JPH01115808A - Rare gas recover device - Google Patents

Rare gas recover device

Info

Publication number
JPH01115808A
JPH01115808A JP62271737A JP27173787A JPH01115808A JP H01115808 A JPH01115808 A JP H01115808A JP 62271737 A JP62271737 A JP 62271737A JP 27173787 A JP27173787 A JP 27173787A JP H01115808 A JPH01115808 A JP H01115808A
Authority
JP
Japan
Prior art keywords
heater
temperature
rare gas
activated carbon
active carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62271737A
Other languages
Japanese (ja)
Inventor
Nobuo Kikuchi
伸夫 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62271737A priority Critical patent/JPH01115808A/en
Publication of JPH01115808A publication Critical patent/JPH01115808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To control temperature in an active carbon column in high accuracy, by connecting an electric wiring for controlling a heater introduced into a heat insulating container while sandwiching an oxide superconductor arranged in the active carbon column in between the electric wiring. CONSTITUTION:An electric current is sent to a heater electric source wiring 16 to heat the a heater 11 and the temperature of an active carbon column 2 put in a heat insulating container 1 is raised. When a heat transition temperature is reached, an oxide superconductor 15 is transferred to a dielectric material to stop electric current to the heater 11. Simultaneously, a solenoid valve 13 is opened by a relay 17, liquid nitrogen is sprayed from a spray nozzle 5 in the container 1, temperature outside the active carbon cylinder 2 is reduced to prevent overshoot of temperature in the active carbon column 2. Temperature in the active carbon column 2 is lowered with reduction in temperature outside the active carbon cylinder 2 and electric current is resent to the heater 11 to heat the active carbon column at <=the transition temperature.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はたとえば高速増殖炉(FBR)の破損燃料検出
系に使用されている低濃度の放射性希ガスを活性炭によ
り深冷吸着して濃縮し、その成分を分析する分析装置に
好適した希ガス回収装置に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention is a method for deep cooling low-concentration radioactive noble gases used in the failed fuel detection system of fast breeder reactors (FBRs) using activated carbon. The present invention relates to a rare gas recovery device suitable for an analysis device that adsorbs and concentrates the gas and analyzes its components.

(従来の技術) 高速増殖炉の破損燃料位置検出装置においては希ガス回
収装置が用いられている。この希ガス回収装置はキャリ
アガスである放射性物質を含むアルゴンガス中に含まれ
る低濃度の混合希ガス(例えばキセノン、クリプトン)
−の同位体を活性炭による深冷吸着法、すなわち−18
0℃の極低温状態の活性炭による吸着法により吸着濃縮
させた後、次の工程で加熱して希ガスを脱着し、分析装
置へ送り希ガスの成分分析を行うものである。
(Prior Art) A rare gas recovery device is used in a failed fuel position detection device for a fast breeder reactor. This rare gas recovery device uses a low concentration mixed rare gas (e.g. xenon, krypton) contained in the carrier gas, argon gas, which contains radioactive substances.
The isotope of -18
After being adsorbed and concentrated by an adsorption method using activated carbon at an extremely low temperature of 0° C., the next step is to heat it to desorb the rare gas, and then send it to an analyzer to analyze the components of the rare gas.

次に、従来の希ガス回収装置を第5図を参照して説明す
る。
Next, a conventional rare gas recovery apparatus will be explained with reference to FIG.

同図に示すように、希ガス回収装置は大別して希ガス吸
着系Aと液体窒素供給系Bと検出制御Cとから構成され
ている。
As shown in the figure, the rare gas recovery apparatus is roughly divided into a rare gas adsorption system A, a liquid nitrogen supply system B, and a detection control C.

先シ希ガス吸着系Aの詳細図を第6図について説明する
と、この希ガス吸着系Aは断熱容器1内に収納された活
性炭筒2とこの活性炭筒2内に被処理ガスを所定の温度
に加熱あるいは冷却して流入させるための伝熱管3と活
性炭筒2の温度を検出する熱電対4とさらに活性炭筒2
の上方に配設されたスプレーノズル5とから構成されて
いる。
First, a detailed diagram of the rare gas adsorption system A will be explained with reference to FIG. A thermocouple 4 detects the temperature of the heat exchanger tube 3 for heating or cooling the activated carbon cylinder 2 and activated carbon cylinder 2.
The spray nozzle 5 is arranged above the spray nozzle 5.

