JPH01115052A - Squar-shaped sealed battery - Google Patents

Squar-shaped sealed battery

Info

Publication number
JPH01115052A
JPH01115052A JP62273686A JP27368687A JPH01115052A JP H01115052 A JPH01115052 A JP H01115052A JP 62273686 A JP62273686 A JP 62273686A JP 27368687 A JP27368687 A JP 27368687A JP H01115052 A JPH01115052 A JP H01115052A
Authority
JP
Japan
Prior art keywords
battery container
battery
lid
container
nickel layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62273686A
Other languages
Japanese (ja)
Inventor
Zenichiro Ito
伊藤 善一郎
Shinji Hamada
真治 浜田
Takafumi Fujii
隆文 藤井
Mamoru Iida
守 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62273686A priority Critical patent/JPH01115052A/en
Publication of JPH01115052A publication Critical patent/JPH01115052A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • H01M50/56Cup shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PURPOSE:To increase the fitting accuracy in a joint of a battery container to a cover and to prevent the generation of fine cracks in a welded part by using a steel plate having thin nickel layers on its both sides as the material plate of the battery container and the cover, and using the battery container manufactured by a forming method combining drawing with ironing. CONSTITUTION:A steel plate 1a having thin nickel layers, whose thickness is specified so as to have a specified thickness after formation, on both sides is formed in a squar-shaped battery container having a specified dimension by deep drawing. A cutout step 1c is formed in the battery container by drawing with ironing. A cover 2, having a plane periphery, manufactured by forming a steel plate having thin nickel layers 1b same as the battery container is put on the cutout step 1c of the battery container. The joint 7 of the outer periphery of the cover 2 and the opening edge of the battery container is sealed by laser welding. Since the cover is stably, accurately fitted to the opening of the battery container, laser welding is easily conducted and the joint 7 is locally, instantaneously melted by laser beams and a strain caused by the presence of the nickel layer during being cooled is retarded. The welded part 9 having no cracks is formed and a battery is surely sealed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電池容器と蓋体の接合部をレーザ溶接により
密封した角形密閉式電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a rectangular sealed battery in which a joint between a battery container and a lid is sealed by laser welding.

従来の技術 ]−ドレス電子機器の発達と共に、小型、薄形化が進み
、その電源として用いる密閉式電池に対しても小型、高
容量密度で信頼性のすぐれた電池が要望され、電池の形
状及び密封方法にも改良が加えられてきた。とくに、機
器に組込まれて長期間使用される電池においては、収納
時のスペース効率の良い小型の角形、内薄形電池への要
望が強まシ、その具体化が進められている。小型の角形
密閉式電池の場合、容積効率を低下させずに、過充電、
過電時などに発生する内部ガス圧力に耐えるものとする
ために、金属製の電池容器に蓋板全嵌合し、その接合部
をレーザ溶接によって密封する構造の検討が進められて
いる。レーザ溶接封口法を用いる密閉式電池の場合、レ
ーザ溶接に対応するために、電池容器と蓋体の嵌合形式
として、次に示すようなものが試みられている。
[Prior art] - With the development of electronic devices, they have become smaller and thinner, and the sealed batteries used as their power sources are also required to be small, have high capacity density, and have excellent reliability. Improvements have also been made to sealing methods. In particular, for batteries that are built into devices and used for long periods of time, there is a strong demand for small, rectangular, internally thin batteries that are space efficient when stored, and their implementation is progressing. In the case of small prismatic sealed batteries, overcharging,
In order to withstand the internal gas pressure that occurs during overcharging, studies are underway to develop a structure in which a lid plate is fully fitted into a metal battery container and the joint is sealed by laser welding. In the case of a sealed battery using a laser welding sealing method, the following methods of fitting the battery container and the lid have been attempted in order to accommodate laser welding.

第6図、第6図は側面の要部断面を示し、電池容器31
の口縁の内面寸法と同じサイズで、必要に応じて蓋体の
周縁下面に小さい円弧またはテーパ33aを設けた平板
状の蓋体33を口絵に挿入する方式(第5図A)、ある
いは特開昭69−143284号公報等に見られるよう
な、周縁に段部43aを設けた蓋体43を電池容器31
の口絵に載置する方式(第6図)があるが、小型の角形
電池の場合、第6図のものは、切削加工等で作る蓋体4
3の生産性が低く、厚さが大となるなどの問題がある。
FIG. 6 shows a cross section of the main part of the side surface, and shows the battery container 31.
A method of inserting a flat plate-like lid 33 into the frontispiece, which has the same size as the inside dimension of the mouth rim and has a small arc or taper 33a on the lower surface of the periphery of the lid as necessary (FIG. 5A), or a special method. The battery container 31 is equipped with a lid 43 having a stepped portion 43a on the periphery, as seen in Japanese Patent Publication No. 143284/1984.
There is a method of placing the battery on the frontispiece (Fig. 6), but in the case of small square batteries, the method shown in Fig. 6 is a lid body 4 made by cutting etc.
3 has problems such as low productivity and large thickness.

第5図Aのものは後述するように、電池容器31を成型
する際の形状、精度上の問題点もあシ、とくに薄い蓋体
の場合は電池容器口縁に水平に確実に挿入するのは難し
いなどで生産性に乏しいため、特定のものにしか用いら
れなかった。そのため、特開昭56−107470号公
報などに開示されたごとく、例えば第10図の要部断面
図に示すように、蓋体62の周縁に設けた立上シ部52
aが、円筒形あるいは薄板形の電池容器の開口端内縁に
接するように嵌着させる方式があシ、電池容器および蓋
体の材質として前記公報では、ステンレス鋼が用いられ
、嵌着された電池容器と蓋体と接合部上からレーザビー
ム63を照射して溶接し密封する方式が多く用いられて
いた。
As will be described later in the case of FIG. 5A, there are problems with the shape and accuracy when molding the battery container 31, especially when the lid is thin, it is difficult to insert it horizontally into the lip of the battery container. It was difficult and unproductive, so it was only used for certain things. Therefore, as disclosed in Japanese Unexamined Patent Publication No. 56-107470, for example, as shown in the sectional view of the main part in FIG.
In the above publication, stainless steel is used as the material for the battery container and the lid, and the battery is fitted so that a is in contact with the inner edge of the opening end of a cylindrical or thin plate-shaped battery container. A method has often been used in which a laser beam 63 is irradiated from above the joint between the container and the lid to weld and seal the joint.

角形の電池においては、蓋体の周縁の相対する2辺にの
み電池内方側に向けて立上シ部を形成しく図示せず)、
この立上り部をガイドとして電池容器の開口端の所定位
置に嵌合固定した後、嵌合した接合部を溶接し密封する
方式もあった。
In the case of a rectangular battery, a rising portion may be formed only on two opposing sides of the periphery of the lid toward the inside of the battery (not shown),
There is also a method in which the battery case is fitted and fixed at a predetermined position at the open end of the battery container using the rising portion as a guide, and then the fitted joint is welded and sealed.

