(1970年)等
に詳しく述べられている通りであり、竪形円筒状容器内
の1/2〜2/3程度に充填された触媒等の固体粒子を
流動させるに充分でア)、かつ、固体粒子が同伴、上昇
しない速度で液体及び気体を溶器の下部から上方に流通
させることKより安定した固体粒子の流動層を形成せし
める。この流動状態を実現させるためには、膨張した触
媒層の上部から液を抜き出し、ポンプを用いて円筒状容
器下部に供給する液の循環が不可欠となる。これは触媒
の流動化に必要な液流速を循環により維持するために行
なう。                 、)また、
この三相流動反応器を用いた具体例を挙げれば、石油系
重、中質留分の水素化脱硫を行なわしめる場合は100
〜150ρG、350〜400℃の条件下で、0.5〜
2mφの円柱状もしくは球状のニッケルーモリブデン系
の触媒を供給油とガス状水素とを接触させることによ〕
水素化反応が達成される。
The general flow state of a three-phase flow reactor is as described in detail in Sakae Tanaka-1 Chemical Engineering Vol. 34, No. 12, p. 1265 (1970). (a) Flow the liquid and gas upward from the bottom of the melter at a speed that is sufficient to flow solid particles such as catalysts that are filled to about 1/2 to 2/3, and that does not entrain or raise the solid particles. This allows the formation of a more stable fluidized bed of solid particles. In order to achieve this fluid state, it is essential to extract the liquid from the upper part of the expanded catalyst layer and to circulate the liquid by using a pump to supply it to the lower part of the cylindrical container. This is done in order to maintain the liquid flow rate necessary for catalyst fluidization through circulation. ,)Also,
To give a specific example using this three-phase fluidized reactor, when carrying out hydrodesulfurization of petroleum heavy and medium distillates,
~150ρG, 0.5~ under the conditions of 350~400℃
By bringing a 2 mφ cylindrical or spherical nickel-molybdenum catalyst into contact with supplied oil and gaseous hydrogen]
A hydrogenation reaction is achieved.

第5図を用いて従来の典型的な三相流動反応装置の構造
を説明する。
The structure of a typical conventional three-phase fluidized reactor will be explained using FIG.

反応器本体1内部に触媒が充填されておυ、この触媒層
の上面2は液、ガスの上昇流により流動化し、膨張触媒
層上面3tで膨張する。触媒層の下部には多孔板等の分
散板4が設けられておシ、下部から供給されるガス、液
の分散を良好にすると共忙、触媒が容器下部に落下して
堆積しないようになっている。供給ガス5及び供給液6
は循環液7と一緒に又は別々に反応器本体1の下部より
供給され分散板4を通過し、触媒層を上昇する間に反応
する。触媒層を通過し念後、ガス及び液は触媒を分離す
るための清澄層8を通υ、反応ガス9は反応器本体1の
上部から抜き出され、反応液は吸引管入口部10及び吸
引管11を経て反応器本体1の外部に抜き出される。反
応液の一部は反応生成液12として系外に排出されるが
、大部分は循環液7として反応器本体の内部又は外部に
置かれたポンプ13を介して反応器本体1に循環される
A catalyst is filled inside the reactor body 1, and the upper surface 2 of this catalyst layer is fluidized by the upward flow of liquid and gas, and expands on the expanded catalyst layer upper surface 3t. A dispersion plate 4 such as a perforated plate is provided at the bottom of the catalyst layer to improve the dispersion of the gas and liquid supplied from the bottom to prevent the catalyst from falling and accumulating at the bottom of the container. ing. Supply gas 5 and supply liquid 6
is supplied together with the circulating liquid 7 or separately from the lower part of the reactor main body 1, passes through the dispersion plate 4, and reacts while rising through the catalyst layer. After passing through the catalyst layer, the gas and liquid pass through a clarification layer 8 for separating the catalyst, the reaction gas 9 is extracted from the upper part of the reactor body 1, and the reaction liquid is passed through the suction pipe inlet 10 and the suction tube. It is extracted to the outside of the reactor main body 1 through a pipe 11. A part of the reaction liquid is discharged outside the system as a reaction product liquid 12, but most of the reaction liquid is circulated to the reactor main body 1 as a circulating liquid 7 via a pump 13 placed inside or outside the reactor main body. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上は、従来方式による典型的な三相流動反応装置であ
るが、このような構造である場合、供給されたガスのう
ち未反応のガスは、液と共に膨張触媒層上面3から流出
し、清澄層8を上昇し、吸引管入口部1011C充分気
液分離されないまま流入していた。このため、ポンプ1
3の吐出性能を極度に低下させていた。
The above is a typical three-phase fluidized reactor according to the conventional method. With such a structure, unreacted gas among the supplied gas flows out from the upper surface 3 of the expanded catalyst layer together with the liquid, resulting in clarification. It rose through layer 8 and flowed into the suction tube inlet 1011C without being sufficiently separated into gas and liquid. For this reason, pump 1
The discharge performance of No. 3 was extremely degraded.