しかして、断熱容器1の上部開口は下面に断熱材6を有
する蓋7で気密に閉塞され、この蓋7には窒素ガス出口
管8.被処理ガス入口管9.出口管10および棒状の電
気ヒータ11が取着されている。
The upper opening of the heat insulating container 1 is hermetically closed with a lid 7 having a heat insulating material 6 on the lower surface, and the lid 7 has a nitrogen gas outlet pipe 8. Processed gas inlet pipe 9. An outlet pipe 10 and a rod-shaped electric heater 11 are attached.

また、スプレーノズル5は液体窒素入口管12に接続さ
れており、その下面には多数のノズル孔が形成されてい
る。
Further, the spray nozzle 5 is connected to a liquid nitrogen inlet pipe 12, and a number of nozzle holes are formed on the lower surface thereof.

ところで、活性炭筒2の冷却に際しては、第5図におい
て、液体窒素供給系Bの電磁弁13を開とし、液体窒素
ボンベ14から液体窒素を導入し、スプレーノズル5か
ら噴霧して容器内を一180℃に冷却する。そして、−
180℃に到達後は5〜6時間保持するため液体窒素を
断続的に供給する。流入した液体窒素は気化し窒素ガス
として出口管8から流出する。
By the way, when cooling the activated carbon cylinder 2, as shown in FIG. 5, the solenoid valve 13 of the liquid nitrogen supply system B is opened, liquid nitrogen is introduced from the liquid nitrogen cylinder 14, and is sprayed from the spray nozzle 5 to completely fill the inside of the container. Cool to 180°C. And-
After reaching 180°C, liquid nitrogen is intermittently supplied to maintain the temperature for 5 to 6 hours. The liquid nitrogen that has flowed in is vaporized and flows out from the outlet pipe 8 as nitrogen gas.

一方、活性炭筒2の加熱は電気ヒータ11を電源に接続
することによるヒータ11の発熱により行なわれる。
On the other hand, the activated carbon cylinder 2 is heated by the heat generated by the electric heater 11 by connecting it to a power source.

加熱は二段層に分けて行い、第−段階では共吸着したキ
ャリアガスのみ脱着して希ガスの脱着しない温度まで昇
温後、その温度を一定に保って共吸着キャリアガスを除
去し、その後第二段階では更に高い温度まで昇温しで濃
縮された希ガスを脱着させる。
Heating is carried out in two stages; in the first stage, the temperature is raised to a temperature where only the co-adsorbed carrier gas is desorbed and no noble gas is desorbed; then, the co-adsorbed carrier gas is removed while keeping the temperature constant; In the second stage, the temperature is raised to an even higher temperature to desorb the concentrated rare gas.

上記の運転パターンの一例を第4図に示す。An example of the above operation pattern is shown in FIG.

第4図中たて軸は活性炭温度を、よこ軸は時間を示して
おり、■は希ガス、キャリアガス吸着、■はキャリアガ
ス脱着、■は再生状態である。
In FIG. 4, the vertical axis indicates the activated carbon temperature, and the horizontal axis indicates time, where ■ indicates rare gas and carrier gas adsorption, ■ indicates carrier gas desorption, and ■ indicates regeneration state.

(発明が解決しようとする問題点) 加熱時、特に第一段階に於いては共吸着ガスのみ放出し
、希ガスを放出しないため一80℃程度の温度を維持す
る必要があり、このため加熱ヒータ11による加熱と液
体窒素による冷却を交互に行う必要がある。
(Problem to be solved by the invention) During heating, especially in the first stage, only the co-adsorbed gas is released and no noble gas is released, so it is necessary to maintain a temperature of about -80°C. It is necessary to alternately perform heating with the heater 11 and cooling with liquid nitrogen.

