JPH01118248A - Magneto-optical recording and reproducing device - Google Patents

Magneto-optical recording and reproducing device

Info

Publication number
JPH01118248A
JPH01118248A JP27513587A JP27513587A JPH01118248A JP H01118248 A JPH01118248 A JP H01118248A JP 27513587 A JP27513587 A JP 27513587A JP 27513587 A JP27513587 A JP 27513587A JP H01118248 A JPH01118248 A JP H01118248A
Authority
JP
Japan
Prior art keywords
magneto
polarizing
light
beam splitter
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27513587A
Other languages
Japanese (ja)
Inventor
Shozo Nakagawa
中川 省三
Kenichi Iga
伊賀 健一
Hiroshi Hikima
引間 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibasoku Co Ltd
Original Assignee
Shibasoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibasoku Co Ltd filed Critical Shibasoku Co Ltd
Priority to JP27513587A priority Critical patent/JPH01118248A/en
Publication of JPH01118248A publication Critical patent/JPH01118248A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • G11B11/10543Heads for reproducing using optical beam of radiation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Abstract

PURPOSE:To stabilize a laser beam source and to improve a C/N by providing a polarizing means which eliminates S polarization to be returned to the laser beam source of reflected light in an irradiation optical system which projects a laser beam in spot shape on a magneto-optical disk. CONSTITUTION:In the reflected light by the magneto-optical disk D, its polarizing plane is rotated in a direction of magnetization by a light spot, and the light is made incident on a first polarizing beam splitter 4 after passing an objective lens 6 and a mirror 5. An S polarized component in a direction of X out of incident reflected light on the first polarizing beam splitter 4 is made incident on a polarizing filter 21 after around 1% of it transmits the polarizing beam splitter 4, however, since the polarizing filter 21 shields the S polarized component in the direction of X, no S polarized component in the direction of X of the reflected light is made incident on the laser beam source 1. Thereby, the fluctuation of the S polarization of the laser beam due to the fluctuation of the light emitting component of the laser beam source 1 itself can be eliminated, then, the C/N can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光磁気ディスクに記録されている情報をレー
ザー光を用いて再生する光磁気記録再生装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a magneto-optical recording and reproducing apparatus that uses laser light to reproduce information recorded on a magneto-optical disk.

[従来の技術] 一般に、光磁気記録方式とは情報を記録する際に、先ず
光磁気ディスクにレーザー光をスポット状に照射し、レ
ーザー光が照射された部分のみを記録媒体が磁化を失う
キューり点景上の温度に昇温する。そして、このときに
外部磁界を加えながらレーザー光の照射を止めると、レ
ーザー光が照射されていた部分はキューり点景下の温度
に下がると同時に、外部磁界の方向に磁化される。この
状態で外部磁界を取り除いても、レーザー光が照射され
ていた部分は、先程加えた外部磁界と同方向に磁化した
状態を保つので、情報を記録することができる。
[Prior Art] In general, the magneto-optical recording method is used to record information by first irradiating a magneto-optical disk with laser light in the form of a spot, and creating a cue in which the recording medium loses magnetization only in the areas irradiated with the laser light. The temperature rises to the temperature above the scene. At this time, when the laser beam irradiation is stopped while an external magnetic field is applied, the temperature of the part that was irradiated with the laser beam decreases to that of a cuirass encyclopedia, and at the same time, it becomes magnetized in the direction of the external magnetic field. Even if the external magnetic field is removed in this state, the part that was irradiated with the laser beam will remain magnetized in the same direction as the external magnetic field that was applied earlier, so information can be recorded.

このように記録を行った洸磁気ディスクから情報を再生
するには、記録媒体をキューり点景上の温度に加熱しな
い弱いレーザー光をスポット状に照射する。すると、レ
ーザー光が照射された部分の磁化の方向に従って、レー
ザー光の反射光の偏光面の回転方向が変化するカー効果
や、レーザー光の透過光の偏光面の回転方向が変わるフ
ァラデー効果が生ずるため、レーザー光の偏光面の回転
方向からレーザー光の照射された部分の磁化の方向を検
出し、情報を再生することができる。
To reproduce information from a magnetic disk that has been recorded in this way, a spot of weak laser light that does not heat the recording medium to the temperature above the cue is irradiated. This results in the Kerr effect, in which the direction of rotation of the polarization plane of reflected laser light changes according to the direction of magnetization of the part irradiated with laser light, and the Faraday effect, in which the direction of rotation of the polarization plane of transmitted laser light changes. Therefore, the direction of magnetization of the portion irradiated with the laser beam can be detected from the rotation direction of the polarization plane of the laser beam, and information can be reproduced.

