JPH01118402A - Mold for casting ceramic - Google Patents

Mold for casting ceramic

Info

Publication number
JPH01118402A
JPH01118402A JP27546087A JP27546087A JPH01118402A JP H01118402 A JPH01118402 A JP H01118402A JP 27546087 A JP27546087 A JP 27546087A JP 27546087 A JP27546087 A JP 27546087A JP H01118402 A JPH01118402 A JP H01118402A
Authority
JP
Japan
Prior art keywords
mold
diffusion coefficient
ceramic
ceramic material
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27546087A
Other languages
Japanese (ja)
Inventor
Nobuyuki Chiba
信行 千葉
Ryuichi Numajiri
沼尻 隆一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27546087A priority Critical patent/JPH01118402A/en
Publication of JPH01118402A publication Critical patent/JPH01118402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)

Abstract

PURPOSE:To prevent the occurrence of sinkage by causing the diffusion coefficient of the ceramic material-feeding part for feeding the ceramic material into a mold to be larger then that of the other part of the mold. CONSTITUTION:A mold is formed out of the material for a porous mold. The diffusion coefficient of ceramic material-feeding part is caused to be larger than that of the other part of a mold. That is, since the diffusion coefficient of the part forming a riser gate is larger than that of the other part of the mold, e.g. the space part for molding the object to be molded, when ceramic sludge is poured into the mold, the sludge being in the space part with a small diffusion coefficient and for molding the object to be molded, is early solidified by deposition on the wall of the space part, and then the parts of a casting gate or the riser gate are solidified by deposition on their walls. Consequently, sinkages do not occur in the central part of the wall-thickness of a molded object. The difference between the diffusion coefficient of the feeding part of ceramic material and that of the other part of the mold is preferably 4X10<-2> cm<2>/min.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はセラミックス材料を鋳込成形するために使用す
る鋳型に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a mold used for casting a ceramic material.

(従来の技術) スリップキャスト法、すなわち泥しょう鋳込成形法は伝
統的なセラミックスの成形方法であるが、最近ではファ
インセラミックスの新たにその重要性が再認識されつつ
ある。
(Prior Art) The slip casting method, that is, the mud casting method is a traditional method for forming ceramics, but recently its importance is being re-recognized for fine ceramics.

この成形方法は、セラミックス粉末を溶媒中に分散させ
て泥しようを作成し、これを吸水性のある石膏やアクリ
ル樹脂などの多孔性鋳型材料からなる鋳型に鋳込み泥し
ようを鋳型の内面に付着させてセラミックス成形体を成
形する方法である。
In this molding method, ceramic powder is dispersed in a solvent to create plaster, which is cast into a mold made of a porous molding material such as water-absorbing gypsum or acrylic resin, and the plaster is adhered to the inner surface of the mold. This is a method of molding a ceramic molded body.

この成形方法は、比較的簡単な設備で複雑形状の成形体
や大型の成形体を安価に成形できるという特徴がある。
This molding method is characterized in that complex-shaped molded bodies and large-sized molded bodies can be molded at low cost using relatively simple equipment.

しかして、このセラミックス鋳込成形方法は、主として
中空品のセラミックス成形体の成形に多く採用されてき
たが、最近では中実品のセラミックス成形体の成形にも
採用されるようになってきている。そして、加圧(減圧
)鋳込成形の採用などにより着肉速度の向上、成形密度
の向上を図り、中空品の品質向上か図られつつある。
However, this ceramic casting method has mainly been used for forming hollow ceramic molded products, but recently it has also been used for molding solid ceramic molded products. . Efforts are also being made to improve the quality of hollow products by increasing the deposition speed and molding density by adopting pressurized (depressurized) casting.