この制御は熱電対による温度信号で行なわれるが、熱電
対4を活性炭部外壁に取付けた場合、ヒータの輻射や液
体窒素の飛沫の影響を受は易いため、高精度で制御する
には熱な対を活性炭筒内に挿入する必要がある。しがし
その場合、シース型熱電対で温度を正確に測定するには
一般に熱電対の外径の20倍以上の挿入寸法を要するた
め、活性炭筒2の大型化を防ぐため熱電対の径を細くす
る必要があり、断線等のトラブルを生じる恐れがあり、
又、取付は方法も複雑となるという欠点があった。
This control is performed using a temperature signal from a thermocouple, but when the thermocouple 4 is attached to the outer wall of the activated carbon section, it is easily affected by heater radiation and liquid nitrogen droplets, so it is difficult to control with high precision without heat. It is necessary to insert the pair into the activated carbon cylinder. However, in that case, in order to accurately measure temperature with a sheathed thermocouple, the insertion dimension is generally 20 times or more the outer diameter of the thermocouple, so to prevent the activated carbon tube 2 from becoming larger, the diameter of the thermocouple should be reduced. It is necessary to make the wire thinner, which may cause problems such as wire breakage.
Another drawback is that the mounting method is complicated.

更に温度信号にてヒータや液体窒素供給弁Bの ゛制御
を行うにはトランスミッタ、アンプ、コントローラ、盤
等の計装制御機器が必要であり、希ガス回収装置のコス
トが高いものとなっていた。
Furthermore, controlling the heater and liquid nitrogen supply valve B using temperature signals requires instrumentation and control equipment such as a transmitter, amplifier, controller, and panel, making the cost of rare gas recovery equipment high. .

本発明は上記問題点を解決し、構造が簡単で制御精度が
高く、かつ安価な希ガス回収装置を提供することを目的
とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a rare gas recovery device that has a simple structure, high control accuracy, and is inexpensive.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記問題点を解決するために、本発明はヒータ制御のた
めの温度検出器を用いず、断熱容器内に導入したヒータ
制御のための電気配線を活性炭筒内に配置した酸化物超
電導体をはさんで接続する。
(Means for Solving the Problems) In order to solve the above problems, the present invention does not use a temperature sensor for controlling the heater, but connects electrical wiring for controlling the heater to an activated carbon tube introduced into a heat insulating container. Connect by sandwiching the oxide superconductor placed inside.

この配線はヒータへ直接接続されるヒータ電源配線とし
てよい。
This wiring may be a heater power supply wiring directly connected to the heater.

又、この液体窒素供給電磁弁の制御配線には前記ヒータ
配線の通電時回路が開、無通電時日路が閉となるリレー
を設ける。
Further, the control wiring of this liquid nitrogen supply solenoid valve is provided with a relay whose circuit is open when the heater wiring is energized and whose circuit is closed when the heater wiring is not energized.

(作 用) 前記手段の作用は、酸化物超電導体の特性によるもので
、加熱時、活性炭筒内の酸化物超電導体が転移温度以上
になると、抵抗が急激に増大し、絶縁体となることによ
りヒータへの通電が停止する。同時にリレー回路により
液体窒素供給電磁弁が開き、容器内に液体窒素が供給さ
れて活性炭筒内温度を下げ、筒内温度のオーバーシュー
トを抑制する。
(Function) The effect of the above means is due to the characteristics of the oxide superconductor; when the oxide superconductor in the activated carbon cylinder reaches a transition temperature or higher during heating, its resistance increases rapidly and it becomes an insulator. energization to the heater is stopped. At the same time, the relay circuit opens the liquid nitrogen supply solenoid valve, and liquid nitrogen is supplied into the container, lowering the activated carbon cylinder temperature and suppressing cylinder temperature overshoot.

液体窒素による冷却で筒内温度が転移温度以下になると
酸化物超電導体の抵抗は0となり、ヒータに通電され、
同時に液体窒素の供給が止まる。
When the temperature inside the cylinder falls below the transition temperature due to cooling with liquid nitrogen, the resistance of the oxide superconductor becomes 0, and the heater is energized.
At the same time, the supply of liquid nitrogen stops.

このくり返しにより活性炭筒内温度を一定に保つことが
でき、しかも特別な制御装置は必要としない。
By repeating this process, the temperature inside the activated carbon cylinder can be kept constant, and no special control device is required.

