JP2596961B2 - Superconducting device - Google Patents

Superconducting device

Info

Publication number
JP2596961B2
JP2596961B2 JP63067618A JP6761888A JP2596961B2 JP 2596961 B2 JP2596961 B2 JP 2596961B2 JP 63067618 A JP63067618 A JP 63067618A JP 6761888 A JP6761888 A JP 6761888A JP 2596961 B2 JP2596961 B2 JP 2596961B2
Authority
JP
Japan
Prior art keywords
superconducting
tank
superconducting coil
magnetic field
liquid nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63067618A
Other languages
Japanese (ja)
Other versions
JPH01239902A (en
Inventor
賢一 菊地
皓一 岡
久直 尾形
武夫 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP63067618A priority Critical patent/JP2596961B2/en
Publication of JPH01239902A publication Critical patent/JPH01239902A/en
Application granted granted Critical
Publication of JP2596961B2 publication Critical patent/JP2596961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超電導装置、特に核磁気共鳴を利用した分析
計の超電導装置に適した超電導装置に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a superconducting device, and more particularly to a superconducting device suitable for a superconducting device of an analyzer utilizing nuclear magnetic resonance.

[従来技術] 核磁気共鳴(Nuclear Magnetic Resonance)を利用し
た装置としては、医療用の画像診断装置であるMRI(Mag
netic Resonance Imaging)やNMR分析計が知られてい
る。これらの装置では磁場を発生させる磁石として永久
磁石、常電導磁石、超電導磁石が使用されているが、分
解能が優れていることから超電導磁石を用いたものの比
率が高まってきている。
[Prior art] As an apparatus using nuclear magnetic resonance (Magnetic Magnetic Resonance), there is an MRI (Mag) which is a medical image diagnostic apparatus.
Netic Resonance Imaging) and NMR analyzers are known. In these devices, permanent magnets, normal conducting magnets, and superconducting magnets are used as magnets for generating a magnetic field, but the ratio of those using superconducting magnets is increasing due to their excellent resolution.

本発明を説明する好適な例として、超電導磁石を用い
たNMR分析計を取り上げる。
As a preferred example for explaining the present invention, an NMR analyzer using a superconducting magnet will be described.

NRM分析計の超電導装置は、中心軸周りに円孔を有す
る超電導コイル、それを包むように配置された寒剤容器
であるLHe(液体ヘリウム)槽、熱シールド槽となるLN2
(液体窒素)槽及び最外層となる真空容器からなってい
る。装置の中心には常温ボアと称する大気に開放されて
いる空間が設けられていて、超電導コイルを励磁するこ
とにより常温ボア内のコイル中心部分では4〜15T(テ
スラ)程度の極めて強い磁界が発生するようになってい
る。この磁界内に生体高分子等のサンプルを挿入し、核
磁気共鳴現象を利用した分析を行う。
The superconducting device of the NRM analyzer consists of a superconducting coil with a circular hole around the central axis, an LHe (liquid helium) tank that is a cryogen container arranged to enclose it, and an LN2 that is a heat shield tank.
It consists of a (liquid nitrogen) tank and a vacuum container as the outermost layer. At the center of the device, there is a space open to the atmosphere called a normal temperature bore, and when a superconducting coil is excited, an extremely strong magnetic field of about 4 to 15 T (tesla) is generated in the coil center part in the normal temperature bore. It is supposed to. A sample of a biopolymer or the like is inserted into the magnetic field, and an analysis utilizing a nuclear magnetic resonance phenomenon is performed.

この場合、超電導コイルが発生する磁界は極めて大き
く、装置周辺の漏洩磁界も10〜100ガウス程度になるた
め注意が必要で、使用に当たっては超電導装置周囲の半
径1〜4m以内に分析用の操作卓や他の機器を置くことが
できず、また人間もサンプルをセットするとき以外は立
入禁止にしており、極めてスペース効率が悪いものにな
っている。漏洩磁界を小さくする方法として、従来から
磁性体である鋼板で周囲を覆う方法が提案されてはいる
が、かなり厚い鋼板を必要とするため全重量が数倍に増
加し、あまり実用的であるとはいえない。
In this case, the magnetic field generated by the superconducting coil is extremely large, and the leakage magnetic field around the device is about 10 to 100 gauss, so care must be taken.In use, a console for analysis must be within a radius of 1 to 4 m around the superconducting device. And other equipment cannot be placed, and humans are prohibited from entering except when setting samples, which is extremely space-efficient. As a method of reducing the leakage magnetic field, a method of covering the periphery with a steel plate that is a magnetic substance has been proposed, but the total weight increases several times because a considerably thick steel plate is required, which is not very practical. Not really.