第4図は従来の光磁気記録再生装置の光学的な構成を示
し、(a)は側面図、(b)は平面図である。レーザー
光源1の光路に沿ってコリメータレンズ2、アナモヒッ
クプリズム3、第1の偏光ビームスプリッタ4、ミラー
5が配置され、ミラー5の反射方向に対物レンズ6、光
磁気ディスクDが設けられている。また、第1の偏光ビ
ームスプリッタ4のミラー5側からの光の反射方向には
、1/2波長板7、第2の偏光ビームスプリッタ8.コ
ンデンサレンズ9、第1のフォトダイオード10が配置
され、第2の偏光ビームスプリッタ8の172波長板7
側からの光の反射方向には、コンデンサレンズ11、第
2のフォトダイオード12が設置されている。更に、フ
ォトダイオード10.12の出力は差動増幅器13に接
続されている。
FIG. 4 shows the optical configuration of a conventional magneto-optical recording/reproducing device, with (a) being a side view and (b) being a plan view. A collimator lens 2, an anamorphic prism 3, a first polarizing beam splitter 4, and a mirror 5 are arranged along the optical path of the laser light source 1, and an objective lens 6 and a magneto-optical disk D are provided in the reflection direction of the mirror 5. . In addition, in the direction of reflection of light from the mirror 5 side of the first polarizing beam splitter 4, there is a 1/2 wavelength plate 7, a second polarizing beam splitter 8. A condenser lens 9, a first photodiode 10 are arranged, and a 172 wavelength plate 7 of a second polarizing beam splitter 8 is arranged.
A condenser lens 11 and a second photodiode 12 are installed in the direction in which light from the side is reflected. Furthermore, the output of the photodiode 10.12 is connected to a differential amplifier 13.

なお、レーザー光源1は例えばレーザーダイオードであ
り、出射されるレーザー光は楕円形の放射特性を有し、
アナモヒックプリズム3は上述したレーザー光の断面形
状を楕円から円形状に補正する機能を有している。また
、第1の偏光ビームスプリッタ4はP偏光成分の60%
を透過し、40%を反射すると共に、S偏光成分の1%
を透過し、99%を反射するものとし、1/2波長板7
は入射直線偏光の偏光面を45°回転するものである。
Note that the laser light source 1 is, for example, a laser diode, and the emitted laser light has elliptical radiation characteristics,
The anamorphic prism 3 has a function of correcting the cross-sectional shape of the laser beam described above from an ellipse to a circular shape. In addition, the first polarization beam splitter 4 has 60% of the P polarization component.
It transmits 40% of the light, reflects 40% of the light, and 1% of the S-polarized light component.
The 1/2 wavelength plate 7
rotates the plane of polarization of incident linearly polarized light by 45°.

1/2波長板7の方向はP偏光方向であるX方向から2
2.5°傾むけられており、1/2波長板7はX方向の
直線偏光を光軸を挟んで45”だけ回転させることにな
る。
The direction of the 1/2 wavelength plate 7 is 2 from the X direction which is the P polarization direction.
The half-wave plate 7 rotates the linearly polarized light in the X direction by 45'' across the optical axis.