発明が解決しようとする問題点 このような従来の構成では、特開昭6了−74964号
公報などに開示されているように、レーザ浴接によυ電
池容器を密封する場合、局部的、かつ瞬時的に溶接が可
能であるために電池本体への熱的影響が極めて少なく高
精度の溶接ができるなどの利点がある反面、レーザビー
ムは直進性が良く、また焦点の面積が極めて小さいため
、被溶接面となる電池容器の開口端と蓋体の周縁あるい
は立上シ部の端面により形成される接合部9形状、精度
および材質などの影響を受けて不完全な溶接となって十
分な密封状態を得られない場合があった。
Problems to be Solved by the Invention In such a conventional configuration, as disclosed in Japanese Patent Application Laid-Open No. 6-74964, when sealing the υ battery container by laser bath contact, localized Since welding can be done instantaneously, the thermal effect on the battery body is extremely low and high-precision welding is possible.On the other hand, the laser beam has good straightness and the focal area is extremely small. , the joint 9 formed by the open end of the battery container, which is the surface to be welded, and the periphery of the lid or the end face of the upright part, may result in incomplete welding due to the influence of the shape, precision, material, etc. There were cases where a sealed state could not be obtained.

その第1の問題点は、電池容器と蓋体を嵌合させたとき
に、レーザ溶接に必要な表金精度をいかに確保するかで
ある。従来、この種の電池の電池容器および蓋体等の部
品は、特開昭67−145265号公報などに示されて
いるように、生産性などの面から一般に鋼板などを切り
絞りあるいはトリミング法を用いた絞り加工法によって
作られている。角形の電池容器を上記絞シ加工法によっ
て成型したものは第7図上面図に示したごとく、角部に
偏肉し直線部31aが薄肉となって外方に湾曲しやすく
、その結果蓋体(直線)に対しG1の間隙を生じる。ま
た成型性を確保するために、角部に図のように比較的大
きな円弧31b金設ける必要性があるが、その形状寸法
精度を確保するのは難しい。蓋体についても立上り部を
設ける場合、立上り部の高さが低いため、若干軽減され
るが電池容器と同じ傾向の課題がある。従って、上記の
電池容器と蓋体を嵌合させると第11図に要部断面金示
したごとく、電池容器51と蓋体52の立上り部52a
の接合部の大半に0.1〜0.3順の間隙G2を生じる
。その結果、蓋体が傾き接合部分に食い違いを生ずる。
The first problem is how to ensure the surface metal precision required for laser welding when the battery container and lid are fitted together. Conventionally, parts such as battery containers and lids of this type of battery have generally been made by cutting or trimming steel plates etc. from the viewpoint of productivity, as shown in Japanese Patent Laid-Open No. 67-145265. It is made using the drawing method used. As shown in the top view of FIG. 7, when a rectangular battery container is formed by the drawing method described above, the thickness is uneven at the corners, and the straight portion 31a becomes thinner and tends to curve outward. As a result, the lid body (straight line) creates a gap G1. In addition, in order to ensure moldability, it is necessary to provide relatively large circular arcs 31b at the corners as shown in the figure, but it is difficult to ensure the shape and size accuracy. When a rising portion is provided for the lid, the problem is similar to that of the battery container, although the problem is somewhat alleviated because the height of the rising portion is low. Therefore, when the battery container 51 and the lid body are fitted together, as shown in the cross section of the main part in FIG.
A gap G2 in the order of 0.1 to 0.3 is generated in most of the joints. As a result, the lid body is tilted and the joint portions are misaligned.

あるいは所定位置より下方に落下して溶接が困難となる
問題があった。
Alternatively, there is a problem in that the welding material falls below a predetermined position, making welding difficult.

第5図Aの平板状の蓋体33を用いた場合、蓋体の周R
を高精度に打抜きしたものでは若干改善されるが、上記
と同じ問題を生じていた。特開昭57−74964号公
報等に述べられているように、電池容器と蓋体の立上シ
部の接合面が密着不十分となったシ、接合部に間隙を生
じると、直進性の良いレーザビームはこの間pJt−通
過して内部の電池要素を損傷したり、溶接不完全となっ
て充分な密封状態を得るのは困難であった。
When using the flat plate-shaped lid 33 shown in FIG. 5A, the circumference R of the lid
Although this is slightly improved by punching out with high precision, the same problem as above occurred. As stated in Japanese Patent Laid-Open No. 57-74964, etc., if the bonding surfaces of the battery container and the lid's upright portion become insufficiently adhered, and a gap is created in the bonded portion, the straightness may deteriorate. During this time, a good laser beam passes through pJt, damaging the internal battery elements or causing incomplete welding, making it difficult to obtain a sufficient seal.

上記接合面をレーザビームによって溶接封止する場合、
上記説明からもわかるように、接合面は食い違いが無く
平坦であシ、接合部の間隙はできる限り小さいことが要
求される。溶接可能な間隙、例えば第11図のG2は実
開昭61−119255号公報では、直線部で0.15
m+以下などの規制基準を示しているが、蓋体嵌入時の
安定性、溶接時の生産性(加工速度、不良発生率)を考
慮すれば、間隙はおよそ0゜1−0.05 wsi以下
にする必要がある。
When the above joint surfaces are welded and sealed with a laser beam,
As can be seen from the above description, it is required that the joint surfaces be flat without discrepancies, and that the gap between the joints be as small as possible. The weldable gap, for example, G2 in FIG.
Regulatory standards such as m+ or less are shown, but if you consider stability when fitting the lid and productivity during welding (processing speed, defect rate), the gap should be approximately 0°1-0.05 wsi or less. It is necessary to

上記の溶接状態を観察すると、第8固装部側断面に見ら
れるように、電池容器31の開口端内縁と蓋体33の周
縁の接合部をレーザビーム34により溶融し、溶接部3
4を形成するときに、接合部に間隙G1が存在すると図
示のように溶接部は垂下し、溶込み深さdlは浅ぐなシ
溶接強度は低下する傾向になる。し〜ザパワーを大にし
、溶接速度を遅くすれば、若干の改善は見られる。しか
し、間隙G1が01閣以上になると溶接部に気泡が発生
したシ、溶接部が溶融時に部分的に垂下脱落して、密封
不良を発生する場合があるなどの問題を生じていた。そ
の対策の一つとして、実開昭69−192261号公報
に示されているように、電池容器の内寸を蓋体の外寸よ
シ若干小にして、第6図B、あるいは第12図(蓋体の
立上り部外径φ2〉電池容器61の内径φ1)のように
蓋体を圧入する方法は、円筒形電池と異な9角形の電池
容器を用いる場合、第7図で示した成型時の形状。
Observing the above-mentioned welding state, as seen in the side cross section of the eighth fixed part, the joint between the inner edge of the open end of the battery container 31 and the peripheral edge of the lid body 33 is melted by the laser beam 34, and the welded part 3
4, if a gap G1 exists in the joint, the weld will sag as shown in the figure, and the penetration depth dl will tend to be shallow and the weld strength will tend to decrease. A slight improvement can be seen by increasing the power and slowing down the welding speed. However, when the gap G1 exceeds 0.01 mm, problems arise such as air bubbles being generated in the welded part and parts of the welded part hanging down and falling off when melted, resulting in poor sealing. As one of the countermeasures, as shown in Japanese Utility Model Application Publication No. 69-192261, the inner dimensions of the battery container are made slightly smaller than the outer dimensions of the lid, as shown in Fig. 6B or Fig. 12. (Outer diameter of the rising part of the lid φ2>Inner diameter of the battery container 61 φ1) shape.