(発明が解決しようとする問題点) しかしながら、この様な鋳込成形方法により中実品のセ
ラミックス成形体を成形する場合には、通常鋳込、加圧
(減圧)鋳込成形に関係なく、成形体の肉厚中心部に一
般の鋳物に生じる引は巣(内用は巣)と同様な空間部が
欠陥として発生することが多く成形歩留りが悪いという
問題がある。
(Problems to be Solved by the Invention) However, when molding a solid ceramic molded product using such a casting method, regardless of whether it is normal casting or pressure (decompression) casting, There is a problem in that the molding yield is poor because voids similar to the cavities (internal cavities) that occur in general castings often occur as defects in the center of the wall thickness of the molded product.

例えば、長さ150mm以上を越える棒状のもの、ある
いは直径150mmX厚さ10mmの板材の中実成形体
においては、肉厚中心部に引は巣が発生することか多く
、その対策として泥しよう補給や成形体端面部からの鋳
込み等の方法があるが、この程度の対策では引は巣の発
生は避けることができない。
For example, in rod-shaped objects with a length of 150 mm or more, or solid molded objects of plate materials with a diameter of 150 mm and a thickness of 10 mm, shrinkage cavities often occur in the center of the wall thickness. Although there are methods such as casting from the end face of the molded body, the occurrence of shrinkage cavities cannot be avoided with these measures.

本発明はこの問題点を解決するもので、引は巣の発生の
無い良質なセラミックス成形体を鋳込成形することが出
来るセラミックス鋳込成形用鋳型を提供することを目的
とする。
The present invention solves this problem, and aims to provide a ceramic casting mold capable of casting a high-quality ceramic molded body without the occurrence of shrinkage cavities.

[発明の構成] (問題点を解決するための手段と作用)本発明の発明者
は、セラミックス鋳込成形法において中実品の成形体の
肉厚中心部に引は巣が発生するメカニズムについて研究
した。これは次の理由によるものである。すなわち、鋳
型の内部空間に供給されたセラミックスの泥しようは鋳
型の内面に付着した部分(成形体の外表面)から凝固収
縮から始まり、順次鋳型の内部空間(成形体の内側部)
に向けて着肉凝固していき、最後に鋳型の中心部が凝固
する。この場合、セラミックス泥しようの着肉凝固が均
一でなかったりすると成形体の肉厚中心部に引は巣(内
用は巣)が発生する。この引は巣の発生は成形体が中空
品であれば問題がないが、中実品の場合には回避出来な
い問題である。
[Structure of the Invention] (Means and Effects for Solving the Problems) The inventor of the present invention has proposed a mechanism by which a shrinkage cavity occurs in the thick center of a solid molded product in a ceramic casting method. Researched. This is due to the following reason. In other words, the ceramic slurry supplied to the inner space of the mold begins to solidify and shrink from the part that adheres to the inner surface of the mold (the outer surface of the molded body), and then gradually shrinks from the part that adheres to the inner surface of the mold (the inner part of the molded body).
Thickening solidifies toward , and finally the center of the mold solidifies. In this case, if the ceramic slurry is not uniformly deposited and solidified, a shrinkage cavity (or cavity for internal use) will occur in the thick center of the molded body. The occurrence of this shrinkage cavity is not a problem if the molded product is a hollow product, but it is an unavoidable problem if the molded product is a solid product.

このことから従来行なってきた鋳込方法の面での対策で
は、成形体における引は巣の発生の問題を解決すること
かできないことが4つかった。
From this, it has been found that the conventional measures taken in terms of casting methods cannot solve the problem of the formation of cavities in molded products.

