JPH01117004A - Superconducting magnet - Google Patents

Superconducting magnet

Info

Publication number
JPH01117004A
JPH01117004A JP62273845A JP27384587A JPH01117004A JP H01117004 A JPH01117004 A JP H01117004A JP 62273845 A JP62273845 A JP 62273845A JP 27384587 A JP27384587 A JP 27384587A JP H01117004 A JPH01117004 A JP H01117004A
Authority
JP
Japan
Prior art keywords
superconducting
refrigerant
superconducting coil
excitation
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62273845A
Other languages
Japanese (ja)
Inventor
Koichi Noguchi
野口 広一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62273845A priority Critical patent/JPH01117004A/en
Publication of JPH01117004A publication Critical patent/JPH01117004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To perform excitation sequence only by on-off operation of a permanent current switch, by connecting a current lead having low resistance with a superconducting coil composed of high temperature superconducting material exhibiting superconductive phenomena by high temperature refrigerant. CONSTITUTION:In a refrigerant vessel 11 which contains high temperature refrigerant like liquid nitrogen and has no vacuum heat insulating structure, the following are accommodated; a superconducting coil 12 composed of high temperature superconducting material exhibiting superconductive phenomena, and high temperature refrigerant 13 like liquid nitrogen to turn the coil 12 into a superconductive state. From the coil 12 to the vicinity of the wall of the vessel 11, lead-out wires 12a are led out. An excitation controlling part and the lead-out wires 12a are connected by current leads 16 having low resistance installed so as to penetrate the wall of the vessel 11, whereby excitation sequence can be performed only by on-off operation of a permanent current switch.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、高強度静磁場内に配置した被検体にRFパル
スを印加することによって生じる磁気共鳴現象を利用し
て、被検体の断層面内の所定の原子核のスピン密度分布
、緩和時定数分布または化学シフト値の計測を行い、こ
の計測値に基づいて被検体の医用診断情報を得るように
した磁気共= 1− 鳴イメージング装置の前記高強度静磁場を発生するため
等に用いられる超電導磁石に関し、特に、励磁作業を簡
単に行えるようにした超電導磁石に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention utilizes a magnetic resonance phenomenon caused by applying an RF pulse to a subject placed in a high-intensity static magnetic field. A magnetic sensor that measures the spin density distribution, relaxation time constant distribution, or chemical shift value of a predetermined atomic nucleus within the tomographic plane of the subject, and obtains medical diagnostic information of the subject based on the measured values = 1- The present invention relates to a superconducting magnet used for generating the high-intensity static magnetic field of a sound imaging device, and particularly relates to a superconducting magnet that allows easy excitation work.

(従来の技術) 超電導磁石の特有な励磁方法に永久電流モードがある。(Conventional technology) Persistent current mode is a unique excitation method for superconducting magnets.

以下、この種の超電導磁石の従来例を第2図を参照して
説明する。
Hereinafter, a conventional example of this type of superconducting magnet will be explained with reference to FIG.

第2図に示すように、真空容器1内には、絶対零度に近
い温度で超電導現象を示す超電導材料にて製作された超
電導コイル2と、この超電導コイ、ル2を超電導状態と
するための液体ヘリウム等の絶対零度に近い温度の極低
温冷媒3とが気密にして収容されている。
As shown in FIG. 2, inside the vacuum vessel 1 is a superconducting coil 2 made of a superconducting material that exhibits superconducting phenomena at temperatures close to absolute zero, and a superconducting coil 2 made of a superconducting material that exhibits a superconducting phenomenon at a temperature close to absolute zero. A cryogenic refrigerant 3 having a temperature close to absolute zero, such as liquid helium, is housed in an airtight manner.

また、図示はしないが、輻射シールドやこの輻射シール
ドを冷却するための冷媒や他の冷却手段が真空容器1内
に配設されることもある。
Further, although not shown, a radiation shield, a refrigerant, or other cooling means for cooling the radiation shield may be provided in the vacuum container 1.