精度の問題および容器開口端の各辺が、蓋体圧入時に蓋
体となじみにくいため、蓋体が部分的に浮き上がる。あ
るいは容器内に沈む等の状態になりやすかった。第7図
で示した電池容器31を成型する際に、さらに多段の整
形修正工程を加え、変形を補正し、蓋体との組合せ選別
を行なえば、嵌合の良いものが一部得られるが、作業性
、生産性ともに低く、生産適用は困難であった。またボ
タン形アルカリ電池などの容器形状の応用として、第1
3固装部断面図に示すように、口縁付近を波目して段部
61aを有する角形の電池容器61を絞シ加工した場合
、蓋62は安定して挿入できるが、電池容器61の加工
形状、精度は改善できず間隙G3の減少効果は低く、容
器口縁の外形が大きくなる問題があった。
Due to precision issues and the edges of the opening end of the container not being able to fit into the lid during press-fitting, the lid partially lifts up. Otherwise, it was easy to sink into the container. When molding the battery container 31 shown in FIG. 7, if a multi-stage correction process is added to correct the deformation and the combination with the lid is selected, some products with good fit can be obtained. However, both workability and productivity were low, making it difficult to apply to production. Also, as an application of the container shape for button-type alkaline batteries, etc., the first
3. As shown in the cross-sectional view of the fixing part, when the rectangular battery container 61 having a stepped portion 61a with corrugations near the mouth edge is drawn, the lid 62 can be stably inserted, but the battery container 61 The machining shape and accuracy could not be improved, the effect of reducing the gap G3 was low, and there was a problem that the outer shape of the rim of the container became large.

そこで、上記角形の電池容器と蓋の嵌合性全向上させる
改良策として、実公昭36−26438号公報の円筒形
電池、あるいは実公昭37−14961号公報の射出成
型法などで成型された角形樹脂電槽などのように、樹脂
電槽の肉厚の一部を除去して、蓋体を載置する段部を形
成する方法金、角形で肉厚が薄い電池容器に適用すべく
、治具を用い形状補正を行いながら、フライス盤等で切
削し段部の形成試作を行ってみたが、加工時の変形およ
び角部の形状不ぞろいが生じやすく、生産性が悪く適用
は困難であった。
Therefore, as an improvement measure to completely improve the fit between the prismatic battery container and the lid, the cylindrical battery of Utility Model Publication No. 36-26438 or the square battery molded by the injection molding method of Utility Model Publication No. 37-14961, etc. A method of removing part of the wall thickness of a resin battery case to form a stepped part on which the lid is placed, such as a resin battery case. An attempt was made to form a stepped portion by cutting with a milling machine or the like while correcting the shape using a tool, but deformation during processing and irregularities in the shape of the corners easily occurred, resulting in poor productivity and difficulty in application.

第2の問題点は、電池容器および蓋体の素材として鋼板
を用いた場合のニッケルめっき等の表面被覆材に関する
ものである。角形の電池容器では成型時の加工性の良い
材料が求められ、また用途によって電池内外での接触抵
抗を低くする2表面の発錆防止などの理由によって、鋼
材を成型し、表面にニッケルめっきを施したものを用い
る必要性が多かった。ところが、電池容器および蓋体を
鋼板から成型した後、バレルめっき法等により二ッケル
めっきを施した場合、電池容器の開口端付近および蓋体
の周縁部分のめつき厚さが大となシ、その厚みむらは他
の部分よシ多くなる傾向があシ、上記したレーザ溶接時
に求められる涙金精度を低下させ、溶接不良発生の一因
となっていた。また第9固装部側断面図に示したごとく
、ニアケルめっき層71aを設けた鋼製の電池容器71
の開口端内縁に、同じくニッケルめっき層ア2aを設け
た蓋体72を嵌合し、その接合面の上面からレーザビー
ム76を照射して溶接した場合、溶接部73に図示のよ
うに、熱などのひずみによると考えられる数十77m以
下の幅の微細なりラック74が発生しやすいという問題
があった。
The second problem relates to surface coating materials such as nickel plating when steel plates are used as the material for the battery container and lid. For rectangular battery containers, materials with good workability during molding are required, and depending on the application, materials are molded from steel and nickel plated on the surface for reasons such as lowering the contact resistance inside and outside the battery and preventing surface rust. It was often necessary to use what had been prepared. However, when the battery container and the lid are molded from a steel plate and then nickel plated by barrel plating, etc., the thickness of the plating near the open end of the battery container and the periphery of the lid becomes large. The thickness unevenness tends to be larger than that in other parts, which lowers the lacrimal precision required during laser welding as described above, and is a contributing factor to the occurrence of welding defects. Further, as shown in the side cross-sectional view of the ninth fixed part, a steel battery container 71 provided with a near-kel plating layer 71a is shown.
When a lid 72 similarly provided with a nickel plating layer 2a is fitted to the inner edge of the opening end of the lid 72 and welding is performed by irradiating a laser beam 76 from the upper surface of the joint surface, the welded portion 73 is heated as shown in the figure. There has been a problem in that minute racks 74 with a width of several tens of seventy-seven meters or less are likely to occur, which is thought to be due to such distortions.

以上のごと〈従来の技術による角形の電池容器と蓋体の
組み合わせでは、レーザ溶接に適合した精度の接合部を
形成することは困難であシ、また、ニッケルめっき鋼を
用いた場合に溶接部にクラックを生じやすく、密封不十
分となり、密閉式電池としての信頼性を低下させるとい
う問題点があっな。
As mentioned above, it is difficult to form a joint with a precision suitable for laser welding with the combination of a rectangular battery container and a lid using conventional technology, and when nickel-plated steel is used, the weld There is a problem that cracks tend to occur in the battery, resulting in insufficient sealing and reducing reliability as a sealed battery.

本発明はこのような問題点を解決するもので、電池容器
および蓋体の素板として、表面にニッケル薄層を設けた
鋼板を用い、″しどき加工を併用した成型法により形成
した電池容器を用いることKよシ、電池容器と蓋体の接
合部の嵌合精度の向上と溶接部に微細なりラックが発生
するのを防止することを目的とするものである。
The present invention solves these problems, and uses steel plates with a thin nickel layer on the surface as the base plates for the battery container and lid, and provides a battery container formed by a molding method that combines ``shidoki'' processing. The purpose of this method is to improve the fitting accuracy of the joint between the battery container and the lid and to prevent the formation of fine cracks and racks in the welded portion.