さらに発明者は研究を重ねた結果、鋳型の内部に注入し
た泥しょうが外側から内側に向けて求心的に着肉凝固す
るために引は巣が発生することから、鋳型に注入した泥
しようを鋳型の内部空間におけるセラミックス材料供給
部(鋳込口および押し湯口)から離れた部分からセラミ
ックス材料供給部に向けて凝固収縮させ、゛最後にセラ
ミックス材料部の部分が着肉凝固するように泥しようの
凝固に指向性を持たせると、引は巣の発生場所となる最
後の凝固部分を成形体の不要部分であるセラミックス材
料供給部にして、このセラミックス材料供給部に引は巣
を発生させれば成形体の肉厚中心部での引は巣の発生を
防止できること見出メした。さらに、このようなセラミ
ックス泥しようの指向性凝固を実現させる適切な手段と
して鋳型の拡散係数を変化させることに着目した。すな
わち、鋳型に注入した泥しょうが着肉凝固する速度(度
合い)は、多孔性材料で形成された鋳型の拡散係数が小
さいほど大きいことから、鋳型のセラミックス材料供給
部の拡散係数を、鋳型の他の部分の拡散係数に比して大
きくすると、泥しようがセラミックス材料供給部より離
れた部分からセラミックス材料供給部に向けて凝固する
ことを見出した。そこで、石膏型の拡散係数(Dg )
とはDg = (x / fT) 2 (a2/分)で
表わされ、Xは石膏底部の上昇高さ、tはこれに要した
時間を示す。 本発明はこの知見に基づいてなされたも
のであり、本発明のセラミックス鋳込成形用鋳型は、多
孔性鋳型材料で形成され、且つセラミックス材料供給部
の拡散係数が他の部分の拡散係数に比して大きいことを
特徴するものである。
Furthermore, as a result of repeated research, the inventor discovered that the slurry injected into the mold solidifies centripetally from the outside to the inside, resulting in the formation of drag holes. The internal space of the ceramic material is solidified and shrunk from the part away from the ceramic material supply part (casting port and riser gate) toward the ceramic material supply part, and finally, the slurry is If solidification is made directional, the final solidified part where the shrinkage cavities will be generated is the ceramic material supply section, which is an unnecessary part of the molded body, and if the shrinkage cavities are generated in this ceramic material supply section. It has been found that the formation of cavities can be prevented by shrinkage at the center of the wall thickness of the molded body. Furthermore, we focused on changing the diffusion coefficient of the mold as an appropriate means to achieve directional solidification of such ceramic slurry. In other words, the rate (degree) at which mud injected into a mold solidifies increases as the diffusion coefficient of a mold made of porous material decreases. It has been found that when the diffusion coefficient is made larger than the diffusion coefficient of the ceramic material supply section, the slurry solidifies from a portion away from the ceramic material supply section toward the ceramic material supply section. Therefore, the diffusion coefficient of the plaster mold (Dg)
is expressed as Dg = (x / fT) 2 (a2/min), where X is the height of rise of the plaster bottom and t is the time required for this. The present invention has been made based on this knowledge, and the ceramic casting mold of the present invention is formed of a porous mold material, and the diffusion coefficient of the ceramic material supply section is compared to the diffusion coefficient of other parts. It is characterized by its large size.

すなわち、本発明のセラミックス鋳込成形用鋳型では、
セラミックス泥しようを鋳型内部に注入する鋳込口およ
び押し混用の泥しようを鋳型内部に注入する押し湯口I
形成する部分の拡散係数が、鋳型の他の部分すなわち成
形体成形用空間部を形成する部分の拡散係数に比して大
きいために、鋳型の内部にセラミックス泥しようを注入
すると拡散係数が小さい成形体成形用空間部に存在する
泥しょうが早く着肉凝固し、その後で鋳込口や押し湯口
の部分が着肉凝固する。すなわち、泥しようは指向性凝
固する。これにより成形体の肉厚中心部には引は巣(内
用は巣)が発生せず、最後に凝固した成形体の鋳込口や
押し湯口の部分に引は巣(外用は巣)が発生したとして
も、この鋳込口や押し湯口を不要部分として切断するこ
とにより成形体から取り除くことが出来る。従って、中
実品のセラミックス成形体を鋳込成形する場合に成形体
の肉厚中心部に引は巣が発生することを防止できる。
That is, in the ceramic casting mold of the present invention,
Casting inlet for injecting ceramic slurry into the mold and riser port I for injecting mixed slurry into the mold
Because the diffusion coefficient of the part to be formed is larger than that of the other parts of the mold, that is, the part that forms the space for forming the compact, when ceramic slurry is injected into the mold, molding with a small diffusion coefficient occurs. The mud present in the body forming space quickly solidifies and solidifies, and then the pouring port and riser port portions solidify and solidify. That is, the slurry solidifies directionally. As a result, no evacuation cavities (crows for internal use) will occur in the thick center of the molded body, and no evacuation cavities (crows for external use) will occur at the casting or feeder openings of the final solidified molded product. Even if they occur, they can be removed from the molded body by cutting off the casting spout and riser spout as unnecessary parts. Therefore, when casting a solid ceramic molded product, it is possible to prevent the generation of shrinkage cavities in the thick center of the molded product.

特に鋳型のセラミックス材料供給部の拡散係数が最も大
きく、セラミックス材料供給部から最も離れた部分の拡
散係数を最も小さくなるように、両者の間の気孔率を段
階的に変化させると、鋳型に注入されたセラミックス泥
しようはセラミックス材料供給部から最も離れた部分か
らセラミックス材料供給部に向かって段階的に着肉凝固
が進行し、最後にセラミックス材料供給部の部分が着肉
凝固する。
In particular, if the porosity between the two is changed stepwise so that the diffusion coefficient of the ceramic material supply part of the mold is the largest and the diffusion coefficient of the part farthest from the ceramic material supply part is the smallest, it is possible to inject into the mold. The ceramic slurry is solidified and solidified step by step from the part farthest from the ceramic material supply part toward the ceramic material supply part, and finally the part of the ceramic material supply part is solidified by solidification.

この場合にはセラミックス泥しようの着肉凝固が無理な
く進行し、セラミックス材料供給部での引は巣の発生も
回避できる。
In this case, the solidification of the ceramic slurry progresses without difficulty, and the generation of shrinkage cavities in the ceramic material supply section can also be avoided.

本発明の鋳型は石膏、樹脂例えばアクリル樹脂などの多
孔性性鋳型材料で形成する。
The mold of the present invention is formed from a porous molding material such as gypsum, resin, such as acrylic resin.

本発明の鋳型において、セラミックス材料供給部の拡散
係数と他の部分の拡散係数との差は3X10−2cIj
/分好ましくは4X10−”cn/分とする。セラミッ
クス材料供給部の最大拡散係数は6X10−2cnf/
分、最小拡散係数は4X10−2c7A/分とする。鋳
型のセラミックス材料供給部以外の部分の最大拡散係数
は3X10−2d/分、最小拡散係数は1xlO−”c
n/分とする。例えば鋳型のセラミックス材料供給部の
拡散係数を5X10’cm/分とし、それ以外の部分の
拡散係数を2×10−2cIj/分とする。
In the mold of the present invention, the difference between the diffusion coefficient of the ceramic material supply part and the diffusion coefficient of other parts is 3X10-2 cIj
/min. Preferably 4X10-"cn/min. The maximum diffusion coefficient of the ceramic material supply is 6X10-2cnf/min.
min, and the minimum diffusion coefficient is 4X10-2c7A/min. The maximum diffusion coefficient of the mold other than the ceramic material supply part is 3X10-2d/min, and the minimum diffusion coefficient is 1XlO-"c.
n/min. For example, the diffusion coefficient of the ceramic material supply portion of the mold is 5×10′ cm/min, and the diffusion coefficient of the other portions is 2×10 −2 cIj/min.

また、鋳型のセラミックス材料供給部と、このセラミッ
クス材料供給部から最も離れた箇所との間で拡散係数を
段階的に変化させる場合には、例えばセラミックス材料
供給部の拡散係数を5X10’c++t/分とし、これ
に−律1.5X10−2cIj/分増加させて3段階に
拡散係数を変化させ、最も離れた箇所の拡散係数を2X
10−2077/分とする。
In addition, when changing the diffusion coefficient stepwise between the ceramic material supply part of the mold and the point farthest from this ceramic material supply part, for example, the diffusion coefficient of the ceramic material supply part can be changed to 5X10'c++t/min. Then, increase the diffusion coefficient by 1.5X10-2 cIj/min to change the diffusion coefficient in three steps, and increase the diffusion coefficient at the farthest point by 2X.
10-2077/min.