又、酸化物超電導体は通電時発熱しないため、筒内を内
部より加熱して急激な温度上昇による制御の不安定を起
こす恐れもない。
In addition, since the oxide superconductor does not generate heat when energized, there is no risk of heating the inside of the cylinder from the inside and causing unstable control due to a rapid temperature rise.

(実施例) 以下第1図から第3図を谷点して本発明に係る希ガス回
収装置の一実施例を説明する。なお、図中第5図および
第6図と同一部分には同一符号で示し、重複する部分の
説明を省略する。本発明が従来例と異なる点は第1図に
於いて、(15)は活性炭筒■内に設けられた酸化物超
電導体であり、電気ヒータ(11)に電流を流すヒータ
電源配線(16)が断熱容器ω内に導入され、この酸化
物超電導体(15)を介して電気ヒータ11に接続され
ている。
(Embodiment) An embodiment of the rare gas recovery apparatus according to the present invention will be described below with reference to FIGS. 1 to 3. Note that the same parts in the figure as in FIGS. 5 and 6 are indicated by the same reference numerals, and the explanation of the overlapping parts will be omitted. The difference between the present invention and the conventional example is that in FIG. 1, (15) is an oxide superconductor provided in the activated carbon cylinder (2), and the heater power supply wiring (16) that supplies current to the electric heater (11). is introduced into the heat insulating container ω and connected to the electric heater 11 via this oxide superconductor (15).

又、前記ヒータ電源配線(16)通電時開、無道電磁閉
となるリレー(17)が設けられ電磁弁(13)へ接続
されている。その他の系統構成は第5図と同様である。
Further, a relay (17) is provided which opens when the heater power supply wiring (16) is energized and closes solenoidally, and is connected to the solenoid valve (13). Other system configurations are the same as those shown in FIG.

第2図は希ガス回収系(A)の具体的構造を示すもので
、第2図に於ける活性炭筒■内部の酸化物超電導体(1
5)の配置例を第3図(a)に示す。即ち、第3図(a
)では第1の酸化物超電導体(15a)は棒状、帯状又
は線状に形成され、ガス出口側に配置されている。又、
(18)は活性炭である。
Figure 2 shows the specific structure of the rare gas recovery system (A).
An example of the arrangement of 5) is shown in FIG. 3(a). That is, Fig. 3 (a
), the first oxide superconductor (15a) is formed in the shape of a rod, band, or line, and is arranged on the gas outlet side. or,
(18) is activated carbon.

次に作用を説明する。第4図■の状態からヒータ電源配
線(16)に電流を流し、ヒータ(11)に通電して加
熱すると、活性炭筒■の温度は上昇し、やがて転移温度
に達すると酸化物超導体(I5)は絶縁体に転移し、ヒ
ータ(11)への通電が停止する。この転移温度は酸化
物超電導体(15)の組成によって変わるため、制御に
最適のものを選定する。
Next, the effect will be explained. When a current is passed through the heater power supply wiring (16) and the heater (11) is heated from the state shown in Figure 4 (■), the temperature of the activated carbon cylinder (■) rises, and when it eventually reaches the transition temperature, it becomes an oxide superconductor (I5). is transferred to the insulator, and power supply to the heater (11) is stopped. Since this transition temperature varies depending on the composition of the oxide superconductor (15), the one most suitable for control is selected.

ヒータ(11)への通電断と同時にリレー(17)の作
用で電磁弁(13)が開となり、液体窒素がスプレーノ
ズル(ハ)より断熱容器ω内に散布され、活性炭筒■昇
温度を低下させ委ことにより、活性炭筒■内温度のオー
バーシュートが抑止される。
At the same time as the heater (11) is turned off, the solenoid valve (13) is opened by the action of the relay (17), and liquid nitrogen is sprayed from the spray nozzle (c) into the heat insulating container ω, reducing the temperature rise in the activated carbon cylinder. By this, overshoot of the temperature inside the activated carbon cylinder is suppressed.

その後液体窒素により活性炭筒■外の温度低下に伴い、
活性炭塔■内温度も低下し、転移温度以下になると再び
ヒータ(11)に通電され、加熱が始まる。
Afterwards, as the temperature outside the activated carbon cylinder decreases with liquid nitrogen,
When the temperature inside the activated carbon tower (1) also decreases and becomes below the transition temperature, the heater (11) is energized again and heating begins.