本発明は以上の問題点を解決しようとするものである。The present invention aims to solve the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、固体粒子層に層底部よh分散器を介しガスと
液を供給し三相流動層を形成せしめ、液を流動層を通過
後該層の中央を上下に貫通して設けた吸引管より抜出し
、再び装置内へ循環させる形式の三相流動層反応装置に
おいて、誼吸引管入口部は逆へ錐状の接続部と同接続部
の上部に設けられたへ筒状の吸引部とを備え、同筒状吸
引部の外周にその内周が外接し反応器本体の内局にその
外周が内接する長短2種の長さの異る気液上昇管部を交
互に複数本上下方向に形成した。
The present invention involves supplying gas and liquid to the bottom of the solid particle bed through a disperser to form a three-phase fluidized bed. In a three-phase fluidized bed reactor in which the fluid is drawn out from the tube and circulated back into the device, the inlet of the suction tube has an inverted conical connection section and a conical suction section provided at the top of the connection section. A plurality of gas-liquid riser pipes of two different lengths are alternately arranged in the vertical direction, the inner circumference of which is circumscribed by the outer circumference of the same cylindrical suction part, and the outer circumference of which is inscribed in the inner part of the reactor main body. was formed.

〔作用〕[Effect]

本発明では、液と共に上昇し次ガスが、吸引管入口部の
円筒部の外周を通過するとき該円筒部の外周に設けた長
短2種の長さの異る気液上昇管部を通る。この際、長い
方の上昇管部は円筒部より更に下方の逆亀堆部まで延び
ているた・め、ガス及び液の一部はこの長い方の上昇管
と逆へ錐状の吸引管接続部との間に衝突する。長(い方
の上昇管と逆電錐状部の間は空間部となっているためガ
スが滞留し易くなる。滞留したガスは大きな泡となシ隣
すの煙い方の上昇管内を上昇する。
In the present invention, when the gas that rises together with the liquid passes through the outer periphery of the cylindrical part at the inlet of the suction pipe, it passes through two different lengths of the gas-liquid rising pipe part provided on the outer periphery of the cylindrical part. At this time, since the longer ascending pipe extends further down from the cylindrical part to the inverted embankment, a portion of the gas and liquid is connected to the conical suction pipe in the opposite direction. Conflicts between departments. There is a space between the long riser pipe and the inverted conical part, so gas tends to stay there.The stagnant gas becomes large bubbles and rises inside the adjacent riser pipe. .

この原液が吸引管内へ吸入されるため吸引管上端より下
方に向う液流れも存在するが、ガスの気泡径が大きいた
め浮力が大きく、この液流れに同伴せずに上昇する。こ
のため気液分離が容易に行なわれる。
Since this stock solution is sucked into the suction tube, there is also a liquid flow downward from the upper end of the suction tube, but since the gas bubble diameter is large, the buoyancy is large, and it rises without being accompanied by this liquid flow. Therefore, gas-liquid separation is easily performed.

〔実施例〕〔Example〕

本発明の一実施例を第1図及び第2図によって説明する
An embodiment of the present invention will be described with reference to FIGS. 1 and 2.

第1図は本実施例に係る液吸引部入口部の付近の縦断面
図である。
FIG. 1 is a longitudinal sectional view of the vicinity of the inlet of the liquid suction section according to this embodiment.

第2図は第1図のA−A断面図である。FIG. 2 is a sectional view taken along the line AA in FIG. 1.