本発明の鋳型を製作する方法を説明する。基本的には、
鋳型を拡散係数が異なる部分に応じて複数に分割して造
型し、夫々を相互に接合して鋳型を構成する、あるいは
気孔率を部分的に異ならせて一体物として造型する方法
がある。鋳型材料が石膏の場合には、石膏混練時に添加
する水の量を調整する方法により拡散係数が異なる複数
の形部分を造型する。すなわち、石膏/水比を大きくす
るほど拡散係数の小さな石膏型を得ることが出来る。本
発明では焼き石膏/水比が1.3および1.7で夫々拡
散係数が5X10−”m/分および2×110−2c/
分の石膏型が得られた。鋳型全体を製作する場合には、
例えば一方の型部分を造型し、この一方の型部分に他の
型部分を注入造型して両方の型部分を一体に接合する。
A method for manufacturing the mold of the present invention will be explained. Basically,
There is a method of molding a mold by dividing it into a plurality of parts according to portions with different diffusion coefficients, and then joining the molds to each other to form a mold, or of molding the mold as a single piece with partially different porosity. When the mold material is gypsum, a plurality of shaped parts having different diffusion coefficients are molded by adjusting the amount of water added during plaster kneading. That is, the larger the gypsum/water ratio, the smaller the diffusion coefficient can be obtained. In the present invention, the calcined gypsum/water ratio is 1.3 and 1.7, and the diffusion coefficients are 5 x 10-'' m/min and 2 x 110-2 c/min, respectively.
A plaster mold was obtained. When manufacturing the entire mold,
For example, one mold part is molded, another mold part is injection molded into this one mold part, and both mold parts are joined together.

また、鋳型材料が樹脂の場合にも同様にして造型する。Furthermore, when the mold material is resin, molding is performed in the same manner.

本発明の鋳型は、通常の鋳込成形にも適するが、特に加
圧(減圧)鋳込成形でセラミックス成形体を成形する場
合に適している。
The mold of the present invention is suitable for ordinary casting, but is particularly suitable for molding a ceramic molded body by pressure (decompression) casting.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1表に石膏型造型に使用した陶磁器型材用石膏と水の
配合比をとその特性を示す。
Table 1 shows the mixing ratio of ceramic mold material gypsum and water used for making plaster molds, and its characteristics.

第1表 今回の試験では、第1図で示す石膏形を使用しテ直径2
0m11×長−さ200mmの丸棒形のセラミックス成
形体を鋳込成形し、第2図で示す石膏形を使用して直径
200mn+X厚さ1.OrIlmの円板形の上板形の
空間部4を有している。そして、この石膏型は鋳込口側
型部分1a、2aと他の型部分1b。
Table 1 In this test, the plaster mold shown in Figure 1 was used.
A round bar-shaped ceramic molded body measuring 0 m11 x length 200 mm was cast and molded using a plaster mold shown in Fig. 2 to measure diameter 200 mm + thickness 1. It has a space portion 4 in the form of a disk-shaped upper plate of OrIlm. This plaster mold has casting mouth side mold parts 1a, 2a and another mold part 1b.

2bとに分け、これらを接合して構成している。2b, and these are joined together.

石膏型の製作は、先ず第1表のA組成の配合で型部分1
a、2aを造型し、次にB組成の配合で型部分1b、2
bを注入造型して鋳型を製作した。
To make a plaster mold, first make the mold part 1 using the composition A in Table 1.
mold parts a and 2a, and then mold parts 1b and 2 with the composition B.
A mold was manufactured by injection molding.

なお、これらの型部分の境界部分は、型部分1b。Note that the boundary between these mold parts is mold part 1b.

2bを注入造型するに先立ち、型部分1a、2aの境界
部に鋸歯状のスリットを形成しておけば、両方の型部分
の強固な接合を行なうことが出来る。
If a serrated slit is formed at the boundary between the mold parts 1a and 2a before injection molding 2b, the two mold parts can be firmly joined.