この繰り返しにより活性炭筒■内は第4図■に示すよう
に一定温度に保たれる。
By repeating this process, the inside of the activated carbon cylinder (2) is kept at a constant temperature as shown in Figure 4 (2).

又、ヒータ通電時、酸化物超電導体(15)は発熱しな
いため、加熱は外部のヒータ(11)のみによって行な
われ、約−80℃という低温の温度保持が安定してでき
る。
Further, since the oxide superconductor (15) does not generate heat when the heater is energized, heating is performed only by the external heater (11), and the temperature can be stably maintained at a low temperature of about -80°C.

第4図mの状態への加熱は転移温度の異なる酸化物超電
導体を用いるか、又は酸化物超電導体を介さない別回路
でヒータへ通電することによって行う。後者の場合、制
御は温度検出器によるが、第4図mの状態は既に濃縮の
完了した希ガスの脱着工程であるため高精度の制御は不
要であり、温度検出器は活性炭筒■の外壁取付でよく、
又制御器も温度スイッチでよい、更にこの段階では液体
窒素の制御は不要である。
Heating to the state shown in FIG. 4m is performed by using oxide superconductors having different transition temperatures, or by supplying current to the heater in a separate circuit that does not go through the oxide superconductor. In the latter case, control is by a temperature detector, but since the state shown in Figure 4 (m) is a desorption process of a rare gas that has already been condensed, highly accurate control is not necessary, and the temperature detector is installed on the outer wall of the activated carbon cylinder. Easy to install,
Further, the controller may be a temperature switch, and furthermore, liquid nitrogen control is not necessary at this stage.

上記実施例によれば、活性炭筒を大型せずに簡単な構造
で高精度の活性炭筒内温度制御ができ、しかも制御装置
を極めてff1素化できる。又、酸化物超電導体それ自
体の特性を利用しているため信頼性が高く1発熱もない
ため断線等の恐れもない。
According to the above embodiment, the temperature inside the activated carbon cylinder can be controlled with high precision with a simple structure without increasing the size of the activated carbon cylinder, and the control device can be made into an FF1 element. In addition, since the characteristics of the oxide superconductor itself are utilized, reliability is high and there is no heat generation, so there is no risk of wire breakage.

酸化物超電導体の他の配置例を第3図(b)〜(d)に
示す。
Other examples of arrangement of oxide superconductors are shown in FIGS. 3(b) to 3(d).

第3図(b)は第2の棒状酸化物超電導体(15b)を
活性炭層内に挿入したもので、活性炭層自体の温度によ
って制御できるという効果を有する。
FIG. 3(b) shows a second rod-shaped oxide superconductor (15b) inserted into an activated carbon layer, which has the effect of being able to be controlled by the temperature of the activated carbon layer itself.

第3図(C)は活性炭塔■内壁に第3の酸化物超電導体
(15c)をリング状にコーティングしたものであり、
筒2内の流体抵抗を減少でき、更に断面積を大きくでき
るため大きな電流を流すことができる。尚、(19)は
電気絶縁物である。
Figure 3 (C) shows a ring-shaped coating of the third oxide superconductor (15c) on the inner wall of the activated carbon tower.
The fluid resistance inside the cylinder 2 can be reduced and the cross-sectional area can be increased, so a large current can flow. Note that (19) is an electrical insulator.

第3図(d)は第4の酸化物超電導体(15d)を直接
部容器の一部として成形したもので、第3図(C)より
更に大きな電流を流すことができる。
In FIG. 3(d), the fourth oxide superconductor (15d) is molded directly as a part of the container, and a larger current can be passed through it than in FIG. 3(C).