本実施例は、以下説明する点以外は第5図に示される従
来の三相流動反応装置と同様の構造を有している0本実
施例においては、吸引管11の上部に逆円錐状の接続部
19、同接続部19の上端より上方に伸びる円筒状の吸
引部18が設けられていて、吸引管入口部10を形成し
ている。同吸引部18の外周と反応器本体lの内周の間
には、上下方向の長さの長い気液上昇管16と上下方向
の長さの短い気液上昇管17が交互に、かつ、吸引部1
8の外周に内接し、かつ吸引部18の全周にわたって上
下方向に設けられている。
This embodiment has the same structure as the conventional three-phase flow reactor shown in FIG. 5 except for the points explained below. A connecting portion 19 and a cylindrical suction portion 18 extending upward from the upper end of the connecting portion 19 are provided to form a suction tube inlet portion 10 . Between the outer periphery of the suction part 18 and the inner periphery of the reactor main body l, gas-liquid rising pipes 16 having a long vertical length and gas-liquid rising pipes 17 having a short vertical length are arranged alternately, and Suction part 1
8 and is provided in the vertical direction over the entire circumference of the suction portion 18 .

同気液上昇管16.17は、第?図に示すようくその側
部は互いに近接しておシ、またその外周は反応本体1の
内周に外接している。ま念、第1図に示すように、上記
2種の気液上昇管16.17の上端は円筒状吸引部18
の上端と一致していて同じ高さに位置しておシ、短い気
液上昇管17の下端は逆円錐状接続部19の上端に位置
し、長い気液上昇管16の下端は短い気液上昇管17の
下端よりも下方に位置し、逆円錐状接続部19の上端よ
妙下方(ある。
The same air-liquid riser pipe 16.17 is the ? As shown in the figure, its sides are close to each other, and its outer periphery is circumscribed to the inner periphery of the reaction body 1. By the way, as shown in FIG.
The lower end of the short gas-liquid riser pipe 17 is located at the upper end of the inverted conical connection part 19, and the lower end of the long gas-liquid riser pipe 16 is located at the same height as the upper end of the short gas-liquid riser pipe 17. It is located below the lower end of the rising pipe 17 and slightly below the upper end of the inverted conical connecting portion 19.

本実施例において、三相流動反応装置の定常運転時には
、触媒層14は数101程度膨張する。触媒層から流出
した液は清澄層8を上昇し吸引管入口部10より吸引さ
れ、吸引管11より抜出される。ガスは気泡15となっ
て上昇する。
In this example, during steady operation of the three-phase fluidized reactor, the catalyst layer 14 expands by several hundred degrees. The liquid flowing out from the catalyst layer rises through the clarification layer 8, is sucked through the suction tube inlet portion 10, and is extracted from the suction tube 11. The gas becomes bubbles 15 and rises.

ガスは液に同伴し、反応装置本体1に内接し、吸引管入
口部10の外周に交互に設けた長短2種の長さの異る気
液上昇管16.17を通る。
The gas is entrained in the liquid and passes through gas-liquid riser pipes 16 and 17 of two different lengths, which are inscribed in the reactor main body 1 and alternately provided around the outer periphery of the suction pipe inlet 10.

長い気液上昇管16は吸引管の円筒状吸引部18より更
に下方に伸びているので、逆円錐状の吸引管接続部19
の外側面との間に上方が閉じられ念空間部が形成される
Since the long gas-liquid ascending pipe 16 extends further downward than the cylindrical suction part 18 of the suction pipe, an inverted conical suction pipe connection part 19 is formed.
The upper part is closed and a virtual space is formed between the outer surface and the outer surface of the upper part.