このように構成された光?a気記録再生装置において、
レーザー光源1から照射されるレーザー光は、コリメー
タレンズ2、アナモヒツクプリズム3によって断面が円
形な平行光線となり、第1の偏光ビームスプリッタ4に
入射する。この第1の偏光ビームスプリッタ4は上述し
たようにX方向のS偏光成分の99%を反射し、Y方向
のP偏光成分の60%を透過するため、第1の偏光ビー
ムスプリッタ4に入射したレーザー光の内、通過するの
は殆どY方向のP偏光成分であり、このP偏光成分はミ
ラー5で反射され対物レンズ6を通って光磁気ディスク
Dに光スポットを結像する。そして、光磁気ディスクD
に照射されたレーザー光は反射され、対物レンズ6、ミ
ラー5を通って再び第1の偏光ビームスプリッタ4に入
射する。この第1の偏光ビームスプリッタ4に入射する
レーザー光は光磁気ディスクDで反射される際に、光ス
ポツト部分の磁化の方向に従って偏光面がY方向から角
度δ又は−δだけ回転するため、Y方向のP偏光成分の
他にX方向のS偏光成分を有している。第1の偏光ビー
ムスプリッタ4は上述したように入射レーザー光のX方
向のS偏光成分の殆どと、Y方向のP偏光成分の40%
を反射し、1/2波長板7は入射したレーザー光の偏光
面を45°回転した後に、第2の偏光ビームスプリッタ
8に照射する。そして、第2の偏光ビームスプリッタ8
に入射したレーザー光の内、X方向のP偏光成分は第2
の偏光ビームスプリッタ8を透過し、コンデンサレンズ
9を介してフォトダイオード10に入射する。X方向の
S偏光成分は第2の偏光ビームスプリッタ8で反射され
、コンデンサレンズ11を通ってフォトダイオード12
に入射する。そして、フォトダイオード10.12に入
射したレーザー光は電気信号に変換され、差動増幅器1
3を介して図示しない制御回路に再生信号として出力さ
れる。
Light configured like this? In a recording and reproducing device,
A laser beam irradiated from a laser light source 1 is turned into a parallel beam having a circular cross section by a collimator lens 2 and an anamorphic prism 3, and is incident on a first polarizing beam splitter 4. As described above, this first polarizing beam splitter 4 reflects 99% of the S polarized light component in the X direction and transmits 60% of the P polarized light component in the Y direction. Most of the laser light that passes through is the P-polarized light component in the Y direction, and this P-polarized light component is reflected by the mirror 5 and passes through the objective lens 6 to image a light spot on the magneto-optical disk D. And magneto-optical disk D
The laser beam irradiated is reflected, passes through the objective lens 6 and the mirror 5, and enters the first polarizing beam splitter 4 again. When the laser beam incident on the first polarizing beam splitter 4 is reflected by the magneto-optical disk D, the plane of polarization rotates from the Y direction by an angle δ or −δ according to the direction of magnetization of the optical spot portion. It has an S-polarized light component in the X-direction in addition to a P-polarized light component in the X-direction. As described above, the first polarizing beam splitter 4 receives most of the S-polarized component in the X direction and 40% of the P-polarized component in the Y direction of the incident laser beam.
The half-wave plate 7 rotates the polarization plane of the incident laser light by 45 degrees, and then irradiates the laser light onto the second polarization beam splitter 8 . And a second polarizing beam splitter 8
Of the laser light incident on the
The light passes through the polarizing beam splitter 8 and enters the photodiode 10 via the condenser lens 9. The S-polarized light component in the
incident on . The laser light incident on the photodiodes 10 and 12 is converted into an electrical signal, and the differential amplifier 1
3 to a control circuit (not shown) as a reproduction signal.

ところで、1/2波長板7に入射するレーザー  ・光
がX方向に偏光され、P偏光成分した持たない場合には
、上述したように1/2波長板7はX方向の直線偏光を
45″だけ回転させるため、第2の偏光ビームスプリッ
タ8に入射するレーザー光の偏光面はX方向と45°の
角度をなし、2方向のP偏光成分とX方向のS偏光成分
は等しくなる。しかし、レーザー光は光磁気ディスクD
で反射される際に偏光面が角度δ又は−δだけ回転して
いるため、1/2波長板7に入射するレーザー光は偏光
面がX方向からδ又は−δだけ回転しており、第2の偏
光ビームスプリッタ8に照射されるレーザー光の偏光面
はX方向と45°+δ又は45°−δの角度を有し、X
方向のP偏光成分とX方向のS偏光成分は等しくならず
、光磁気ディスクDの光スポツト部分の磁化の方向に従
って、X方向のP偏光成分とX方向のS偏光成分の内の
一方が他方よりも大きくなる。その結果、フォトダイオ
ード10.12からの電気信号は一方が他方よりも強く
なるため、差動増幅器13の出力は光ディスクDの光ス
ポツト部分の磁化の方向に従って、正か負の値をとり情
報を再生することができる。また、差動増幅器13を用
いるとレーザー光の強度変化を打ち消すことができ、レ
ーザー光の偏光角のみを検出することが可能となる。し
かし、一般は光磁気ディスクDの磁化による反射光の偏
光面の回転角は1°以下の僅かな量であるため、 C/
 N (carrier to noise rati
o)比の良好な再生を行うことが困難である。
By the way, if the laser light incident on the 1/2 wavelength plate 7 is polarized in the X direction and does not have a P polarized component, the 1/2 wavelength plate 7 will convert the linearly polarized light in the Since the polarization plane of the laser beam incident on the second polarization beam splitter 8 forms an angle of 45 degrees with the X direction, the P polarization components in the two directions and the S polarization components in the X direction are equal. Laser light is magneto-optical disk D
Since the plane of polarization is rotated by the angle δ or -δ when reflected by the The polarization plane of the laser beam irradiated to the polarizing beam splitter 8 of No. 2 has an angle of 45° + δ or 45° − δ with the X direction, and
The P-polarized light component in the X-direction and the S-polarized light component in the X-direction are not equal, and one of the P-polarized light component in the X-direction and the S-polarized light component in the becomes larger than As a result, one of the electrical signals from the photodiodes 10 and 12 becomes stronger than the other, so the output of the differential amplifier 13 takes a positive or negative value according to the direction of magnetization of the optical spot portion of the optical disc D, and the information is transmitted. Can be played. Furthermore, if the differential amplifier 13 is used, changes in the intensity of the laser beam can be canceled out, making it possible to detect only the polarization angle of the laser beam. However, in general, the rotation angle of the polarization plane of the reflected light due to the magnetization of the magneto-optical disk D is a small amount of 1° or less, so C/
N (carrier to noise
o) It is difficult to perform reproduction with good ratio.