これらの型は乾燥して仕上げた。このように製作した各
鋳型の拡散係数を測定した結果拡散係数5X10−2c
Tj/分、他の型部分1b、2bの拡散製作した鋳型は
加圧鋳込装置にセットした。そして、セラミックス材料
として窒化けい素の泥しようを型の内部に鋳込み着肉凝
固まで3 K9 / cIjの圧力を加えて前記の棒形
の成形体と円板形の成形体を夫々成形した。このように
成形した棒形および円板形の各成形体は、夫々肉厚中心
部に引は巣の発生が無い健全なものであった。
These molds were dried and finished. As a result of measuring the diffusion coefficient of each mold made in this way, the diffusion coefficient was 5X10-2c.
Tj/min, and the other mold parts 1b and 2b of the diffusion mold were set in a pressure casting device. Then, silicon nitride slurry was cast as a ceramic material into the mold, and a pressure of 3 K9/cIj was applied until it solidified to form the rod-shaped molded body and the disk-shaped molded body, respectively. Each of the rod-shaped and disc-shaped molded bodies thus molded was sound, with no shrinkage cavities occurring in the thick center portions.

因みに本試験に供した各石膏形における着肉厚さを比較
した結果を第3図に示す。着肉厚さは鋳込後20分経過
の値である。この線図によれば鋳型の拡散係数5×10
−20III/分の型部分の着肉速度は拡散係数2 X
 10−277分の型部分の着肉速度に比して遅いこと
がわかる。
Incidentally, Fig. 3 shows the results of a comparison of the wall thickness of each plaster type used in this test. The deposited thickness is the value 20 minutes after casting. According to this diagram, the diffusion coefficient of the mold is 5×10
The deposition rate of the mold part is -20III/min with a diffusion coefficient of 2
It can be seen that this is slower than the inking speed of the mold portion, which is 10-277 minutes.

なお、比較例として石膏/水比が1.5の配合で全体を
造型して前記棒型成形体用と円板型成形体用の各鋳型を
製作した。この鋳型の拡散係数が2X10−2cm/分
で均一である。そして、この鋳型を加圧鋳込装置にセッ
トし、本発明例と同じ条件で前記棒形成形体と円板形成
形体を夫々成形した。この結果、棒形成形体の場合に鋳
込口反対側の内部に約直径lll1m×長さ40mmの
中心線引は巣が発生し、円板形成形体の場合には鋳込口
反対側の内部に円板状の引は巣とこれに伴う割れが発生
した。
As a comparative example, molds for the rod-shaped molded body and for the disc-shaped molded body were manufactured by molding the entire mold with a gypsum/water ratio of 1.5. The diffusion coefficient of this mold is uniform at 2×10 −2 cm/min. Then, this mold was set in a pressure casting device, and the rod-shaped body and the disc-shaped body were respectively molded under the same conditions as in the examples of the present invention. As a result, in the case of a rod-shaped body, a cavity with a center line of about 1 m in diameter x 40 mm in length was generated inside the opposite side of the casting hole, and in the case of a disc-shaped body, a cavity was generated inside the opposite side of the casting hole. Disk-shaped cavities and accompanying cracks occurred.