一部のガスと液は、この長い方の気液上昇管16と逆円
錐状の吸引管接続部19の間にできた空間部に滞留する
。液に同伴されているガスは気泡状態である九め自らの
浮力によって液の上昇速度より速く上昇する。この九め
長い方の気液上昇管16と逆円錐状の吸引管接続部19
0間に到達し九気泡は、この空間に滞留し易くなシガス
だまり20か、あるいは、大きな気泡を形成する。ガス
だまり20中のガスは自らの浮力によって隣接する短い
気液上昇管17の中を上昇し、大きな気泡21となって
吸引管入口部10上端より上昇する。この気泡21は液
中の同伴気泡より径が大きく、従って浮力も大きいため
、吸引部18に吸引される液に同伴することは少なく反
応器本体1の上方に設けられた反応器出口22へ向う。
Some of the gas and liquid remain in the space created between the longer gas-liquid riser pipe 16 and the inverted conical suction pipe connection part 19. The gas entrained in the liquid rises faster than the rising speed of the liquid due to the buoyancy of the bubbles themselves. This nineteenth longer gas-liquid riser pipe 16 and the inverted conical suction pipe connection part 19
The nine bubbles that reach between 0 and 9 form a gas reservoir 20 that tends to stay in this space, or a large bubble. The gas in the gas pool 20 rises in the adjacent short gas-liquid rising tube 17 due to its own buoyancy, becomes a large bubble 21, and rises from the upper end of the suction tube inlet section 10. Since the bubbles 21 have a larger diameter than entrained bubbles in the liquid and therefore have greater buoyancy, they are less likely to be entrained in the liquid sucked into the suction section 18 and directed toward the reactor outlet 22 provided above the reactor main body 1. .

このためガス、液の分離効果が大きく、吸引液中へのガ
スの同伴が少なくなる。
Therefore, the effect of separating gas and liquid is large, and the entrainment of gas into the suction liquid is reduced.

以上効果をコールドモデ〃によって検討した例を以下に
示す。
An example of examining the above effects using a cold model is shown below.

本実施例に係る三相流動反応装置の性能を把掴する念め
、第3図に示すように透明プラスチック製のコールドモ
デル装置を用すて循環液7中に含まれるガス量を比較し
念。用いた装置の反応器本体1の内径はt o o o
lWIAであり、高さは60001Imである。分散器
4としてはバブルキャップを用いた。吸引管11は内径
が230■であり、吸引管入口部10は上記実施例と同
じ構造とし、その上部の内径Fi700mとした。
In order to understand the performance of the three-phase flow reactor according to this example, the amount of gas contained in the circulating fluid 7 was compared using a cold model device made of transparent plastic as shown in Fig. 3. . The inner diameter of the reactor body 1 of the device used is t o o o
lWIA, and the height is 60001 Im. As the disperser 4, a bubble cap was used. The suction tube 11 had an inner diameter of 230 mm, and the suction tube inlet 10 had the same structure as in the above embodiment, and the inner diameter Fi of the upper part was 700 m.

触媒粒子と′しては直径1.2震長さ約211111の
押出し成型品を用い之。ガ、スは空気を用い、液はエタ
ノール2031量チの水溶液を用いた。
The catalyst particles used were extruded products with a diameter of 1.2 mm and a length of approximately 211,111 mm. Air was used as the gas, and an aqueous solution containing 2031 parts of ethanol was used as the liquid.

吸引管入口部10の気液分離性能を確認するため、循環
液7をポンプ13で循環し循環液7中のガス量と供給ガ
ス5の空塔速度との関係を求めた。この際液流速は約5
1/Sとした。
In order to confirm the gas-liquid separation performance of the suction pipe inlet 10, the circulating liquid 7 was circulated by the pump 13, and the relationship between the amount of gas in the circulating liquid 7 and the superficial velocity of the supplied gas 5 was determined. At this time, the liquid flow rate is approximately 5
It was set to 1/S.

第5図に示す従来技術に係る吸引管入口部構造のものと
上記本実施例に係る構造のものとによって得られた結果
を第4図に示す。
FIG. 4 shows the results obtained with the suction tube inlet structure according to the prior art shown in FIG. 5 and the structure according to the present embodiment.

第4図から明らかなように従来例ではポンプの操作域が
ガス空塔速度で約1.551/!!以下であったものが
、本発明のものにおいては約5aII/s以上となり、
ポンプの操作範囲が広がったことが判明した。
As is clear from FIG. 4, in the conventional example, the operating range of the pump is approximately 1.551/! in superficial gas velocity. ! However, in the case of the present invention, it becomes about 5aII/s or more,
It was found that the operating range of the pump was expanded.

本発明に係る吸引管入口部10の望ましい構造は、長い
上昇管16と短い上昇管17を交互に第2図のごとく複
数個配設し、できるだけ各部が均一に流れるようにする
ことである。
A desirable structure of the suction tube inlet portion 10 according to the present invention is to alternately arrange a plurality of long riser pipes 16 and short riser pipes 17 as shown in FIG. 2, so that the flow is as uniform as possible in each part.