また、光磁気記録再生装置の使用時における雑音の発生
個所としては、フォトダイオード・再生増幅器管レーザ
ー光源・光磁気ディスク等が挙げられ、レーザー光源1
としてレーザーダイオードを使用した場合には、レーザ
ーダイオードにおけ6雑音の発生要因として、 (a)  レーザーダイオードの発光成分の変動(b)
レーザーダイオード自体の発振モードのジャンプ (C)レーザーダイオードへのP偏光の戻り光による発
振モードの揺らぎと発振モードのジャンプの強調 (d)光磁気ディスクからの戻り光のS偏光成分による
S偏光縦モードの瞬間的な発振、又はスーパーラディア
ンスの増加 が考えられるが、上述した従来例の場合には再生信号を
差動的に検出して得ているため、レーザー光の光強度変
動による影響は除去される。しかし、レーザー光源lか
ら出力されるレーザー光の内、S偏光成分も僅かながら
光磁気ディスクDに照射されるため、(a)や(d)の
ようにレーザー光のS偏光成分に揺らぎを生ずる変動は
、S偏光成分が光磁気ディスクDによる偏光面の回転方
向を示すと共に、光磁気ディスクDによるカー回転角が
1°以下の僅かな量であることから、再生信号を不安定
にしてしまうという問題点がある。
In addition, when using a magneto-optical recording/reproducing device, noise can be generated at the photodiode, regenerative amplifier tube laser light source, magneto-optical disk, etc.
When a laser diode is used as
Jump in the oscillation mode of the laser diode itself (C) Emphasis on fluctuations in the oscillation mode and jumps in the oscillation mode due to the P-polarized light returning to the laser diode (d) S-polarization longitudinal due to the S-polarization component of the return light from the magneto-optical disk This may be due to instantaneous oscillation of the mode or an increase in super radiance, but in the case of the conventional example mentioned above, the reproduced signal is detected differentially, so the influence of fluctuations in the light intensity of the laser beam is eliminated. be done. However, since a small amount of the S-polarized component of the laser beam output from the laser light source 1 is also irradiated onto the magneto-optical disk D, fluctuations occur in the S-polarized component of the laser beam as shown in (a) and (d). The fluctuation makes the reproduced signal unstable because the S polarization component indicates the rotation direction of the polarization plane by the magneto-optical disk D, and the Kerr rotation angle by the magneto-optical disk D is a small amount of 1 degree or less. There is a problem.

[発明の目的] 本発明の目的は、光磁気ディスクからの戻り光のS偏光
成分を抑制することにより、レーザー光源を安定化させ
る光磁気記録再生装置を提供することにある。
[Object of the Invention] An object of the present invention is to provide a magneto-optical recording and reproducing device that stabilizes a laser light source by suppressing the S-polarized component of the return light from a magneto-optical disk.