さらに、超電導コイル2から真空容器1の電流リード挿
入部1aの近傍に至って超電導コイル2からの導出線2
aが導出されている。そして、真空容器1外には電源4
a、スイッチ4bからなる励磁制御部4が設けられてい
る。
Furthermore, the lead-out wire 2 from the superconducting coil 2 reaches the vicinity of the current lead insertion part 1a of the vacuum vessel 1.
a has been derived. And, outside the vacuum container 1, there is a power supply 4.
An excitation control section 4 including a switch 4b and a switch 4b is provided.

また、超電導コイル2に対しては並列に永久電流スイッ
チ5のスイッチ用超電導コイル(超電導コイル2と同じ
材質又はほぼ同じ温度で超電導状態を示す材質からなる
)5aが設けられ、このスイッチ用超電導コイル5aに
近接して永久電流スイッチ5のヒータ5bが設けられ、
このヒータ5bは真空容器1外に設けた電源5C1,ス
イッチ5c2からなるヒータ制御部5Cに接続されてい
る。
Further, a switch superconducting coil 5a (made of the same material as the superconducting coil 2 or a material exhibiting a superconducting state at approximately the same temperature) of the persistent current switch 5 is provided in parallel with the superconducting coil 2. A heater 5b of the persistent current switch 5 is provided adjacent to the heater 5a,
This heater 5b is connected to a heater control section 5C, which is provided outside the vacuum container 1 and includes a power source 5C1 and a switch 5c2.

以上の構成の従来の超電導磁石の励磁手順について説明
する。すなわち、真空容器1の電流リード挿入部1aに
対して電流リード6を差込む。次に、永久電流スイッチ
5をオフする。つまり、スイッチ5c2をオンしてヒー
タ5bを加熱することにより、スイッチ用超電導コイル
5aは加熱に伴って超電導状態が失われ、抵抗を示すこ
とになる。これにより、超電導コイル2とスイッチ用超
電導コイル5aとの回路は、それまで閉回路を形成して
永久電流モードとなっていたものが解除され、電流リー
ド6を介して励磁制御部4と超電導コイル2との閉回路
が形成されることになる。
The excitation procedure of the conventional superconducting magnet having the above configuration will be explained. That is, the current lead 6 is inserted into the current lead insertion portion 1a of the vacuum container 1. Next, the persistent current switch 5 is turned off. That is, by turning on the switch 5c2 and heating the heater 5b, the superconducting coil 5a for the switch loses its superconducting state as it is heated and exhibits resistance. As a result, the circuit between the superconducting coil 2 and the superconducting coil 5a for the switch, which had been in the persistent current mode by forming a closed circuit, is released, and the excitation control unit 4 and the superconducting coil are connected via the current lead 6. A closed circuit with 2 will be formed.

ここで、励磁制御部4のスイッチ4Cをオンし、電源4
aから例えば10A/分で電流を超電導コイル2に通電
する。ここで、設定電流に達したところで、永久電流ス
イッチ5をオンする。つまり、スイッチ5c2をオフし
てヒータ5bの加熱を解除することにより、スイッチ用
超電導コイル5aは加熱解除に伴って超電導状態に復帰
し、抵抗は無くなる。これにより、超電導コイル2とス
イッチ用超電導コイル5aとの回路は閉回路を形成して
永久電流モードとなる。
Here, switch 4C of excitation control section 4 is turned on, and power supply 4C is turned on.
A current is applied to the superconducting coil 2 at a rate of, for example, 10 A/min. Here, when the set current is reached, the persistent current switch 5 is turned on. That is, by turning off the switch 5c2 and canceling the heating of the heater 5b, the switching superconducting coil 5a returns to the superconducting state as the heating is canceled, and the resistance disappears. As a result, the circuit between the superconducting coil 2 and the switching superconducting coil 5a forms a closed circuit and enters the persistent current mode.