[発明が解決しようとしている課題] 本発明の目的は、前記した従来技術の欠点を解消し、
装置周辺のスペース効率を大幅に高めることのできる超
電導装置を提供することにある。
[Problem to be Solved by the Invention] An object of the present invention is to solve the above-mentioned disadvantages of the prior art,
It is an object of the present invention to provide a superconducting device capable of greatly improving space efficiency around the device.

[課題を解決するための手段] 本発明の要旨は、漏洩磁場を小さくする手段として酸
化物超電導体を用いると共に、超電導コイルをその中心
にもってきたことにあり、それによって他の性能を損わ
ずに漏洩磁場を小さくしたことにある。
[Means for Solving the Problems] The gist of the present invention resides in that an oxide superconductor is used as a means for reducing a leakage magnetic field and a superconducting coil is brought to the center thereof, thereby impairing other performances. Without reducing the leakage magnetic field.

[実 施 例] 本発明の実施例を第1図に示す。[Embodiment] An embodiment of the present invention is shown in FIG.

超電導コイル1を収納するクライオスタット(極低温
容器)は、常温ボア9部を残して同心円状に配置された
LHe槽2、LN2槽3及び真空容器4からなり、LHe槽2、L
N2槽3にはそれぞれ液を注入したり、ガスを排出するた
めの導管7、8が設けられている。そして、熱シールド
3′となるLN2槽3の外面には内側の筒状部の面及びそ
の上下を除く全周を囲うように77K(液体窒素温度)で
超電導特性を示す酸化物超電導体、例えばY−Ba−Cu−
O系、Bi−Sr−Ca−Cu−O系等の超電導体の層14が付さ
れており、その外側にはスーパーインシュミレーション
等と称される多層断熱材の層10が設けられている。
The cryostat (cryogenic vessel) containing the superconducting coil 1 is arranged concentrically except for the normal temperature bore 9 parts.
LHe tank 2, LN2 tank 3 and vacuum vessel 4
The N2 tank 3 is provided with conduits 7, 8 for injecting liquid and discharging gas, respectively. An oxide superconductor exhibiting superconducting properties at 77 K (liquid nitrogen temperature) is formed on the outer surface of the LN2 tank 3 serving as the heat shield 3 ′ at 77 K (liquid nitrogen temperature) so as to surround the inner cylindrical surface and the entire periphery except the upper and lower surfaces. Y-Ba-Cu-
A superconductor layer 14 such as an O-based or Bi-Sr-Ca-Cu-O-based is provided, and a layer 10 of a multi-layered heat insulating material called super insulation or the like is provided outside the layer.

超電導コイル1は酸化物超電導体層14に対して半径方
向の中心(同心円状)にあるばかりでなく、軸方向でも
ほぼ中央に位置している。従って、磁界分布は上下対称
になり、NMR分析計の超電導マグネットの性能として重
要な、磁場の均一度が低下することはない。
The superconducting coil 1 is located not only at the center (concentric) in the radial direction with respect to the oxide superconductor layer 14 but also at the approximate center in the axial direction. Therefore, the magnetic field distribution is vertically symmetric, and the uniformity of the magnetic field, which is important as the performance of the superconducting magnet of the NMR analyzer, does not decrease.

励磁スイッチ類11は、第1図では超電導コイル1の上
下に位置しているが、上か下の一方のみや、周囲に配置
させてもよい。励磁スイッチ11とコネクタ12との間はリ
ード線13で結ばれている。
Although the excitation switches 11 are located above and below the superconducting coil 1 in FIG. 1, they may be arranged only on one of the upper and lower sides or around the same. The excitation switch 11 and the connector 12 are connected by a lead wire 13.

槽2には寒剤である液体ヘリウム5が、また槽3には
液体窒素6が適当量充填されており、これにより超電導
コイル1と励磁スイッチ11は4.2〜5K程度の超電導を実
現できるように維持されている。
The tank 2 is filled with an appropriate amount of liquid helium 5 as a cryogen, and the tank 3 is filled with an appropriate amount of liquid nitrogen 6, so that the superconducting coil 1 and the excitation switch 11 are maintained so as to realize superconductivity of about 4.2 to 5K. Have been.