問題点を解決するための手段 この問題点を解決するために本発明は、表面に成型後所
定の厚さになるように厚み規制したニッケル薄層を設け
た鋼板を深絞シ成形し、その開口端内縁に、しごき加工
によって切欠き段部を形成するとともに所定の形状寸法
に成型した角形の電池容器の切欠き段部上に、前記電池
容器と同じにニッケル薄層を設けた鋼板を成型した周縁
が平面状の蓋体を載置し、蓋体の外周縁と電池容器の開
口端縁との接合部をレーザ溶接により密封したものであ
る。
Means for Solving the Problem In order to solve this problem, the present invention deep-draws a steel plate with a thin nickel layer on the surface of which the thickness is regulated to a predetermined thickness after forming. A notch step is formed on the inner edge of the opening end by ironing, and a steel plate with a thin nickel layer provided thereon, in the same way as the battery container, is molded onto the notch step of a rectangular battery container that is formed into a predetermined shape and size. A lid body with a planar peripheral edge is placed thereon, and the joint between the outer peripheral edge of the lid body and the opening edge of the battery container is sealed by laser welding.

作  用 この構成により、電池容器の開口端縁に蓋体を安定した
状態で高精度に嵌合することができ、レーザ溶接を容易
ならしめるとともに、レーザビームによって接合部が局
部的、瞬時的に溶融され冷却される際にニッケル層の存
在によって生ずるひ゛ずみを抑制して、クラックの発生
しない溶接部を形成し、確実な密封状態の電池が得られ
ることとなる。
Function: With this configuration, the lid body can be fitted to the opening edge of the battery container in a stable state with high precision, making laser welding easier, and the laser beam can locally and instantaneously weld the joint. By suppressing the strain caused by the presence of the nickel layer during melting and cooling, a crack-free weld is formed, resulting in a battery in a reliable sealed state.

実施例 本発明の角形密閉式電池の実施例を図によって説明する
Embodiment An embodiment of the prismatic sealed battery of the present invention will be explained with reference to the drawings.

第1図は実施例電池の本発明の要部ケ示す側断面図であ
シ、第1図Aはレーザ溶接により密封された電池の溶接
部9付近の断面金示し、第1図Bは角形の電池容器1の
開口端内縁に蓋体2を嵌合載置中の状況を示す図である
。第2図Aは実施例電池の上部外観を示し、第2図Bは
Aの側面の要部断面を示すものである。角形の電池容器
1および蓋体2とこれらの表面に設けたニッケル薄層は
本発明の主体となるものであシ、表面に無光沢電気ニッ
ケルめっき、あるいはニッケルクラッド(後述)により
ニッケル薄層を設けた鋼板を深絞シ加工法により予備成
型した角形容器を、しごき加工によって所定の寸法形状
に形を整えながら、その開口端内縁に切欠き段部1eを
形成した角形の電池容器1と、この電池容器1の上記切
欠き段部1eの内縁に図示のごとく合致させた形状に、
前記電池容器と同じくニッケル薄層を設けた鋼板をプレ
ス打抜き(後述)により成型した周縁が平面状の蓋体2
を用いる。なお上記の成型された電池容器1の切欠き段
部1eの立上シ部分の内縁および蓋体2(とくに上面側
)の表面の前記ニッケル薄層1Cおよび2Cの厚さは後
述するように約2〜10ztmに規制することが好まし
い。
FIG. 1 is a side cross-sectional view showing the main parts of the present invention of an example battery. FIG. 3 is a diagram showing a state in which the lid body 2 is being fitted and placed on the inner edge of the opening end of the battery container 1 of FIG. FIG. 2A shows the upper appearance of the example battery, and FIG. 2B shows a cross section of the main part of the side surface of A. The rectangular battery container 1 and lid body 2 and the thin nickel layer provided on their surfaces are the main components of the present invention, and the thin nickel layer is formed on the surface by matte electrolytic nickel plating or nickel cladding (described later). A rectangular battery container 1 is obtained by forming a rectangular container preformed using a deep drawing process using a provided steel plate, and shaping it into a predetermined size and shape by ironing, and forming a notch step 1e on the inner edge of the opening end; The battery container 1 has a shape that matches the inner edge of the stepped notch 1e as shown in the figure.
Lid body 2 with a flat peripheral edge formed by press punching (described later) from a steel plate provided with a thin nickel layer, similar to the battery container.
Use. The thickness of the thin nickel layers 1C and 2C on the inner edge of the raised portion of the notch step 1e of the molded battery container 1 and on the surface of the lid 2 (especially on the top side) is about 100%, as will be described later. It is preferable to regulate it to 2 to 10 ztm.

本発明を適用した角形密閉式アルカリ蓄電池の実施例を
述べると、第2図に示したごとく、所定の外形寸法とし
た上記の電池容器1に、正極にニッケル活物質を、負極
にカドミウム活物質を充填した所定枚数の各々の極板と
セパレータを積重した極板群に、所定量のアルカリ電解
液を注入含浸した発電要素3を内填して負極リードeを
側壁に溶接し、中央に設けた端子孔2aに、正極端子リ
ベツ)4aを絶縁リング4b、金属ワッシャー40と共
に締着して(必要に応じて正極端子リベットにキャップ
およびゴム弁体などからなる防爆機能を付加して用いる
く図示せず〉)正極端子4を形成した前記の蓋体2を、
(正極リード5を接続した後)前記電池容器1の切欠き
段部1eの上に第1図Bのごとく嵌合載置し、蓋体の外
周縁と電池容器の開口端縁との接合部7にレーザビーム
8金照射し溶接部9を形成して電池を密封している。
To describe an embodiment of a rectangular sealed alkaline storage battery to which the present invention is applied, as shown in FIG. A power generation element 3 injected and impregnated with a predetermined amount of alkaline electrolyte is inserted into a group of electrode plates in which a predetermined number of electrode plates and separators are stacked, and a negative electrode lead e is welded to the side wall. A positive terminal rivet 4a is fastened to the provided terminal hole 2a together with an insulating ring 4b and a metal washer 40 (if necessary, an explosion-proof function consisting of a cap and a rubber valve body can be added to the positive terminal rivet for use). (not shown>) The above-mentioned lid body 2 on which the positive electrode terminal 4 is formed,
(After connecting the positive electrode lead 5) Fit and place the battery container 1 on the cutout stepped portion 1e as shown in FIG. 7 is irradiated with a laser beam of 8 gold to form a weld 9 to seal the battery.

次に、上記した電池容器1と蓋体2およびその表面に設
けたニッケル薄層について述べる。
Next, the above-described battery container 1, lid 2, and the thin nickel layer provided on the surfaces thereof will be described.

電池容器1および蓋体2の成型材料として、前述したよ
うに、表面にニッケル薄層を設けた鋼板を用いる。ニッ
ケル薄層は、例えば冷間圧延鋼板のコイル材に、光沢剤
無添加のワット浴等を用いて両面に連続的に電解析出さ
せて低硬度の無光沢ニッケルめっき層として設けるか、
もしくは上記同様の鋼板コイルにニッケルシートを重ね
て、冷間ロール圧着あるいは爆着法などによるニッケル
クラッドによって形成されたものを用いる。
As described above, a steel plate with a thin nickel layer provided on the surface is used as a molding material for the battery container 1 and the lid 2. The thin nickel layer can be provided as a low-hardness matte nickel plating layer by continuous electrolytic deposition on both sides of a coil material of a cold-rolled steel plate, for example, using a Watts bath with no brightening agent added, or
Alternatively, a nickel sheet formed by overlapping a nickel sheet on a steel plate coil similar to the above and forming a nickel cladding by cold roll bonding or explosion bonding is used.

第3図A、B、Cは、本発明で用いる角形の電池容器1
の加工工程における側面要部断面を示す模式図である。
FIGS. 3A, B, and C show the rectangular battery container 1 used in the present invention.
FIG. 3 is a schematic diagram showing a cross section of a main part of a side surface in a processing step.

又第4図A、B、C,Dは第3図の工程を経て完成した
矩形状の電池容器1の寸法形状を示す模式図である。成
型前の素板として用いる上記ニッケル薄層を設けた鋼板
の厚さは、角形容器1′の側壁厚さtlと同じか、僅か
に厚く、第4図りの完成した電池容器1の側壁部1dの
厚さtのおよそ1.16〜1.6倍とし、一般に用いら
れる深絞シ加工法により円筒形もしくは楕円筒形などか
ら順次成形して、第3図Aに示すように口絵付近に拡口
部1ii有する角形容器1′を成形する。
4A, B, C, and D are schematic diagrams showing the dimensions and shape of the rectangular battery container 1 completed through the steps shown in FIG. 3. The thickness of the steel plate provided with the thin nickel layer used as a blank plate before molding is the same as or slightly thicker than the side wall thickness tl of the square container 1', and the side wall portion 1d of the completed battery container 1 in the fourth diagram is The thickness is approximately 1.16 to 1.6 times the thickness t, and the shape is sequentially formed into a cylindrical or elliptical shape using a commonly used deep drawing method, and expanded to the vicinity of the frontispiece as shown in Figure 3A. A square container 1' having a mouth portion 1ii is formed.

次いで前記容器1′を第3図B、Cに示したしごき加工
(Ironing)型によって、所定の寸法形状に整え
ると共に切欠き段部1eを形成する。
Next, the container 1' is adjusted to a predetermined size and shape using an ironing die shown in FIGS. 3B and 3C, and a notched stepped portion 1e is formed.

しごき加工型は、ガイド部(ネスト)22a。The ironing mold is a guide portion (nest) 22a.

ダイス部22bを備えた外型22と段部21aを有する
ポンチ21及び受型23を主体に構成されている。プレ
ス機に固定された外型22のガイド部22aに前記第3
図Aの角形容器1′を載置し、上下可動のポンチ21に
矢印方向の押圧力を加えることにより、角形容器1′は
ガイド部22aによって支持されながらダイス部22b
に押しこまれて、しごき加工を受け、第3図Bに示した
ごとく下部から順次所定の寸法形状の側壁部1cが形成
され、引き続き第3図Cに示したようにポンチ21の段
部21a部分まで押しこまれることによって、所定の切
欠き段部1が形成され↓どき加工全終了する。このよう
にして成型された角形の電池容器1は第4図りに示した
蓋体の厚さに合致させた(第1図参照)所定の段部高さ
hに切断され、表面にニッケル薄層1b、1Cを有し、
切欠き段部1eを備えた角形(矩形状)の電池容器1と
なる。
It is mainly composed of an outer mold 22 having a die portion 22b, a punch 21 having a stepped portion 21a, and a receiving mold 23. The third guide portion 22a of the outer mold 22 fixed to the press machine
By placing the rectangular container 1' shown in Figure A and applying a pressing force in the direction of the arrow to the vertically movable punch 21, the rectangular container 1' is supported by the guide part 22a and die part 22b.
As shown in FIG. 3B, side wall portions 1c having predetermined dimensions and shapes are sequentially formed from the bottom as shown in FIG. 3B, and then as shown in FIG. By pushing it all the way down, a predetermined notch step 1 is formed, and the machining is completely completed. The rectangular battery container 1 thus formed was cut to a predetermined step height h to match the thickness of the lid shown in the fourth diagram (see Figure 1), and a thin nickel layer was applied to the surface. 1b, 1C,
A square (rectangular) battery container 1 is provided with a cutout stepped portion 1e.

なお、第3図B、Cでは、しごき加工を1個の型で行う
ものを説明したが、しごき率、鋼板の厚さ種類などによ
って複数の型、複数のしごき工程を設けてもよい。また
、しご°き加工された電池容器1は受型23の透孔を通
じ、ノックアウトビン24によって外型22から取出さ
れる。
In addition, in FIGS. 3B and 3C, the case where the ironing process is performed with one mold has been described, but a plurality of molds and a plurality of ironing processes may be provided depending on the ironing rate, the thickness type of the steel plate, etc. Further, the ironed battery container 1 is taken out from the outer mold 22 by a knockout bin 24 through the through hole of the receiving mold 23.

上記において、切欠き段部1eの部分の内寸法Ld、W
dは、第4図りに示す切欠き幅Kが電池容器の側壁部1
dの厚さtの20〜50%程度に設定する。これは電池
容器1の開口端縁にレーザ溶接に必要な厚さを確保し、
正常な形の切欠き段部1eを精度よく形成できる範囲を
示している。蓋体2の形状寸法は、上記切欠き段部1e
の立上シ部分の内寸法Ld、Wdに合致する形状寸法と
し、ファインブランキング法、対向ダイスせん新法など
の精密せん祈願工法を適用したプレス打抜き加工により
、打抜き周縁の平たん度が良く、50w以下の外形寸法
、板厚1鴎以下ならば、0.03 wmの精度が得られ
る。このようにして成型された電池容器1の切欠き段部
1eの上部に蓋体2を第1図のごとく嵌合載置した場合
、接合部7の間隙7aはo、oos〜0.07mとなシ
、レーザ溶接に良好に適応する範囲に改善することがで
きた。
In the above, the inner dimensions Ld and W of the notch step portion 1e are
d, the notch width K shown in the fourth diagram is the side wall portion 1 of the battery container.
The thickness of d is set to about 20 to 50% of the thickness t. This ensures that the opening edge of the battery container 1 has the necessary thickness for laser welding.
It shows a range in which a normal-shaped cutout stepped portion 1e can be formed with high precision. The shape and dimensions of the lid body 2 are as follows:
The shape and dimensions match the internal dimensions Ld and Wd of the rising part of the die, and the press punching process applies precision drilling methods such as the fine blanking method and the new facing die method, resulting in good flatness of the punched periphery. If the external dimensions are 50w or less and the plate thickness is 1mm or less, an accuracy of 0.03wm can be obtained. When the lid body 2 is fitted and placed on the upper part of the stepped notch part 1e of the battery container 1 formed in this way as shown in FIG. 1, the gap 7a of the joint part 7 is o,oos~0.07m. However, we were able to improve the range to a point where it is well suited for laser welding.

なお上記の電池容器1および蓋体2の表面に設けたニッ
ケル薄層は、前記したように少なくとも電池容器1の切
欠き段部1eの立上シ部分内縁の厚さ1Cおよび蓋体2
の上面周縁の溶接される部分の厚さを10μm以下とす
る。これはレーザ溶接では、レーザビームのスポットに
よって溶融され、直ちに冷却されるため、鋼材とニッケ
ル層の熱膨張係数の差などの物性差および、ニッケル層
のひずみによって、溶接部に膨張、収縮が生じ、溶接部
が冷却固化する際に引張シ応力を受けて、従来例として
第9図について述べたごとく、溶接部73に微細なりラ
ックが発生しやすかったのを防止するためである。すな
わち、ニッケル層の厚さを抑制することおよび電池容器
1の切断面1jと蓋体2の切断面2dにニッケル層を設
けないことによって、溶接時に生ずる熱ひずみ盆大幅に
軽減できることを見出したものである。しかし、ニッケ
ル層の厚さを2μm以上の場合は、溶接性は問題ないが
、溶融時に合金化した溶接部9のニッケル濃度が低いた
めに、電池を多湿下あるいは長期間使用する際に溶接部
に発錆、腐食による強度低下を生ずるので好ましくない
。従って、電池容器1および蓋体2の加工前の素板のニ
ッケル薄層の厚さ設定の目安は次のようにする。図示の
蓋体2のように周縁が平たんで、加工によって厚さが変
化しない場合は、蓋体2の少なくとも上面側のニッケル
薄層の厚さ(2C)は、前述のごとく2〜10μmとす
る。電池容器1の切欠き段部1eの立上多部分のように
、延展されて大幅に薄くなる部分はニッケル薄層も比例
的に薄くなるため、素板はその比率に応じて厚さを大と
したニッケル薄層を設ける。例えば素板の40%の厚さ
になる場合は、ニッケル薄層の厚さを6〜26μmを目
安として検討することにより、成型後の切欠き段部1e
の立上シ内周縁のニッケル薄層1Cの厚さを2〜10 
ltmに規制する。なお電池容器1の外面側のニッケル
薄層の厚さは、第1図の実施例の場合のように、レーザ
ビームが照射される範囲外にあるときは、成型性に支障
の無い範囲で厚くしてもよい。また、上記のニッケル薄
層は、溶接時の熱ひずみ発生音さらに低減させる。ある
いはレーザビームの反射率を低減するために、低ひずみ
で無光沢なものが望ましいが、それにはニアケルめっき
時、あるいはクラツド材のニッケルシートの選択に注意
して低硬度(好ましくはHv250以下の硬度)で、光
沢の無いものを用いるか、あるいは成型前後にアニール
処理を施すことによりさらに溶接性が安定する。なお、
溶接時に溶接部に前記クラックが発生するのは、鋼材表
面にニッケル層を設けた場合に生じやすく、前記特開昭
56−107470号公報などに示されたごとく、電池
容器および蓋体の材質が、ステンレス鋼のような合金鋼
もしくは、鉄材のような単一の金属金、それぞれ同種の
組み合わせであるときは、通常のレーザ溶接条件では上
記したような溶接部にクラックを生じる現象は見られな
い。
As described above, the thin nickel layer provided on the surfaces of the battery container 1 and the lid 2 has at least the thickness 1C of the inner edge of the raised portion of the notch step 1e of the battery container 1 and the thickness of the lid 2.
The thickness of the portion of the upper surface periphery to be welded shall be 10 μm or less. In laser welding, this is melted by the spot of the laser beam and immediately cooled, so the welded part expands and contracts due to differences in physical properties such as the difference in thermal expansion coefficient between the steel material and the nickel layer, and due to strain in the nickel layer. This is to prevent fine cracks and racks from being easily generated in the welded part 73 as described in FIG. 9 as a conventional example due to tensile stress when the welded part is cooled and solidified. That is, it has been found that by suppressing the thickness of the nickel layer and not providing a nickel layer on the cut surface 1j of the battery container 1 and the cut surface 2d of the lid body 2, it is possible to significantly reduce the thermal strain caused during welding. It is. However, when the thickness of the nickel layer is 2 μm or more, there is no problem in weldability, but because the nickel concentration in the welded area 9 alloyed during melting is low, the welded area may This is undesirable because it causes rust and corrosion, which leads to a decrease in strength. Therefore, the guideline for setting the thickness of the thin nickel layer of the raw plate of the battery container 1 and lid body 2 before processing is as follows. If the periphery of the lid 2 shown in the figure is flat and the thickness does not change due to processing, the thickness (2C) of the thin nickel layer on at least the upper surface side of the lid 2 is 2 to 10 μm as described above. do. In areas where the thin nickel layer becomes proportionally thinner in areas that are expanded and become significantly thinner, such as the raised portions of the stepped notch 1e of the battery container 1, the thickness of the base plate is increased accordingly. A thin layer of nickel is provided. For example, if the thickness is 40% of the base plate, the thickness of the thin nickel layer should be set at 6 to 26 μm, so that the notch step 1e after molding can be
The thickness of the thin nickel layer 1C on the inner peripheral edge of the riser is 2 to 10
Regulate to ltm. Note that the thickness of the thin nickel layer on the outer surface of the battery container 1 should be increased to the extent that it does not affect the moldability when the thin nickel layer is outside the laser beam irradiation range, as in the case of the embodiment shown in FIG. You may. Furthermore, the thin nickel layer described above further reduces noise caused by thermal distortion during welding. Alternatively, in order to reduce the reflectance of the laser beam, it is desirable to use a matte material with low distortion, but in order to do so, care should be taken when nickel plating or when selecting a nickel sheet for the cladding material. ), weldability can be further stabilized by using a non-glossy material or applying annealing treatment before and after molding. In addition,
The above-mentioned cracks are likely to occur in the welded part during welding when a nickel layer is provided on the surface of the steel material. , alloy steel such as stainless steel, or single metal gold such as iron, when the same type of combination is used, the above-mentioned cracking phenomenon in the welded part will not be observed under normal laser welding conditions. .

以上述べた構成により、電池容器1の形状を第4図にお
いてL雪26 txm 、 W =j O園、t−06
cm 、kxo、2m 、hmo、5+m 、H=x4
 了rtmとし、無光沢電気ニッケルめっき(硬度Hv
=−約260)によりニッケル薄層を冷間圧延鋼板に設
けた素板から成型した電池容器1.蓋体2を用いて、第
2図の角形密閉式アルカリ蓄電池をYAGレーザを用い
溶接密封した。上記において、電池容器1の切欠き段部
1eの立上シ内周縁および蓋体2の上面の各々のニッケ
ル薄層1Cおよび2Cの厚さを、12〜1871mとし
たものを比較品とし、第5図Bの形式で、成型後のニッ
ケルめっき厚さを3〜g1tmとしたものを従来例A、
同じくめつき厚さを10〜191trnとしたものを従
来例Bとして、同一サイズに製作し、不良発生数を比較
した。その結果を第1表に示す。
With the above-described configuration, the shape of the battery container 1 is expressed as shown in FIG.
cm, kxo, 2m, hmo, 5+m, H=x4
rtm and matte electrolytic nickel plating (hardness Hv
1. A battery container molded from a blank plate with a thin nickel layer formed on a cold-rolled steel plate using the method (=-approximately 260). Using the lid 2, the rectangular sealed alkaline storage battery shown in FIG. 2 was welded and sealed using a YAG laser. In the above, a comparative product is one in which the thickness of each of the thin nickel layers 1C and 2C on the inner peripheral edge of the rising edge of the notch step 1e of the battery container 1 and the top surface of the lid body 2 is 12 to 1871 m. Conventional example A has the format shown in Figure 5B, with a nickel plating thickness of 3 to 1tm after molding.
A conventional example B with the same plating thickness of 10 to 191 trn was manufactured to the same size, and the number of defects was compared. The results are shown in Table 1.

第1表 (注)(→記号を付したものは蓋体の方が大きいことを
示す。
Table 1 (Note) (Those with a → symbol indicate that the lid body is larger.

本発明によれば、第1表に示したように、蓋体嵌合時お
よびレーザ溶接時における不良発生率を顕著に低減でき
ることがわかる。また切欠き段部1eの存在によって、
電池内にレーザビームが侵入することなく、レーザ出力
を低減させることができると共に、発電要素を損傷する
ことが無くなった。
According to the present invention, as shown in Table 1, it can be seen that the failure rate during lid fitting and laser welding can be significantly reduced. In addition, due to the presence of the notched stepped portion 1e,
The laser output can be reduced without the laser beam penetrating into the battery, and the power generation element is not damaged.

発明の効果 以上のように本発明によれば、表面にニッケル薄層を設
けた鋼板を用い、しごき加工を併用して切欠き段部を形
成した電池容器と周縁が平たんな蓋体を組み合わせるこ
とによ)、接合部の涙金精度を高めると共に、レーザ溶
接時に微細なりラックの生じない溶接部を形成し、長期
信頼性と生産性の向上を図ることができるという効果が
得られる。
Effects of the Invention As described above, according to the present invention, a battery container with a notch step formed using a steel plate with a thin nickel layer on the surface and ironing process is combined with a lid body with a flat peripheral edge. In particular, it is possible to improve the laminar precision of the joint, form a welded part that does not produce fine racks during laser welding, and improve long-term reliability and productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図および第4図は本発明の実施例
であって、第1図Aは本発明の角形密閉式電池の溶接部
付近の要部断面図、BはAの溶接前の蓋体嵌合状況を示
す要部断面図、第2図Aは本発明の角形密閉式電池の上
部外観図、BはAの側面の要部断面図、第3図は第1図
および第2図の電池に使用される本発明の角形の電池容
器の加工工程?示す側面の要部断面模式図であシ、Aは
深絞り成形した角形容器、Bはしごき加工途中の状態、
Cはしごき加工工程を終了し切欠き段部を形成した状態
を示す図、第4図は第3図の工程を経て完成した本発明
に使用する角形の電池容器を示し、Aは一方の側面断面
図、Bは他方の側面断面図、Cは上面図、Dは側面上部
の切欠き段部を示す断面図、第6図、第6図、第10図
、第11図、第12図、第13図は従来の密閉式電池の
蓋体と電池容器の嵌合形式を示す側面の要部断面図、第
7図は従来の角形電池の成型形状を示す上面図、第8図
、第9図は従来の電池の溶接時の状況を示す側面の要部
断面図である。 1・・・・・・角形の電池容器、1b、1C・・・・・
・ニッケル薄層、1e・・・・・・切欠き段部、2・・
・・・・蓋体、2C・・・・・・ニッケル薄層、3・・
・・・・発電要素、4・・・・・・正極端子、7・・・
・・・接合部、8・・・・・・レーザビーム、9・・・
・・・溶接部、1 a 、2a・・・・・・鋼材層、1
′・・・・・・角形容器、1C・・・・・・しごき加工
後の側壁部、21・・・・・・ポンチ、21a・・・・
・・ポンチの段部、22・・・・・・外型、22a・・
・・・・ガイド部、22b・・・・・・ダイス部、23
・・・・・・受型。 代理人の氏名 弁理士 中 尾 敏 男、ほか1名く【 Q4      Nノ ち1 OS             へ F−I                 F−I  
         F”1派            
             転載
1, 2, 3, and 4 show embodiments of the present invention, in which FIG. 1A is a cross-sectional view of the main part near the welding part of the rectangular sealed battery of the present invention, and FIG. FIG. 2A is a top external view of the rectangular sealed battery of the present invention, B is a side sectional view of A, and FIG. Processing process for the rectangular battery container of the present invention used in the batteries shown in Figures and Figure 2? A is a deep-drawn rectangular container, B is a state in the middle of ladder processing,
C is a diagram showing a state in which the laddering process has been completed and a notch stepped portion has been formed; FIG. 4 is a diagram showing a square battery container used in the present invention completed through the process of FIG. 3; A is a side view of one side; sectional view, B is a side sectional view of the other side, C is a top view, D is a sectional view showing the notch step at the upper side of the side, FIGS. 6, 6, 10, 11, 12, Fig. 13 is a cross-sectional side view showing the main parts of a conventional sealed battery, showing how the lid body and battery container fit together; Fig. 7 is a top view showing the molded shape of a conventional prismatic battery; Figs. 8 and 9. The figure is a sectional side view of a main part of a conventional battery showing a state during welding. 1... Square battery container, 1b, 1C...
・Nickel thin layer, 1e...Notch step, 2...
... Lid body, 2C ... Nickel thin layer, 3 ...
...Power generation element, 4...Positive terminal, 7...
...Joint part, 8...Laser beam, 9...
...Welded part, 1a, 2a... Steel material layer, 1
'...Square container, 1C...Side wall after ironing, 21...Punch, 21a...
... Stepped part of punch, 22 ... Outer mold, 22a ...
...Guide part, 22b...Dice part, 23
・・・・・・Reception mold. Name of agent: Patent attorney Toshi Nakao, and one other person [Q4 Nnochi1 OS F-I F-I
F”1 faction
Reprint

Claims (4)

【特許請求の範囲】[Claims] (1)表面にニッケル薄層を設けた鋼板を深絞り成形し
、その開口端内縁にしごき加工によって切欠き段部を形
成するとともに所定の形状寸法に成型した角形の電池容
器に、発電要素を収納し、前記容器の切欠き段部上に、
前記電池容器と同じくニッケル薄層を設けた鋼板を成型
した周縁が平面状の蓋体を載置し、蓋体の外周縁と電池
容器の開口端縁との接合部をレーザ溶接により密封した
ことを特徴とする角形密閉式電池。
(1) A power generation element is placed in a rectangular battery container that is formed by deep drawing a steel plate with a thin nickel layer on its surface, forming a notch step on the inner edge of its open end by ironing, and molding it into a predetermined shape and size. stored on the notch step of the container,
A lid body with a flat peripheral edge made of a molded steel plate with a thin nickel layer similar to the battery container was placed, and the joint between the outer peripheral edge of the lid body and the opening edge of the battery container was sealed by laser welding. A prismatic sealed battery featuring:
(2)成型された電池容器及び蓋体の少なくとも溶接さ
れる部分のニッケル薄層の厚さを約2〜10μmとした
特許請求の範囲第1項記載の角形密閉式電池。
(2) The prismatic sealed battery according to claim 1, wherein the thin nickel layer of at least the welded portion of the molded battery container and lid has a thickness of about 2 to 10 μm.
(3)ニッケル薄層を電気ニッケルめっきにより設けた
特許請求の範囲第2項記載の角形密閉式電池。
(3) A prismatic sealed battery according to claim 2, wherein the thin nickel layer is provided by electro-nickel plating.
(4)ニッケル薄層を、ニッケルクラッドにより形成し
た特許請求の範囲第2項記載の角形密閉式電池。
(4) The prismatic sealed battery according to claim 2, wherein the thin nickel layer is formed of nickel cladding.
JP62273686A 1987-10-29 1987-10-29 Squar-shaped sealed battery Pending JPH01115052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62273686A JPH01115052A (en) 1987-10-29 1987-10-29 Squar-shaped sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62273686A JPH01115052A (en) 1987-10-29 1987-10-29 Squar-shaped sealed battery

Publications (1)

Publication Number Publication Date
JPH01115052A true JPH01115052A (en) 1989-05-08

Family

ID=17531136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62273686A Pending JPH01115052A (en) 1987-10-29 1987-10-29 Squar-shaped sealed battery

Country Status (1)

Country Link
JP (1) JPH01115052A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286249A (en) * 1988-05-12 1989-11-17 Matsushita Electric Ind Co Ltd Rectangular sealed cell
JPH03133053A (en) * 1989-10-18 1991-06-06 Sanyo Electric Co Ltd Sealed battery
JPH1194196A (en) * 1997-09-18 1999-04-09 Oputonikusu Seimitsu:Kk Explosion-proof safety valve for battery and manufacture therefor
WO1999025035A1 (en) * 1997-11-07 1999-05-20 Sanyo Electric Co., Ltd. Method of manufacturing enclosed battery and enclosed battery
JP2002175787A (en) * 2000-12-08 2002-06-21 Japan Storage Battery Co Ltd Battery and manufacturing method of the same
JP2006019089A (en) * 2004-06-30 2006-01-19 Sanyo Electric Co Ltd Sealed battery and its manufacturing method
JP2006114272A (en) * 2004-10-13 2006-04-27 Nec Tokin Tochigi Ltd Electric component and its manufacturing method
KR100619622B1 (en) * 2004-08-24 2006-09-08 주식회사 엘지화학 Method for Production of Prismatic Battery Case
JP2013093119A (en) * 2011-10-24 2013-05-16 Toyota Motor Corp Battery case
CN103515327A (en) * 2013-09-30 2014-01-15 安徽华东光电技术研究所 Kovar metal structure for laser seal welding and laser welding method
EP2869359A4 (en) * 2012-06-27 2015-06-10 Toyota Motor Co Ltd Battery and method for producing same
EP4033592A1 (en) * 2021-01-25 2022-07-27 SK Innovation Co., Ltd. Battery module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188050A (en) * 1982-04-26 1983-11-02 Matsushita Electric Ind Co Ltd Manufacture of case for cell
JPS60180058A (en) * 1984-02-28 1985-09-13 Matsushita Electric Ind Co Ltd Manufacture of battery and its can
JPS61200664A (en) * 1985-02-28 1986-09-05 Toshiba Battery Co Ltd Alkaline battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188050A (en) * 1982-04-26 1983-11-02 Matsushita Electric Ind Co Ltd Manufacture of case for cell
JPS60180058A (en) * 1984-02-28 1985-09-13 Matsushita Electric Ind Co Ltd Manufacture of battery and its can
JPS61200664A (en) * 1985-02-28 1986-09-05 Toshiba Battery Co Ltd Alkaline battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286249A (en) * 1988-05-12 1989-11-17 Matsushita Electric Ind Co Ltd Rectangular sealed cell
JPH03133053A (en) * 1989-10-18 1991-06-06 Sanyo Electric Co Ltd Sealed battery
JPH1194196A (en) * 1997-09-18 1999-04-09 Oputonikusu Seimitsu:Kk Explosion-proof safety valve for battery and manufacture therefor
US6843811B2 (en) 1997-11-07 2005-01-18 Sanyo Electric Co., Ltd. Method of manufacturing sealed battery and sealed battery
US6573001B1 (en) 1997-11-07 2003-06-03 Sanyo Electric Co., Ltd. Method of manufacturing enclosed battery and enclosed battery
WO1999025035A1 (en) * 1997-11-07 1999-05-20 Sanyo Electric Co., Ltd. Method of manufacturing enclosed battery and enclosed battery
JP2002175787A (en) * 2000-12-08 2002-06-21 Japan Storage Battery Co Ltd Battery and manufacturing method of the same
JP2006019089A (en) * 2004-06-30 2006-01-19 Sanyo Electric Co Ltd Sealed battery and its manufacturing method
KR100619622B1 (en) * 2004-08-24 2006-09-08 주식회사 엘지화학 Method for Production of Prismatic Battery Case
JP2006114272A (en) * 2004-10-13 2006-04-27 Nec Tokin Tochigi Ltd Electric component and its manufacturing method
JP2013093119A (en) * 2011-10-24 2013-05-16 Toyota Motor Corp Battery case
EP2869359A4 (en) * 2012-06-27 2015-06-10 Toyota Motor Co Ltd Battery and method for producing same
US9508963B2 (en) 2012-06-27 2016-11-29 Toyota Jidosha Kabushiki Kaisha Battery and method for producing same
CN103515327A (en) * 2013-09-30 2014-01-15 安徽华东光电技术研究所 Kovar metal structure for laser seal welding and laser welding method
EP4033592A1 (en) * 2021-01-25 2022-07-27 SK Innovation Co., Ltd. Battery module

Similar Documents

Publication Publication Date Title
US10340490B2 (en) Manufacturing method for battery case lid including explosion-proof valve
US6929880B1 (en) Square cell container and method of manufacturing the cell container
JPH01115052A (en) Squar-shaped sealed battery
JP4893625B2 (en) Material for three-layer stainless steel clad steel plate, thick plate and method for producing steel plate for polymer electrolyte fuel cell separator, and polymer electrolyte fuel cell separator
KR101297540B1 (en) Battery case and battery
JP2012094358A (en) Manufacturing method of metal closed bottom or sealed container
US8304106B2 (en) Hermetic cell and method for producing same
JP2012038603A (en) Metal bottomed or closed container and manufacturing method thereof
US11338389B2 (en) Battery case sealing method and a sealed battery manufacturing method
JP2007207453A (en) Manufacturing method of square sealed battery
EP2071646A1 (en) Battery core case and battery
JP2001155698A (en) Encapsulated type battery
JP3908838B2 (en) Aluminum container and manufacturing method thereof
KR20160042327A (en) The cylindrical can of secondary battery and its manufacturing method
JPH08315788A (en) Manufacture of square battery
CN111834555A (en) Secondary battery
KR20230109949A (en) secondary battery
JP7158153B2 (en) Method for manufacturing hot stamped molded article, mold for hot stamped molded article, and hot stamped molded article molded using the mold
JP6035796B2 (en) Manufacturing method of battery outer can and manufacturing method of secondary battery
JPS63239763A (en) Square enclosed-type cell
JPH01286249A (en) Rectangular sealed cell
JP3317029B2 (en) Case processing method
CN112018274A (en) Secondary battery
JP6210046B2 (en) Welding method for porous channel
US20230128754A1 (en) Terminal component, secondary battery, and method for producing terminal component