以上の状態にした後、電流リード6及び電流リード挿入
部1aから、極超低温状態となっている真空容器1内へ
の熱侵入を防ぐため、電流を零Aに下げた後に、電流リ
ード6を電流リード挿入部1aから抜取り、これにて励
磁作業を終了する。
After the above conditions are established, in order to prevent heat from entering the vacuum vessel 1, which is in an extremely low temperature state, from the current lead 6 and the current lead insertion part 1a, the current is lowered to zero A, and then the current lead 6 is removed. The current lead is removed from the insertion part 1a, and the excitation work is completed.

以上の励磁手順は、一つの電流を設定する、つまり一つ
の磁場強度を発生するに至るための手順であるが、近時
に至って、この種の磁気共鳴イメージング装置に用いる
超電導磁石は、可変磁場強度にすることが行われたり、
また、非運転時には減消磁を行ったり、さらに磁性体吸
着事故時の緊急減消磁を行ったりする必要性が出てきた
。このため、上述した励磁手順を頻繁且つ緊急に行うこ
とが想定されている。
The excitation procedure described above is a procedure for setting one current, that is, generating one magnetic field strength.However, recently, superconducting magnets used in this type of magnetic resonance imaging apparatus have a variable magnetic field strength. or
In addition, it has become necessary to perform demagnetization during non-operation, and also to perform emergency demagnetization in the event of an accident due to adsorption of a magnetic substance. For this reason, it is assumed that the excitation procedure described above will be performed frequently and urgently.

この場合、上述した励磁手順を頻繁且つ緊急に行うこと
は、電流リード6の電流リード挿入部1aに対する抜き
差しを頻繁且つ緊急に行うことであるので、この電流リ
ード6の抜き差しに際して真空容器1内へ熱が侵入する
慮れがある。真空容器1内へ熱が侵入すると、クエンチ
ングの発生等の事故を誘発する慮れがあった。
In this case, performing the excitation procedure described above frequently and urgently means frequently and urgently inserting and removing the current lead 6 into and out of the current lead insertion portion 1a. There is a risk of heat intrusion. If heat penetrates into the vacuum container 1, there is a possibility that accidents such as quenching may occur.

(発明が解決しようとする問題点) このように従来の技術においては、一つの磁場強度を設
定するための励磁手順としてその都度電流リードを真空
容器に抜き差しするため、励磁手順を頻繁且つ緊急に行
うときにはクエンチングの発生等の事故を誘発する慮れ
があり、問題であった。
(Problems to be Solved by the Invention) In this way, in the conventional technology, the excitation procedure for setting one magnetic field strength involves inserting and removing the current lead into and out of the vacuum container each time, so the excitation procedure is frequently and urgently required. When doing so, there was a risk of causing accidents such as quenching, which was a problem.

そこで本発明の目的は、励磁手順を頻繁且つ緊急に行う
ときであってもクエンチングの発生等の事故を誘発する
慮れが無いようにした超電導磁石を提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to provide a superconducting magnet that is free from the possibility of causing accidents such as quenching even when excitation procedures are performed frequently and urgently.

[発明の構成] (問題点を解決するための手段) 本発明は上記問題点を解決し且つ目的を達成するために
次のような手段を講じた構成としている。すなわち、本
発明による超電導磁石は、液体窒素等の高温冷媒を収容
する真空断熱構造を有さない冷媒容器内に、前記高温冷
媒により超電導現象を示す高温超電導材料からなる超電
導コイル及びその冷媒を収容し、且つ永久電流スイッチ
を設けると共に前記超電導コイルから前記冷媒容器の外
に低抵抗を有する電流リードを導出した構成としたこと
を特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The present invention has a structure in which the following measures are taken to solve the above problems and achieve the object. That is, the superconducting magnet according to the present invention accommodates a superconducting coil made of a high-temperature superconducting material that exhibits a superconducting phenomenon due to the high-temperature refrigerant and its refrigerant in a refrigerant container that does not have a vacuum insulation structure and stores a high-temperature refrigerant such as liquid nitrogen. The present invention is characterized in that a persistent current switch is provided and a current lead having low resistance is led out from the superconducting coil to the outside of the refrigerant container.