[発明の概要] 上述の目的を達成するための本発明の要旨は、レーザー
光を出射するレーザー光源と、該レーザー光源からのレ
ーザー光を光磁気ディスクにスポット状に投射する照射
光学系と、前記光磁気ディスクからの反射光を検出する
検出光学系と。
[Summary of the Invention] The gist of the present invention for achieving the above-mentioned object is to provide a laser light source that emits laser light, an irradiation optical system that projects the laser light from the laser light source in a spot shape onto a magneto-optical disk, a detection optical system that detects reflected light from the magneto-optical disk;

該検出光学系からの検出信号に基づいて再生信号を出力
する再生回路とを有し、前記照射光学系中に前記反射光
の前記レーザー光源に戻るS偏光成分を除去する偏光手
段を設けたことを特徴とする光磁気記録再生装置である
a reproducing circuit that outputs a reproducing signal based on a detection signal from the detection optical system, and a polarizing means for removing an S-polarized component of the reflected light that returns to the laser light source in the irradiation optical system. This is a magneto-optical recording and reproducing device characterized by:

[発明の実施例] 本発明を第1図〜第3図に図示の実施例に基づいて詳細
に説明する。
[Embodiments of the Invention] The present invention will be described in detail based on embodiments illustrated in FIGS. 1 to 3.

第1図は第1の実施例を示し、(a)は側面図、(b)
は平面図である。この第1の実施例は第4図に示した従
来例の7ナモヒツクプリズム3と、第1の偏光ビームス
プリッタ4との間に偏光フィルタ21が配置された構成
になっている。なお、第4図と同一の符号は同一の部材
を示すものとし、偏光フィルタ21はX方向のS偏光成
分を除去する機能を有している。
FIG. 1 shows a first embodiment, (a) is a side view, (b)
is a plan view. This first embodiment has a configuration in which a polarizing filter 21 is disposed between the conventional 7-nanohik prism 3 shown in FIG. 4 and the first polarizing beam splitter 4. Note that the same reference numerals as in FIG. 4 indicate the same members, and the polarizing filter 21 has a function of removing the S-polarized light component in the X direction.

このように構成された光磁気記録再生装置において、レ
ーザー光源1から出射されるレーザー光は、コリメータ
レンズ2.アナモヒックプリズム3によって断面が円形
な平行光線となり、偏光フィルタ21によりX方向のS
偏光成分が除去された後に、第1の偏光ビームスプリッ
タ4に入射し、ミラー5、対物レンズ6を介して光磁気
ディスクDに光スポットを結像する。光磁気ディスクD
による反射光は、光スポットによる磁化の方向により偏
光面が回転しており、対物レンズ6、ミラー5を通って
第1の偏光ビームスプリッタ4に入射する。第1の偏光
ビームスプリッタ4に入射した反射光の内、X方向のS
偏光成分は約1%が第1の偏光ビームスプリッタ4を透
過して偏光フィルタ21に入射するが、偏光フィルタ2
1はX方向のS偏光成分を遮光するので、レーザー光源
1には反射光のX方向のS偏光成分は入射しない。
In the magneto-optical recording and reproducing apparatus configured as described above, the laser light emitted from the laser light source 1 is transmitted through the collimator lens 2. The anamorphic prism 3 turns the beam into a parallel beam with a circular cross section, and the polarizing filter 21 turns it into a parallel beam of light in the X direction.
After the polarized light component is removed, the light beam enters the first polarized beam splitter 4 and forms a light spot on the magneto-optical disk D via the mirror 5 and the objective lens 6. magneto-optical disk D
The reflected light has a polarization plane rotated by the direction of magnetization by the light spot, and enters the first polarizing beam splitter 4 through the objective lens 6 and mirror 5. Of the reflected light incident on the first polarizing beam splitter 4, S in the X direction
Approximately 1% of the polarized light component passes through the first polarizing beam splitter 4 and enters the polarizing filter 21;
1 blocks the S-polarized light component in the X direction, so the S-polarized light component in the X direction of the reflected light does not enter the laser light source 1 .

このため、レーザー光源1は光磁気ディスクDからの戻
り光のS偏光成分によるS偏光縦モードの瞬間的な発振
や、スーパラディアンスの増加が生ずることがない、ま
た、レーザー光源1自体の発光成分の変動によるレーザ
ー光のS偏光の揺らぎは、偏光フィルタ21により除去
されるので、C/N比の良い再生信号を得ることができ
る。
Therefore, the laser light source 1 does not cause instantaneous oscillation of the S-polarized longitudinal mode due to the S-polarized light component of the return light from the magneto-optical disk D, and does not cause an increase in superradiance. Fluctuations in the S-polarized light of the laser beam due to fluctuations in the S-polarized light are removed by the polarizing filter 21, so it is possible to obtain a reproduced signal with a good C/N ratio.