なお、上記実施例においては長短2種の気液上昇管を用
いているが、短い気液上昇管部としては、吸引管入口部
の外壁反応器本体の内壁及び長い気液上昇管の側部によ
って形成される管状部を用い特別に長短2種の管を取付
けなくてもよい。
In the above embodiment, two types of gas-liquid riser pipes, long and short, are used, but the short gas-liquid riser pipes include the outer wall at the inlet of the suction pipe, the inner wall of the reactor body, and the side part of the long gas-liquid riser pipe. It is not necessary to specially attach two types of pipes, long and short, by using the tubular part formed by the above.

また、上記実施例では1反応器本体と吸引管の入口部の
吸引部を円筒状とし、吸引管入口部の接続部を逆円錐状
としているが、これらをそれぞれ適当な角筒状と逆角錐
状等にすることもできる。
In addition, in the above embodiment, the suction part between the reactor body and the inlet of the suction pipe is cylindrical, and the connection part of the suction pipe inlet is in the shape of an inverted cone. It can also be made into a shape, etc.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明に係る三相流動反応装置は、装鱈内
の液吸引管入口部にて気液を効率良く分離し、吸引液中
に含まれるガス量を抑制することによって、ポンプの操
作域を拡大し安定運転を実現することができる。
As described above, the three-phase flow reactor according to the present invention efficiently separates gas and liquid at the inlet of the liquid suction pipe in the cod, and by suppressing the amount of gas contained in the suction liquid, the pump It is possible to expand the operating range and achieve stable operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の要部の縦断面図、第2図は
第1図のA−A断面図、第3図は本発明の性能を把握す
るためのコールドモデル装置の説明図、第4図は第3図
に示すコールドモデル装置を用いた実験によるガス空塔
速度、空隙率及びポンプ運転不能域との関係を示す線図
1、第5図は従来の三相流動反応装置の説明図である。 1・・・反応器本体、2・・・静止時触媒層上面、3・
・・膨張触媒層上面、4・・・分散板、5−・・供給ガ
ス、6・・・供給液、7・・・循環液、8・・・清澄層
、9・・・反応ガス、10−・・吸引管入口部、11・
・・吸引管、12・・・反応生成液、13・・・ポンプ
、14−・・触媒層、15・・・気泡、16・・・長い
上昇管、17−・・短い上昇管、18・・・吸引管吸引
部、19・・・吸引管接続部、20・・・ガス溜り、2
1・・・大きい気泡。 代理人 弁理士 坂 間  暁  外2名fi7囚 t’( 刻3囚 采4に ガス空−シえ友 乙C儀/す 葛5図
Fig. 1 is a vertical sectional view of the main part of an embodiment of the present invention, Fig. 2 is a sectional view taken along line A-A in Fig. 1, and Fig. 3 is an explanation of a cold model device for understanding the performance of the present invention. Figures 1 and 4 are diagrams showing the relationship between gas superficial velocity, porosity, and pump inoperability region based on experiments using the cold model device shown in Figure 3. Figure 5 is a diagram showing the relationship between the gas superficial velocity, porosity, and the pump no-operability region based on experiments using the cold model device shown in Figure 3. FIG. 2 is an explanatory diagram of the device. 1...Reactor main body, 2...Top surface of catalyst layer when stationary, 3.
...Top surface of expanded catalyst layer, 4...Distribution plate, 5-...Supply gas, 6...Supply liquid, 7...Circulating liquid, 8...Clean layer, 9...Reaction gas, 10 -... Suction pipe inlet section, 11.
...Suction pipe, 12--Reaction product liquid, 13--Pump, 14--Catalyst layer, 15--Bubble, 16--Long riser pipe, 17--Short riser pipe, 18- ... Suction pipe suction part, 19... Suction pipe connection part, 20... Gas reservoir, 2
1...Large bubbles. Agent Patent attorney Akira Sakama 2 other people fi7 prisoner t'

Claims (1)