(作用) このような構成によれば、低抵抗を有する電流リードは
、常に、液体窒素等の高温冷媒により超電導現象を示す
高温超電導材料からなる超電導コイルに接続されている
ので、永久電流スイッチのオン、オフするだけで、励磁
手順を実施することができ、この場合、冷媒容器内には
熱の侵入は無く、たとえ励磁手順を頻繁且つ緊急に行っ
てもクエンチングの発生等の事故を誘発する慮れはない
(Function) According to this configuration, the current lead having low resistance is always connected to the superconducting coil made of a high temperature superconducting material that exhibits a superconducting phenomenon by a high temperature refrigerant such as liquid nitrogen. The excitation procedure can be performed simply by turning it on and off, and in this case, no heat will enter the refrigerant container, and even if the excitation procedure is performed frequently and urgently, it will cause accidents such as quenching. There is no reason to do so.

(実施例) 以下本発明にかかる超電導磁石の一実施例を第1図を参
照して説明する。
(Example) An example of a superconducting magnet according to the present invention will be described below with reference to FIG.

第1図に示すように、液体窒素等の高温冷媒を収容する
真空断熱構造を有さない冷媒容器11内には、液体窒素
等の高温冷媒により超電導現象を示す高温超電導材料か
らなる超電導コイル12と、超電導コイル12を超電導
状態とするための液体窒素等の高温冷媒13とが収容さ
れているまた、超電導コイ/l;12から冷媒容器11
の壁近傍に至って超電導コイル12からの導出線12a
が導出されている。そして、冷媒容器11外には電源1
4a、スイッチ14bからなる励磁−7= 制御部14が設けられている。そして、励磁制御部14
と導出線12aとは、冷媒容器11の壁に貫通して設け
た低抵抗を有する電流リード16により接続されている
。この場合、電流リード16をコネクタ構成とし、これ
を冷媒容器11の壁に内外を貫通してもうける。これに
より、励磁制御部14と超電導コイル12とは常時接続
型の電流リード16により接続されることになる。
As shown in FIG. 1, in a refrigerant container 11 that does not have a vacuum insulation structure and accommodates a high-temperature refrigerant such as liquid nitrogen, there is a superconducting coil 12 made of a high-temperature superconducting material that exhibits a superconducting phenomenon due to the high-temperature refrigerant such as liquid nitrogen. and a high-temperature refrigerant 13 such as liquid nitrogen for bringing the superconducting coil 12 into a superconducting state.
The lead wire 12a from the superconducting coil 12 reaches near the wall of
has been derived. A power source 1 is provided outside the refrigerant container 11.
An excitation-7=control unit 14 consisting of a switch 4a and a switch 14b is provided. Then, the excitation control section 14
and the lead-out wire 12a are connected by a current lead 16 having a low resistance and provided through the wall of the refrigerant container 11. In this case, the current lead 16 has a connector configuration and is provided through the wall of the refrigerant container 11 from the inside and outside. Thereby, the excitation control unit 14 and the superconducting coil 12 are connected by the always-connected current lead 16.

ここで、低抵抗を有する電流リード16の抵抗値をRa
とし、後述するスイッチ用超電導コイル15aが超電導
状態が失われたときの抵抗値をRbとすると、Ra >
Rbである。
Here, the resistance value of the current lead 16 having low resistance is Ra
If the resistance value when the superconducting coil 15a for a switch, which will be described later, loses its superconducting state is Rb, then Ra >
It is Rb.

また、超電導コイル12に対しては並列に永久電流スイ
ッチ15のスイッチ用超電導コイル(超電導コイル12
と同じ材質又はほぼ同じ温度で超電導状態を示す材質か
らなる)15aが設けられ、このスイッチ用超電導コイ
ル15aに近接して永久電流スイッチ15のヒータ15
bが設けられ、このヒータ15bは冷媒容器11外に設
けた電源15cl、スイッチ15C2からなるヒータ制
御部15cに接続されている。
In addition, the superconducting coil for switching of the persistent current switch 15 (superconducting coil 12
A heater 15a of the persistent current switch 15 is provided in close proximity to the switch superconducting coil 15a.
b is provided, and this heater 15b is connected to a heater control section 15c consisting of a power source 15cl and a switch 15C2 provided outside the refrigerant container 11.

以上の構成の本実施例の超電導磁石の励磁手順について
説明する。すなわち、永久電流スイッチ15をオフする
。つまり、スイッチ15C2をオンしてヒータ15bを
加熱することにより、スイッチ用超電導コイル15aは
加熱に伴って超電導状態が失われ、抵抗Rbを示すこと
になる。これにより、RB > Rhであるので、超電
導コイル12とスイッチ用超電導コイル15aとの回路
は、それまで閉回路を形成して永久電流モードとなって
いたものが解除され、Ra >Rbなる関係を有する抵
抗値Raの電流リード16を介して励磁制御部14と超
電導コイル12との閉回路が形成されることになる。
The excitation procedure for the superconducting magnet of this embodiment having the above configuration will be explained. That is, the persistent current switch 15 is turned off. That is, by turning on the switch 15C2 and heating the heater 15b, the switching superconducting coil 15a loses its superconducting state as it is heated, and exhibits resistance Rb. As a result, since RB > Rh, the circuit between the superconducting coil 12 and the switching superconducting coil 15a, which had been in a closed circuit and in a persistent current mode, is released, and the relationship Ra > Rb is established. A closed circuit between the excitation control unit 14 and the superconducting coil 12 is formed via the current lead 16 having a resistance value Ra.

ここで、励磁制御部14のスイッチ14cをオンし、電
源14aから電流を超電導コイル12に通電する。ここ
で、設定電流に達したところで、永久電流スイッチ15
をオンする。つまり、スイッチ15C2をオフしてヒー
タ15bの加熱を解除することにより、スイッチ用超電
導コイル15aは加熱解除に伴って超電導状態に復帰し
、抵抗は無くなる。これにより、超電導コイル12とス
イッチ用超電導コイル15aとの回路は閉回路を形成し
て永久電流モードとなり、これにて励磁作業を終了する
Here, the switch 14c of the excitation control section 14 is turned on, and current is applied to the superconducting coil 12 from the power source 14a. Here, when the set current is reached, the persistent current switch 15
Turn on. That is, by turning off the switch 15C2 and canceling the heating of the heater 15b, the switching superconducting coil 15a returns to the superconducting state as the heating is canceled, and the resistance disappears. As a result, the circuit between the superconducting coil 12 and the switching superconducting coil 15a forms a closed circuit and enters the persistent current mode, thereby ending the excitation work.

以上の励磁手順は、一つの電流を設定する、つまり一つ
の磁場強度を発生するに至るための手順であるが、この
励磁手順を頻繁且つ緊急に行う場合であっても、励磁制
御部14及び永久電流スイッチ15をオン・オフするだ
けで、冷媒容器11内に熱侵入を一切招くことなくして
各々実施することができる。
The above excitation procedure is a procedure for setting one current, that is, generating one magnetic field strength, but even if this excitation procedure is performed frequently and urgently, the excitation control unit 14 and By simply turning on and off the persistent current switch 15, each operation can be carried out without any heat intrusion into the refrigerant container 11.

従って、近時に至って、この種の磁気共鳴イメージング
装置に用いる超電導磁石は、可変磁場強度にすることが
行われたり、また、非運転時には減消磁を行ったり、さ
らに磁性体吸着事故時の緊急減消磁を行ったりする必要
性が出てきており、このため、励磁手順を頻繁且つ緊急
に行うことが想定されるが、この場合、上述した励磁手
順を頻繁且つ緊急に行ったとしても、冷媒容器11内へ
の熱侵入は一切無いので、クエンチングの発生等の事故
は誘発しない。
Therefore, in recent years, superconducting magnets used in this type of magnetic resonance imaging equipment have been made to have variable magnetic field strength, are demagnetized when not in operation, and are also required to be demagnetized in case of an accident due to adsorption of magnetic materials. It is expected that the excitation procedure will be performed frequently and urgently.In this case, even if the excitation procedure described above is performed frequently and urgently, the refrigerant container Since there is no heat intrusion into the 11, accidents such as quenching will not occur.

なお、本発明は、その要旨を逸脱しない範囲で種々変形
して実施することができるものである。
Note that the present invention can be implemented with various modifications without departing from the gist thereof.

[発明の効果] 以上のように本発明では、液体窒素等の高温冷媒を収容
する真空断熱構造を有さない冷媒容器内に、前記高温冷
媒により超電導現象を示す高温超電導材料からなる超電
導コイル及びその冷媒を収容し、且つ永久電流スイッチ
を設けると共に前記超電導コイルから前記冷媒容器の外
に低抵抗を有する電流リードを導出した構成としたこと
により、低抵抗を有する電流リードは、常に、液体窒素
等の高温冷媒により超電導現象を示す高温超電導材料か
らなる超電導コイルに接続されているので、永久電流ス
イッチのオン、オフするだけで、励磁手順を実施するこ
とができ、この場合、冷媒容器内には熱の侵入は無く、
たとえ励磁手順を頻繁且つ緊急に行ってもクエンチング
の発生等の事故は発生することがない、という効果があ
る。
[Effects of the Invention] As described above, the present invention includes a superconducting coil made of a high-temperature superconducting material that exhibits a superconducting phenomenon due to the high-temperature refrigerant, and a By accommodating the refrigerant, providing a persistent current switch, and leading out a current lead having low resistance from the superconducting coil to the outside of the refrigerant container, the current lead having low resistance is always connected to liquid nitrogen. It is connected to a superconducting coil made of high-temperature superconducting material that exhibits superconducting phenomenon with high-temperature refrigerants such as There is no heat intrusion,
This has the effect that accidents such as quenching will not occur even if the excitation procedure is performed frequently and urgently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる超電導磁石の一実施例の構成を
示す図、第2図は従来例の構成を示す図である。 11・・・冷媒容器、12・・・超電導コイル、13・
・・冷媒、14・・・励磁制御部、15・・・永久電流
スイッチ、16・・・低抵抗を有する電流リード。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a diagram showing the configuration of an embodiment of a superconducting magnet according to the present invention, and FIG. 2 is a diagram showing the configuration of a conventional example. 11... Refrigerant container, 12... Superconducting coil, 13.
... Refrigerant, 14... Excitation control unit, 15... Persistent current switch, 16... Current lead having low resistance. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims]  液体窒素等の高温冷媒を収容する真空断熱構造を有さ
ない冷媒容器内に、前記高温冷媒により超電導現象を示
す高温超電導材料からなる超電導コイル及びその冷媒を
収容し、且つ永久電流スイッチを設けると共に前記超電
導コイルから前記冷媒容器の外に低抵抗を有する電流リ
ードを導出した構成としたことを特徴とする超電導磁石
A superconducting coil made of a high-temperature superconducting material that exhibits a superconducting phenomenon due to the high-temperature refrigerant and the refrigerant are housed in a refrigerant container that does not have a vacuum insulation structure and contains a high-temperature refrigerant such as liquid nitrogen, and a persistent current switch is provided. A superconducting magnet characterized in that a current lead having low resistance is led out from the superconducting coil to the outside of the refrigerant container.
JP62273845A 1987-10-29 1987-10-29 Superconducting magnet Pending JPH01117004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62273845A JPH01117004A (en) 1987-10-29 1987-10-29 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62273845A JPH01117004A (en) 1987-10-29 1987-10-29 Superconducting magnet

Publications (1)

Publication Number Publication Date
JPH01117004A true JPH01117004A (en) 1989-05-09

Family

ID=17533347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62273845A Pending JPH01117004A (en) 1987-10-29 1987-10-29 Superconducting magnet

Country Status (1)

Country Link
JP (1) JPH01117004A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004037081A1 (en) * 2002-10-24 2004-05-06 Hitachi Medical Corporation Superconducting magnet device and magnetic resonance imaging system employing it
US6809618B2 (en) * 2002-01-15 2004-10-26 Siemens Aktiengesellschaft Switching device for superconducting technology
JP2009090127A (en) * 2008-12-03 2009-04-30 Hitachi Medical Corp Magnetic resonance imaging device and superconducting magnet device
JP2012148073A (en) * 2011-01-19 2012-08-09 General Electric Co <Ge> Apparatus and method for protecting magnetic resonance imaging magnet during quench

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6809618B2 (en) * 2002-01-15 2004-10-26 Siemens Aktiengesellschaft Switching device for superconducting technology
WO2004037081A1 (en) * 2002-10-24 2004-05-06 Hitachi Medical Corporation Superconducting magnet device and magnetic resonance imaging system employing it
US7304478B2 (en) 2002-10-24 2007-12-04 Hitachi Medical Corporation Magnetic resonance imaging apparatus provided with means for preventing closed loop circuit formation across and between inside and outside of cryostat
CN100413465C (en) * 2002-10-24 2008-08-27 株式会社日立医药 Superconducting magnet device and magnetic resonance imaging system employing it
JP2009090127A (en) * 2008-12-03 2009-04-30 Hitachi Medical Corp Magnetic resonance imaging device and superconducting magnet device
JP2012148073A (en) * 2011-01-19 2012-08-09 General Electric Co <Ge> Apparatus and method for protecting magnetic resonance imaging magnet during quench

Similar Documents

Publication Publication Date Title
Kirklin et al. A hydrogen-containing trapped hole center in magnesium oxide
JP4212331B2 (en) Magnetic resonance imaging apparatus and superconducting magnet apparatus
US6489769B2 (en) Nuclear magnetic resonance apparatus
JP2002008917A (en) Control method of superconductor magnetic field application apparatus, nuclear magnetic resonance apparatus using the same, and superconducting magnet apparatus
JP2008091912A (en) High temprature superconducting current lead for superconducting magnet
Lounasmaa et al. Specific heat of dysprosium metal between 0.4 and 4 K
Andres et al. Nuclear cooling in PrCu 6
JPH11248810A (en) Nuclear magnetic resonance apparatus
Whetten et al. Secondary electron emission of single crystals of MgO
JPH04233707A (en) Magnet assembly
JPH01117004A (en) Superconducting magnet
JP2007129158A (en) Magnetic field generator and nuclear magnetic resonance unit
Kerchner et al. Equilibrium properties of the fluxoid lattice in single-crystal niobium. I. Magnetization measurements
Symko Nuclear cooling using copper and indium
JPH0318001A (en) Superconductive magnet apparatus having emergency demagnetizing device
JP2002143126A (en) Magnet device and magnetic resonance imaging equipment
JPS6050441A (en) Magnetic-field calibrating device in nuclear-magnetic- resonance imaging apparatus
US3262026A (en) Superconductive solenoids having a field probe mounted therein
JPH05145275A (en) Method and apparatus for cooling superconducting magnetic-shielding vessel
JP2596961B2 (en) Superconducting device
JPH0370545A (en) Magnetic resonance imaging apparatus
JPH05337100A (en) Superconducting magnet device
JPS62244110A (en) Superconducting coil device
Hensel The nuclear refrigeration of copper
Hatta et al. Critical Exponents Determined for Nickel from Magnetization Measurement in High Magnetic Fields