前記実施例ではヒータ電源配線を直接酸化物超電導体に
接続したが、例えばヒータ電源配線の途中にスイッチを
設け、このスイッチを作動させる制御配線を超電導体に
接続しても同様の作用、効果が得られる。
In the above embodiment, the heater power supply wiring was directly connected to the oxide superconductor, but the same operation and effect can be obtained by, for example, providing a switch in the middle of the heater power supply wiring and connecting the control wiring for operating this switch to the superconductor. can get.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、特別な制御装置を用いず、簡単な構造
で高精度の活性炭筒内温度制御が実現でき、もって安価
で信頼性の高い希ガス回収装置を提供できる。
According to the present invention, highly accurate activated carbon cylinder temperature control can be realized with a simple structure without using a special control device, and an inexpensive and highly reliable rare gas recovery device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る希ガス回収装置の一実施例を示す
概略系統図、第2図は第1図における希ガス吸着系を一
部線図的に拡大して示す縦断面図。 第3図(a) 、 (b) 、 (c) 、 (d)は
第1図に於ける液体窒素供給系の酸化物超電導体の配置
例をそれぞれ示す縦断面図、第4図は希ガス回収装置の
運転パターンの一例を示す特性図、第5図は従来の希ガ
ス回収装置を示す概略系統図、第6図は従来の希ガス回
収系を示す縦断面図である。 A・・・希ガス吸着系   B・・・液体窒素供給系C
・・・検出制御系    1・・・断熱容器2・・・活
性炭筒     3・・・伝熱管4・・・熱電対   
   5・・・スプレーノズル6・・・断熱材    
  7・・・蓋8・・・窒素ガス出口管  9・・・被
処理ガス入口管10・・・被処理ガス出口管 11・・
・電気ヒータ12・・・液体窒素入口管  13・・・
電磁弁14・・・液体窒素ボンベ  15・・・酸化物
超電導体16・・・ヒータ電源配線  17・・・リレ
ー18・・・活性炭      19・・・電気絶縁物
代理人 弁理士 則 近 憲 佑 同    第子丸   健 第  1 図 第  2 図 I 第  4 図 第  5 図 第  6 図
FIG. 1 is a schematic system diagram showing an embodiment of a rare gas recovery apparatus according to the present invention, and FIG. 2 is a vertical sectional view schematically showing a part of the rare gas adsorption system in FIG. 1 on an enlarged scale. Figures 3 (a), (b), (c), and (d) are longitudinal cross-sectional views showing examples of the arrangement of oxide superconductors in the liquid nitrogen supply system in Figure 1, and Figure 4 is a diagram showing examples of the arrangement of oxide superconductors in the liquid nitrogen supply system in Figure 1. A characteristic diagram showing an example of an operation pattern of the recovery device, FIG. 5 is a schematic system diagram showing a conventional rare gas recovery device, and FIG. 6 is a longitudinal sectional view showing a conventional rare gas recovery system. A...Rare gas adsorption system B...Liquid nitrogen supply system C
...Detection control system 1...Insulating container 2...Activated carbon cylinder 3...Heat transfer tube 4...Thermocouple
5...Spray nozzle 6...Insulating material
7... Lid 8... Nitrogen gas outlet pipe 9... Processed gas inlet pipe 10... Processed gas outlet pipe 11...
・Electric heater 12...Liquid nitrogen inlet pipe 13...
Solenoid valve 14...Liquid nitrogen cylinder 15...Oxide superconductor 16...Heater power supply wiring 17...Relay 18...Activated carbon 19...Electric insulator agent Patent attorney Yudo Nori Chika Kendai Daikomaru Figure 1 Figure 2 Figure I Figure 4 Figure 5 Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)希ガスを含んだ被処理ガスを流入出させる活性炭
筒が断熱容器内に収納され、前記断熱容器内には液体窒
素を容器内に供給するスプレーノズル及び加熱ヒータが
前記活性炭筒の周囲に配置された希ガス回収装置に於い
て、前記加熱ヒータの通電制御に用いられる電気配線が
容器内に導入され、前記容器内配置された酸化物超電導
体を介して接続されたことを特徴とする希ガス回収装置
(1) An activated carbon cylinder through which a gas to be treated containing a rare gas flows in and out is housed in an insulated container, and within the insulated container, a spray nozzle and a heater for supplying liquid nitrogen into the container are installed around the activated carbon cylinder. In the rare gas recovery device placed in the rare gas recovery device, an electric wiring used for controlling energization of the heater is introduced into a container and connected through an oxide superconductor placed in the container. Noble gas recovery equipment.
(2)前記加熱ヒータの通電制御に用いられる配線は、
加熱ヒータ電源配線であることを特徴とする特許請求の
範囲第1項記載の希ガス回収装置。
(2) The wiring used to control the energization of the heater is
2. The rare gas recovery device according to claim 1, wherein the rare gas recovery device is a heater power supply wiring.
(3)前記酸化物超電導体は活性炭筒内に配置されてい
ることを特徴とする特許請求の範囲第1項記載の希ガス
回収装置。
(3) The rare gas recovery device according to claim 1, wherein the oxide superconductor is disposed within an activated carbon cylinder.
(4)前記酸化物超電導体は活性炭筒容器の一部を成す
ことを特徴とする特許請求の範囲第1項記載の希ガス回
収装置。
(4) The rare gas recovery device according to claim 1, wherein the oxide superconductor forms a part of an activated carbon cylindrical container.
JP62271737A 1987-10-29 1987-10-29 Rare gas recover device Pending JPH01115808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62271737A JPH01115808A (en) 1987-10-29 1987-10-29 Rare gas recover device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62271737A JPH01115808A (en) 1987-10-29 1987-10-29 Rare gas recover device

Publications (1)

Publication Number Publication Date
JPH01115808A true JPH01115808A (en) 1989-05-09

Family

ID=17504129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62271737A Pending JPH01115808A (en) 1987-10-29 1987-10-29 Rare gas recover device

Country Status (1)

Country Link
JP (1) JPH01115808A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002009424A3 (en) * 2000-07-21 2002-06-06 Univ Columbia Method and apparatus for image mosaicing
CN108226270A (en) * 2017-12-08 2018-06-29 兰州空间技术物理研究所 A kind of moon sample rare gas collection and composition analysis device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002009424A3 (en) * 2000-07-21 2002-06-06 Univ Columbia Method and apparatus for image mosaicing
US7440637B2 (en) 2000-07-21 2008-10-21 The Trustees Of Columbia University In The City Of New York Method and apparatus for image mosaicing
CN108226270A (en) * 2017-12-08 2018-06-29 兰州空间技术物理研究所 A kind of moon sample rare gas collection and composition analysis device and method

Similar Documents

Publication Publication Date Title
JP3591986B2 (en) Analytical instrument and thermal insulation device and thermal insulation method in the instrument
US5808178A (en) High speed gas chromatography
KR20160139615A (en) Vacuum distillation/condensation recovery type thermal behavior analysis device and method
AU2541492A (en) Sample introducing apparatus and sample modules for mass spectrometer
JPH05506929A (en) Gas chromatograph mass spectrometer (GC/MS) system for quantitative analysis of reactive compounds
US4887434A (en) Apparatus for the cryogenic enrichment of trace substances of a gas stream
JPH01115808A (en) Rare gas recover device
EP0732587B1 (en) Electrochemical gas sensor assembly
Kiskinova et al. Hydrogen adsorption on a clean palladium ribbon; Thermal desorption and work function measurements
JPH01217237A (en) Rare gas recovery apparatus
US4621518A (en) Analyzer for water in gases by accumulate-desorb-inject method
US4203199A (en) Solid state sensor
US2980513A (en) Combustibles-in-air instrument
JP2825634B2 (en) Internal abnormality detection device for gas insulated electrical equipment
JP4089132B2 (en) Thermal conductivity detector
KR20020062233A (en) Measuring Apparatus and Method for Temperature Programmed Desorption and Gas Reaction on Porous Materials
JP2001221785A (en) Method and apparatus for analyzing component in head space
US20040083889A1 (en) Immersion heater for sparge vessel
JP2557435B2 (en) Sample introduction device for inductively coupled plasma mass spectrometry
JPH01213542A (en) Rare gas recovering device
SU1377692A1 (en) Reactor for liberating inert gases from minerals
Foster et al. Helium-Purification Unit for High-Purity Inert-Atmosphere Boxes
JPS5932927Y2 (en) Detector for gas chromatograph
JPS6090024A (en) Oxygen removing apparatus
CA1047794A (en) Gas detection apparatus with three channel valve assembly