また、光磁気ディスクDによる反射光の内、第1の偏光
ビームスプリッタ4で反射されたレーザー光は、第4図
に示した従来例と同様にして検出され、再生信号が差動
増幅器13から出力される。
Of the light reflected by the magneto-optical disk D, the laser light reflected by the first polarizing beam splitter 4 is detected in the same manner as in the conventional example shown in FIG. Output.

第2図は第1の実施例と従来例を比較したC/N比の特
性図であり、横軸はレーザー光源1からのレーザー光の
出力、縦軸はC/N比である。特性Aは偏光フィルタ2
1を挿入した場合であり、Bは挿入しない場合を示して
いる。この特性図から、第1の実施例のように偏光フィ
ルタ21を挿入すると、挿入しない場合に比べてC/N
比が大幅に改善されていることが判り、特にレーザー光
源1のレーザー発振が不安定な低出力の時のC/N比の
改善が著しい。
FIG. 2 is a characteristic diagram of the C/N ratio comparing the first embodiment and the conventional example, where the horizontal axis is the output of the laser light from the laser light source 1, and the vertical axis is the C/N ratio. Characteristic A is polarizing filter 2
1 is inserted, and B shows the case where it is not inserted. From this characteristic diagram, it can be seen that when the polarizing filter 21 is inserted as in the first embodiment, the C/N is higher than when it is not inserted.
It was found that the C/N ratio was significantly improved, and the improvement in the C/N ratio was particularly remarkable when the laser oscillation of the laser light source 1 was unstable and low output.

第3図は第2の実施例を示し、(a)は側面図、(−b
)は平面図であり、第4図に示した従来例のアナモヒッ
クプリズム3と第1の偏光ビームスプリッタ4との間に
、第1の偏光ビームスプリッタ4と同じ特性を有する第
3の偏光ビームスプリッタ22が設けられ、この第3の
偏光ビームスプリッタ22のミラー5側からの反射光に
対する反射方向には、光路に沿ってコンデンサレンズ2
3、シリンドリカルレンズ24、フォトダイオード25
が順次に配置されている。
FIG. 3 shows the second embodiment, (a) is a side view, (-b
) is a plan view, in which a third polarized beam having the same characteristics as the first polarized beam splitter 4 is inserted between the conventional anamorphic prism 3 shown in FIG. 4 and the first polarized beam splitter 4. A splitter 22 is provided, and a condenser lens 2 is provided along the optical path in the direction of reflection of the reflected light from the mirror 5 side of the third polarizing beam splitter 22.
3. Cylindrical lens 24, photodiode 25
are arranged sequentially.

この場合に、レーザー光源1から出射されるレーザー光
はコリメータレンズ2、アナモヒックプリズム3によっ
て断面が円形な平行光線となり、第3の偏光ビームスプ
リッタ22、第1の偏光ビームスプリッタ4に順次に入
射するが、前述したように偏光ビームスプリッタ4.2
2はS偏光成分の1%を透過し99%を反射するため、
第3、第1の偏光ビームスプリッタ22.4を通過した
レーザー光にはS偏光成分は殆ど存在しない。この第1
の偏光ビームスプリッタ4から出射されるレーザー光は
ミラー5により反射され、対物レンズ6を介して光磁気
ディスクロ上に光スポットを結像する。光磁気ディスク
Dによる反射光は、光スポットによる磁化の方向により
偏光面が回転し、対物レンズ6、ミラー5を介して第1
の偏光ビームスプリッタ4、第3の偏光ビームスプリッ
タ22に順次入射するが、上述したように偏光ビームス
プリッタ4.22はS偏光成分の1%しか透過しないの
で、第3の偏光ビームスプリッタ22がらは第1の偏光
ビームスプリッタ4に入射した反射光のS偏光成分の0
.01%しか出射されず、レーザー光源1に照射されて
もレーザー光源1への影響は殆どない、このため、第1
の実施例と同様にC/N比の良好な再生信号を得ること
ができることになる。
In this case, the laser beam emitted from the laser light source 1 becomes a parallel beam with a circular cross section by the collimator lens 2 and the anamorphic prism 3, and enters the third polarizing beam splitter 22 and the first polarizing beam splitter 4 sequentially. However, as mentioned above, the polarizing beam splitter 4.2
2 transmits 1% of the S-polarized light component and reflects 99%, so
There is almost no S-polarized component in the laser beam that has passed through the third and first polarizing beam splitters 22.4. This first
A laser beam emitted from a polarizing beam splitter 4 is reflected by a mirror 5 and forms a light spot on a magneto-optical disc via an objective lens 6. The light reflected by the magneto-optical disk D has its polarization plane rotated by the direction of magnetization by the light spot, and passes through the objective lens 6 and mirror 5 to the first
The light enters the polarizing beam splitter 4 and the third polarizing beam splitter 22 sequentially, but as mentioned above, the polarizing beam splitter 4.22 transmits only 1% of the S-polarized component, so the third polarizing beam splitter 22 0 of the S polarization component of the reflected light incident on the first polarization beam splitter 4
.. Even if the laser light source 1 is irradiated, there is almost no effect on the laser light source 1. Therefore, the first
Similarly to the embodiment described above, it is possible to obtain a reproduced signal with a good C/N ratio.

また、光磁気ディスクDからの反射光のP偏光成分は第
1の偏光ビームスプリッタ4を60%透過し、第3の偏
光ビームスプリッタ22でその内の10%、即ち光磁気
ディスクDからの反射光のP偏光成分の6%が反射され
、コンデンサレンズ23、シリン・トリカルレンズ24
を通ってフォトダイオード25に照射される。そして、
図示しない制御回路によりフォトダイオード25からの
出力に基づいて、フォーカシング制御及びトラッキング
制御が行われる。
In addition, 60% of the P-polarized light component of the reflected light from the magneto-optical disk D is transmitted through the first polarization beam splitter 4, and 10% of it is reflected from the magneto-optical disk D by the third polarization beam splitter 22. 6% of the P-polarized component of the light is reflected, and the condenser lens 23 and the cylindrical trical lens 24
The photodiode 25 is irradiated through the photodiode 25. and,
Focusing control and tracking control are performed by a control circuit (not shown) based on the output from the photodiode 25.

更に、光磁気ディスクDによる反射光の内、第1の偏光
ビームスプリッタ4で反射されるレーザー光は、第4図
に示した従来例と同様に検出され、再生信号を差動増幅
器13から出力する。
Further, of the light reflected by the magneto-optical disk D, the laser light reflected by the first polarizing beam splitter 4 is detected in the same way as in the conventional example shown in FIG. 4, and a reproduced signal is output from the differential amplifier 13. do.

このように、レーザー光源1への戻り光の内のS偏光成
分を除去することにより、C/N比の良好な再生信号が
得られるわけであるが、S偏光成分を除去するために用
いる偏光フィルタ21や第3の偏光ビームスプリッタ2
2の偏光比は、レーザー光源1の特性によるところが大
きいが、例えば30以上の値であればよいと考えられる
In this way, a reproduced signal with a good C/N ratio can be obtained by removing the S-polarized component of the light returned to the laser light source 1, but the polarization used to remove the S-polarized component Filter 21 and third polarizing beam splitter 2
Although the polarization ratio of 2 largely depends on the characteristics of the laser light source 1, it is considered that a value of 30 or more is sufficient, for example.

[発明の効果] 以上説明したように本発明に係る光磁気記録再生装置は
、照射光学系に偏光手段を設けることにより、レーザー
光源への光磁気ディスクからの戻り光のS偏光成分を抑
制することができるため、レーザー光源が安定化し、C
/N比の良好な再生信号を得ることができる。
[Effects of the Invention] As explained above, the magneto-optical recording and reproducing apparatus according to the present invention suppresses the S-polarized component of the return light from the magneto-optical disk to the laser light source by providing the polarization means in the irradiation optical system. As a result, the laser light source is stabilized and C
A reproduced signal with a good /N ratio can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面第1図〜第3図は本発明に係る光磁気記録再生装置
の実施例を示し、第1図(a)は第1の実施例の側面図
、(b)は平面図、第2図は第1の実施例、従来例のC
/N比の特性図、第3図(a)は第2の実施例の側面図
、(b)は平面図であり、第4図(a)は従来例の側面
図、(b)は平面図である。 符号1はレーザー光源、2はコリメータレンズ、3はア
ナモヒックプリズム、4.8.22は偏光ビームスプリ
ッタ、5はミラー、6は対物レンズ、7は172波長板
、9.11はコンデンサレンズ、10.12.25はフ
ォトダイオード、13は差動増幅器、21は偏光フィル
タである。。 特許出願人  株式会社シバソク CD ζ−−ノ
1 to 3 show an embodiment of the magneto-optical recording and reproducing apparatus according to the present invention, FIG. 1(a) is a side view of the first embodiment, FIG. 2(b) is a plan view, and FIG. is the first embodiment, C of the conventional example
/N ratio characteristic diagram, FIG. 3(a) is a side view of the second embodiment, FIG. 3(b) is a plan view, FIG. 4(a) is a side view of the conventional example, and FIG. 4(b) is a plan view. It is a diagram. 1 is a laser light source, 2 is a collimator lens, 3 is an anamorphic prism, 4.8.22 is a polarizing beam splitter, 5 is a mirror, 6 is an objective lens, 7 is a 172 wavelength plate, 9.11 is a condenser lens, 10 .12.25 is a photodiode, 13 is a differential amplifier, and 21 is a polarizing filter. . Patent applicant: Shibasoku CD Co., Ltd.

Claims (1)

【特許請求の範囲】 1、レーザー光を出射するレーザー光源と、該レーザー
光源からのレーザー光を光磁気ディスクにスポット状に
投射する照射光学系と、前記光磁気ディスクからの反射
光を検出する検出光学系と、該検出光学系からの検出信
号に基づいて再生信号を出力する再生回路とを有し、前
記照射光学系中に前記反射光の前記レーザー光源に戻る
S偏光成分を除去する偏光手段を設けたことを特徴とす
る光磁気記録再生装置。 2、前記偏光手段は偏光フィルタとした特許請求の範囲
第1項に記載の光磁気記録再生装置。 3、前記偏光手段は偏光ビームスプリッタとした特許請
求の範囲第1項に記載の光磁気記録再生装置。
[Claims] 1. A laser light source that emits laser light, an irradiation optical system that projects the laser light from the laser light source in a spot shape onto a magneto-optical disk, and detects reflected light from the magneto-optical disk. Polarized light that includes a detection optical system and a regeneration circuit that outputs a reproduction signal based on a detection signal from the detection optical system, and that removes an S-polarized component of the reflected light that returns to the laser light source in the irradiation optical system. 1. A magneto-optical recording and reproducing device characterized by comprising means. 2. The magneto-optical recording and reproducing apparatus according to claim 1, wherein the polarizing means is a polarizing filter. 3. The magneto-optical recording and reproducing apparatus according to claim 1, wherein the polarizing means is a polarizing beam splitter.
JP27513587A 1987-10-30 1987-10-30 Magneto-optical recording and reproducing device Pending JPH01118248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27513587A JPH01118248A (en) 1987-10-30 1987-10-30 Magneto-optical recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27513587A JPH01118248A (en) 1987-10-30 1987-10-30 Magneto-optical recording and reproducing device

Publications (1)

Publication Number Publication Date
JPH01118248A true JPH01118248A (en) 1989-05-10

Family

ID=17551182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27513587A Pending JPH01118248A (en) 1987-10-30 1987-10-30 Magneto-optical recording and reproducing device

Country Status (1)

Country Link
JP (1) JPH01118248A (en)

Similar Documents

Publication Publication Date Title
JPH076379A (en) Optical head and optical recording and reproducing method
JP3594594B2 (en) Optical scanning device
JPH0757320A (en) Device for reproducing magneto-optical recording medium
US4682316A (en) Optical information processing apparatus for light beam focus detection and control
JPS5829155A (en) Information reproducer by photomagnetic system
JPH01118248A (en) Magneto-optical recording and reproducing device
JPS61248253A (en) Detection of signal for photomagnetic disk
JPS59152549A (en) Optical pickup
JPS62188047A (en) Photomagnetic disk device
JP2921801B2 (en) Optical information reproducing device
JPS62134839A (en) Optical magnetic reproducing device
JP2578413B2 (en) Magneto-optical information reproducing device
JPS61165845A (en) Optical reproducer
JPS60157745A (en) Photomagnetic recorder
JP2935554B2 (en) Light head
JPS61216148A (en) Optical information recording and reproducing device
JP2862024B2 (en) Magneto-optical signal reproducing device
JP2574915B2 (en) Optical device for reproducing magneto-optical recording media
JPS61198458A (en) Method for reproducing magnetooptic information
JP2552517Y2 (en) Optical head device
JP2970885B2 (en) Optical information reproducing device
JPS6095737A (en) Noise eliminating method
JPS59146458A (en) Optical recording and reproducing device
JPS62124641A (en) Optical magnetic information recording and reproducing device
JPH07130031A (en) Method of reproducing magneto-optical signal