【特許請求の範囲】[Claims] 固体粒子層に層底部より分散器を介しガスと液を供給し
三相流動層を形成せしめ、液を流動層を通過後該層の中
央を上下に貫通して設けた吸引管より抜出し再び装置内
へ循環させる形式の三相流動層反応装置において、該吸
引管入口部は逆錐状の接続部と同接続部の上部に設けら
れた筒状の吸引部とを備え、同筒状吸引部の外周にその
内周が外接し反応器本体の内周にその外周が内接する長
短2種の長さの異る気液上昇管部を交互に複数個上下方
向に形成したことを特徴とする三相流動反応装置。
A three-phase fluidized bed is formed by supplying gas and liquid to the solid particle bed from the bottom of the bed through a disperser, and after passing through the fluidized bed, the liquid is extracted from a suction pipe provided vertically through the center of the bed and returned to the apparatus. In a three-phase fluidized bed reactor of a type in which internal circulation is carried out, the suction pipe inlet section includes an inverted conical connection section and a cylindrical suction section provided above the connection section; A plurality of gas-liquid riser pipes having two different lengths are alternately formed in the vertical direction, the inner circumference of which is circumscribed by the outer circumference of the reactor body, and the outer circumference of which is inscribed in the inner circumference of the reactor body. Three-phase flow reactor.
JP27569887A 1987-11-02 1987-11-02 Three-phase fluid reaction device Pending JPH01119337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27569887A JPH01119337A (en) 1987-11-02 1987-11-02 Three-phase fluid reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27569887A JPH01119337A (en) 1987-11-02 1987-11-02 Three-phase fluid reaction device

Publications (1)

Publication Number Publication Date
JPH01119337A true JPH01119337A (en) 1989-05-11

Family

ID=17559113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27569887A Pending JPH01119337A (en) 1987-11-02 1987-11-02 Three-phase fluid reaction device

Country Status (1)

Country Link
JP (1) JPH01119337A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061253A1 (en) * 1999-04-14 2000-10-19 Sony Computer Entertainment Inc. Entertainment system and data communication network system
JP2007526825A (en) * 2004-02-24 2007-09-20 スタートイル アーエスアー Downcomer for slurry foam column reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061253A1 (en) * 1999-04-14 2000-10-19 Sony Computer Entertainment Inc. Entertainment system and data communication network system
JP2007526825A (en) * 2004-02-24 2007-09-20 スタートイル アーエスアー Downcomer for slurry foam column reactor

Similar Documents

Publication Publication Date Title
US4221653A (en) Catalytic hydrogenation process and apparatus with improved vapor liquid separation
US4886644A (en) Liquid degaser in an ebullated bed process
US7988928B2 (en) Treatment or hydrotreatment reactor with a granular bed and an essentially liquid phase and an essentially gaseous phase flowing through the bed
JPS6227035A (en) Fluid-solid contact apparatus
JP4203129B2 (en) Method for producing a liquid product and optionally a gaseous product from a gaseous reactant
CN101721962B (en) Three-phase fluidized bed reactor
US8206657B2 (en) Enclosure containing a granular bed and a distribution of a gas phase and of a liquid phase circulating in an ascending flow in this enclosure
CN101721961B (en) Fluidized bed reactor
KR20010012232A (en) Multizone downcomer for slurry hydrocarbon syntheses process
CN101618305B (en) Fluidized bed reactor
JPH01119337A (en) Three-phase fluid reaction device
JP2001524025A (en) Slurry downcomer to reduce gas and solids
KR101690978B1 (en) Jet loop fludized bed reactor
CN2591028Y (en) Three-phase internal circulating fluid-bed optical catalytic reactor
US4961882A (en) Fine bubble generator and method
JPH01245846A (en) Method for reducing histeresis effect of three-phase gas lift loop reactor and gas lift loop reactor
JPH01258736A (en) Three phase fluidization reactor
JPS60147228A (en) Three-phase fluidized reaction apparatus
JPS61287438A (en) Dispersing device for three phase fluidized bed reactor
US7060228B2 (en) Internal device for separating a mixture that comprises at least one gaseous phase and one liquid phase
JPH01119338A (en) Three-phase fluid reaction device
JPH0211296B2 (en)
RU2505352C1 (en) Reactor of catalytic rearrangement
Prasad et al. Liquid circulation velocity and overall gas holdup in a modified jet loop bioreactor with low density particles
BAVARIAN et al. Effect of static liquid height on gas-liquid mass transfer in a draft-tube bubble column and three-phase fluidized bed