超電導コイル1に電流を流して励磁するには、図示は
しないが、パワーリードと称している電源線を導管7か
ら挿入し、その先端に着いているコネクタとクライオス
タット内にあるコネクタ12とを結合し、超電導コイル1
に所定の電流を流して励磁する。ついで励磁スイッチ11
を使用してループ電流にすることにより、超電導コイル
1はそこに永久電流が流れて超電導マグネットになると
共に、常温ボア9内には均一度の高い(磁界強度がほぼ
一定)強い磁場が発生する。
To excite the superconducting coil 1 by passing a current through it, a power supply line called a power lead is inserted from the conduit 7 (not shown), and the connector at the end thereof is connected to the connector 12 in the cryostat. And superconducting coil 1
A predetermined current is passed through to excite. Excitation switch 11
, A permanent current flows through the superconducting coil 1 to become a superconducting magnet, and a strong magnetic field having a high degree of uniformity (the magnetic field strength is substantially constant) is generated in the normal temperature bore 9. .

超電導体は、良く知られているように磁力線を全く通
さない完全反磁性(マイスナー効果とも称される)の性
質がある。LN2槽3の周囲に設けられた酸化物超電導体
の層14は、LHe槽2を包囲するLN2槽3によって超電導状
態を保持するように冷却されている。このため超電導コ
イル1から発生する磁力線は常温ボア9の部分を除き、
酸化物超電導体の層14で見掛上反射して閉じ込められる
ことになる。この結果、クライオスタット周囲の漏洩磁
場の強さも大幅に減少し、周辺のスペース効率が大幅に
向上する。
As is well known, a superconductor has a property of perfect diamagnetism (also referred to as Meissner effect) that does not pass magnetic flux lines at all. The oxide superconductor layer 14 provided around the LN2 tank 3 is cooled by the LN2 tank 3 surrounding the LHe tank 2 so as to maintain the superconducting state. For this reason, the magnetic lines of force generated from the superconducting coil 1 except for the room temperature bore 9
The oxide superconductor layer 14 is apparently reflected and confined. As a result, the strength of the stray magnetic field around the cryostat is greatly reduced, and the space efficiency around the cryostat is greatly improved.

こうして常温ボア9内に、図示はしないが、分析すべ
きサンプルを内蔵したプローブを挿入することにより容
易に分析計として使用することができる。
Thus, by inserting a probe (not shown) containing a sample to be analyzed into the normal temperature bore 9, it can be easily used as an analyzer.

この例では酸化物超電導体層14をLN2槽6の外側に配
置したが、これはLN2槽6の壁の内面に付けてもよい。
In this example, the oxide superconductor layer 14 is arranged outside the LN2 tank 6, but it may be attached to the inner surface of the wall of the LN2 tank 6.