[発明の効果] 以上説明したように本発明のセラミックス鋳込成形用鋳
型によれば、中空品のセラミックス成形体を鋳込成形で
きることは勿論のこと、従来困難であった引は巣の発生
の無い健全な中実品のセラミックス成形体を容易に鋳込
成形することができる。
[Effects of the Invention] As explained above, according to the ceramic casting mold of the present invention, it is possible not only to cast a hollow ceramic molded product, but also to prevent the occurrence of shrinkage cavities, which has been difficult in the past. It is possible to easily cast a solid ceramic molded body without any defects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)は本発明の鋳型の一実施例を断面図
および下型の平面図、第2図(a)(b)は他の実施例
を示す断面図および下型の平面図、第3図は鋳型の拡散
係数と着肉厚さ(一定時間)との関係を示す線図である
。 la、2a・・・鋳込口側型部分、lb、2b・・・他
の型部分。 出願人代理人 弁理士 鈴江武彦 (a) 第1図
Figures 1 (a) and (b) are a cross-sectional view and a plan view of the lower mold showing one embodiment of the mold of the present invention, and Figures 2 (a) and (b) are cross-sectional views and a plan view of the lower mold showing another embodiment. The plan view and FIG. 3 are diagrams showing the relationship between the diffusion coefficient of the mold and the deposited thickness (for a certain period of time). la, 2a...casting mouth side mold part, lb, 2b...other mold part. Applicant's agent Patent attorney Takehiko Suzue (a) Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)多孔性鋳型材料で形成された鋳型において、セラ
ミックス材料を形内部に供給するセラミックス材料供給
部の拡散係数が、他の部分の拡散係数に比して大きいこ
とを特徴とするセラミックス鋳込成形用鋳型。
(1) Ceramic casting characterized in that, in a mold made of porous mold material, the diffusion coefficient of the ceramic material supply section that supplies the ceramic material into the inside of the mold is larger than the diffusion coefficient of other parts. Molding mold.
(2)セラミックス材料供給部と他の部分との拡散係数
の差が3×10^−^2cm^2/分以上である特許請
求の範囲第1項記載のセラミックス鋳込成形用鋳型。
(2) The mold for ceramic casting according to claim 1, wherein the difference in diffusion coefficient between the ceramic material supply portion and other parts is 3×10^-^2 cm^2/min or more.
(3)セラミックス材料供給部の最高拡散係数は6×1
0^−^2cm^2/分、最低拡散係数は4×10^−
^2cm^2/分である特許請求の範囲第1項記載のセ
ラミックス鋳込成形用鋳型。
(3) The highest diffusion coefficient of the ceramic material supply section is 6×1
0^-^2cm^2/min, minimum diffusion coefficient is 4x10^-
The ceramic casting mold according to claim 1, wherein the casting rate is ^2 cm^2/min.
JP27546087A 1987-10-30 1987-10-30 Mold for casting ceramic Pending JPH01118402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27546087A JPH01118402A (en) 1987-10-30 1987-10-30 Mold for casting ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27546087A JPH01118402A (en) 1987-10-30 1987-10-30 Mold for casting ceramic

Publications (1)

Publication Number Publication Date
JPH01118402A true JPH01118402A (en) 1989-05-10

Family

ID=17555840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27546087A Pending JPH01118402A (en) 1987-10-30 1987-10-30 Mold for casting ceramic

Country Status (1)

Country Link
JP (1) JPH01118402A (en)

Similar Documents

Publication Publication Date Title
CN108275958B (en) A kind of water solubility lost pattern core, preparation method and application
JPH09268067A (en) Production of silicon carbide member
JPH0146283B2 (en)
JPH01118402A (en) Mold for casting ceramic
US20020158183A1 (en) Mold structure for plastic art, manufacturing method thereof, and plastic art
JPH01269505A (en) Cast molding method for closed-end molded product and molding cast mold
CN206997701U (en) Sand core structure for the casting of sand wedge angle position
JP2863085B2 (en) Casting mold and casting method
JPS63120604A (en) Manufacture of molded form
JPH01249301A (en) Mold for cast-in molding of slurry
JP2792714B2 (en) Slip casting method
JP3281769B2 (en) Method of forming hollow ceramic body
JP3679605B2 (en) How to make artificial teeth
JP2518573B2 (en) Casting mold
JPH07112617B2 (en) Casting method for double layer casting
CN211248214U (en) Pouring cup for large casting pouring instant inoculation and manufacturing mold thereof
JPS645802A (en) Manufacture of ceramic molded form
JPS646255Y2 (en)
JPH01176507A (en) Ceramics sludge casting-in mold
JPH01304902A (en) Method and apparatus for forming ceramic
JP3594223B2 (en) Method for producing cylindrical ceramic body
JP2558779B2 (en) Pressure casting method for ceramics
JPH0584718A (en) Pressure cast molding method
JPH0512002Y2 (en)
JPH10249823A (en) Slip casting mold, and molding method