[発明の効果] 以上の説明から明らかなように、本発明の装置は磁気
シールドに液体窒素温度で超電導特性を示す酸化物超電
導体を用いてクライオスタット周囲の漏洩磁場の強さを
減少させているため、重量を殆んど増加させることなく
周囲のスペース効率を大幅に向上させることができ、そ
の実用価値は大なるものがある。
[Effects of the Invention] As is clear from the above description, the device of the present invention reduces the strength of the leakage magnetic field around the cryostat by using an oxide superconductor exhibiting superconductivity at liquid nitrogen temperature for the magnetic shield. Therefore, the space efficiency of the surroundings can be greatly improved without increasing the weight substantially, and its practical value is large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る超電導装置の一実施例を示す縦断
面図である。 1:超電導コイル、2:液体ヘリウム槽、 3:液体窒素槽、3′:熱シールド、 4:真空容器、5:液体ヘリウム、 6:液体窒素、9:常温ボア、 10:多層断熱材層、14:酸化物超電導体層。
FIG. 1 is a longitudinal sectional view showing one embodiment of a superconducting device according to the present invention. 1: superconducting coil, 2: liquid helium tank, 3: liquid nitrogen tank, 3 ': heat shield, 4: vacuum vessel, 5: liquid helium, 6: liquid nitrogen, 9: room temperature bore, 10: multilayer insulation layer, 14: oxide superconductor layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾形 久直 茨城県土浦市神立町502番地 株式会社 日立製作所機械研究所内 (72)発明者 根本 武夫 茨城県土浦市神立町502番地 株式会社 日立製作所機械研究所内 (56)参考文献 特開 昭62−89308(JP,A) 実開 昭62−70499(JP,U) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hisao Nao 502 Kandate-cho, Tsuchiura-shi, Ibaraki Pref.Hitachi, Ltd.Mechanical Research Laboratory Co., Ltd. In-house (56) References JP-A-62-89308 (JP, A) JP-A-62-270499 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】常温ボア部を残して超電導コイルと液体ヘ
リウムを収めた寒剤容器、その寒剤容器を包み熱シール
ドとなる液体窒素容器及びそれらを収めた真空容器とか
らなる超電導装置において、液体窒素容器に液体窒素温
度で超電導特性を示す酸化物超電導体の層が超電導コイ
ルに対して同心状に設けられていることを特徴とする超
電導装置。
1. A superconducting apparatus comprising a cryogen container containing a superconducting coil and liquid helium while leaving a normal temperature bore portion, a liquid nitrogen container enclosing the cryogen container and serving as a heat shield, and a vacuum container containing them. A superconducting device, characterized in that a layer of an oxide superconductor exhibiting superconductivity at liquid nitrogen temperature is provided concentrically with a superconducting coil in a container.
JP63067618A 1988-03-22 1988-03-22 Superconducting device Expired - Fee Related JP2596961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63067618A JP2596961B2 (en) 1988-03-22 1988-03-22 Superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63067618A JP2596961B2 (en) 1988-03-22 1988-03-22 Superconducting device

Publications (2)

Publication Number Publication Date
JPH01239902A JPH01239902A (en) 1989-09-25
JP2596961B2 true JP2596961B2 (en) 1997-04-02

Family

ID=13350139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63067618A Expired - Fee Related JP2596961B2 (en) 1988-03-22 1988-03-22 Superconducting device

Country Status (1)

Country Link
JP (1) JP2596961B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112509779B (en) * 2020-10-29 2021-08-03 中国科学院合肥物质科学研究院 Superconducting magnet system for space magnetic plasma thruster

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289308A (en) * 1985-10-15 1987-04-23 Sumitomo Electric Ind Ltd Superconducting magnet
JPS6270499U (en) * 1985-10-21 1987-05-02

Also Published As

Publication number Publication date
JPH01239902A (en) 1989-09-25

Similar Documents

Publication Publication Date Title
US7218115B2 (en) Superconductor probe coil for NMR apparatus
US4721914A (en) Apparatus for unilateral generation of a homogeneous magnetic field
US6828791B2 (en) Nuclear magnetic resonance apparatus probe having a solenoid coil and a saddle coil and nuclear magnetic resonance apparatus probe using the same
JP4122833B2 (en) Probe for NMR apparatus using magnesium diboride
JP5265899B2 (en) High temperature superconducting current leads for superconducting magnets
US6489769B2 (en) Nuclear magnetic resonance apparatus
JPH0793211B2 (en) Magnet coil device for nuclear magnetic resonance tomography equipment
US6169402B1 (en) Nuclear magnetic resonance spectrometer
US7154271B2 (en) Split type NMR Superconductive magnet device and NMR apparatus for solution analysis with a permanent current switch holding the split type superconducting magnet in a permanent current mode
JPH10225447A (en) Plane-type magnetic resonance imaging magnet
JPH0670907A (en) Magnetic resonance apparatus and method
Andres et al. Nuclear cooling in PrCu 6
JPH10192255A (en) Closed structure magnetic resonance imaging magnet and open structure magnetic resonance imaging magnet
US8947090B2 (en) Electromagnet assembly
JP2007129158A (en) Magnetic field generator and nuclear magnetic resonance unit
US7838774B2 (en) Low AC loss single-filament superconductor for a superconducting magnet and method of making same
JP2596961B2 (en) Superconducting device
Dutz et al. An internal superconducting “holding-coil” for frozen spin targets
US5635888A (en) Super-conducting magnets
JPH05304025A (en) High magnetic field generator and permanent current switch
Ling Monofilament MgB₂ wires for MRI magnets
JPH05267054A (en) High magnetic field generator and permanent electric current switch
JPS6229113A (en) Superconducting device
Mun Magnets For MRI
Wang et al. High magnetic field superconducting magnet technology and its applications

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees