JPH01115041A - Movement introduction mechanism of charged particle beam device - Google Patents

Movement introduction mechanism of charged particle beam device

Info

Publication number
JPH01115041A
JPH01115041A JP27014887A JP27014887A JPH01115041A JP H01115041 A JPH01115041 A JP H01115041A JP 27014887 A JP27014887 A JP 27014887A JP 27014887 A JP27014887 A JP 27014887A JP H01115041 A JPH01115041 A JP H01115041A
Authority
JP
Japan
Prior art keywords
charged particle
arm
particle beam
vacuum chamber
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27014887A
Other languages
Japanese (ja)
Inventor
Toru Habu
徹 土生
Hideo Todokoro
秀男 戸所
Tatsuharu Yamamoto
山本 立春
Shigeo Kubota
重雄 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27014887A priority Critical patent/JPH01115041A/en
Publication of JPH01115041A publication Critical patent/JPH01115041A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain stable operation in a vacuum chamber high in its cleanness without doing a magnetic effect on charged particle beams by using an arm to link a driving part with a sample holder and installing a partition wall in the midst of the arm to separate the magnetic atmosphere from the vacuum state. CONSTITUTION:A partition wall is used to divide a low vacuum chamber 3, where a movement mechanism 2 is housed, from a high vacuum mechanism 2, where a charged particle beam channel 1 is housed. A sample holder 7 and the movement mechanism 2 are housed inside the high vacuum chamber 5 and the low vacuum chamber 3 respectively. An arm 15 is used to link the movement mechanism 2 with the sample holder 7 through the partition wall 4. The partition wall 4 is formed in so double structure that it is provided with a fixed wall 19, which has an opening part not to disturb movement of the arm 15, and a plate 20 which has the same hole in its cross-sectional shape as the arm 15 and tunes with the movement of the arm 15 and is capable of closing the opening part of the fixed wall 19 upon the moving of the arm 15, so that no disturbance occurs in a magnetic circuit 32. The high vacuum chamber 5 can be made vacuum highly in its purity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は荷電粒子線を利用した、加工・計測・分析また
は検査装置に係り、特に磁気の影響を防ぎかつ、試料の
汚染防止に好適な荷電粒子線装置の運動導入機構に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to processing, measurement, analysis, or inspection equipment that utilizes charged particle beams, and is particularly suitable for preventing the influence of magnetism and preventing sample contamination. This invention relates to a motion introduction mechanism for a charged particle beam device.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭59−29434号に記載のよう
に真空容器を真空的に独立した数個の部屋に分割してX
軸、Y軸、Z軸ステージと各軸ガイド部から成る移動テ
ーブルを荷電粒子線の通る高真空室に配置し、移動機構
部の歯車及びねじ列を低真空室に収納し、駆動源を大気
中に設けた構造となっていた。
Conventional equipment divides a vacuum container into several vacuum-independent chambers as described in Japanese Patent Application Laid-Open No. 59-29434.
A moving table consisting of axis, Y-axis, and Z-axis stages and guide sections for each axis is placed in a high vacuum chamber through which the charged particle beam passes, and the gears and screw rows of the moving mechanism are housed in a low vacuum chamber, and the drive source is exposed to the atmosphere. It was a structure built inside.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は荷電粒子線源から放射された荷電粒子線
に対し、試料に到達する以前で磁気により形状変形や曲
がりを生じさせる移動テーブルが入っている。ところが
、1μm以下の精度が要求される精密移動台を磁性のな
い部品で構成することは難しく、これまでこの磁気によ
る荷電粒子線への影響を少くすることに多大な努力が払
われていた。また、精密移動台には部品間の滑りをよく
するための潤滑剤を使わざるを得ない。このため、潤滑
剤及び構成部品の表面から放出される不純物を皆無にす
る事が難しい。すなわち、これまでの方式では、荷電粒
子線が移動台に使用されている磁性を持つ部品が動くこ
とによる磁場変動で曲げられる事、機構部の潤滑剤及び
構成部品の表面がら放出される不純物によって真空度の
低下や真空の質が低下するという問題があった。
The above-mentioned conventional technology includes a moving table that causes the charged particle beam emitted from the charged particle beam source to undergo shape deformation or bending due to magnetism before it reaches the sample. However, it is difficult to construct a precision moving table that requires accuracy of 1 μm or less from non-magnetic parts, and great efforts have been made to reduce the influence of this magnetism on charged particle beams. In addition, precision moving tables must use lubricants to improve the slippage between parts. Therefore, it is difficult to completely eliminate impurities released from the lubricant and the surfaces of the components. In other words, in the conventional method, the charged particle beam is bent by magnetic field fluctuations caused by the movement of magnetic parts used in the moving table, and by impurities released from the lubricant of the mechanism and the surface of the component parts. There was a problem that the degree of vacuum and the quality of the vacuum deteriorated.

本発明の目的は、上記従来技術の問題を同時に解決し、
荷電粒子線に磁気の変動を与えず、がっ、清浄度の高い
荷電粒子線を有効に使用する運動導入機構を提供するこ
とにある。
The purpose of the present invention is to simultaneously solve the problems of the above-mentioned prior art,
It is an object of the present invention to provide a motion introduction mechanism that effectively uses a highly clean charged particle beam without imparting magnetic fluctuations to the charged particle beam.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、磁気を持つことの多い駆動部と試料ホルダ
との間を腕で連結し、この腕の途中に磁気と真空に対す
る区切りの壁を設番jることにより達成される。
The above object is achieved by connecting the drive unit, which often has magnetism, and the sample holder with an arm, and installing a partition wall between the magnetism and vacuum in the middle of this arm.

区切りの壁は、腕の移動する範囲を妨げない開口部を持
った固定の壁と、常に固定壁に接触しながら腕の動きに
応じて開口部を塞ぎながら移動する可動の壁とからなる
The partition wall consists of a fixed wall with an opening that does not interfere with the range of movement of the arm, and a movable wall that moves while constantly contacting the fixed wall and closing the opening according to the movement of the arm.

〔作用〕[Effect]

本発明において前記の区切りの壁は磁路を常に形成しな
がら動作する。このため移動機構部がらの磁場が荷電粒
子線の通路内に侵入することがないので荷電粒子線は形
状の変化や曲げ等の悪影響を受けなくなる。また、荷電
粒子線の通路内には、部品を最小単位で構成できるため
に、これら部品の表面から放出される不純物を極カ抑え
ることが可能となり荷電粒子線通路内は清浄で質の高い
真空とすることができる。
In the present invention, the partition wall operates while constantly forming a magnetic path. Therefore, the magnetic field from the moving mechanism does not enter the path of the charged particle beam, so the charged particle beam is not affected by adverse effects such as changes in shape or bending. In addition, since the parts inside the charged particle beam passage can be configured in the smallest units, it is possible to extremely suppress impurities emitted from the surfaces of these parts, and the inside of the charged particle beam passage is kept in a clean, high-quality vacuum. It can be done.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図及び第2図により説明
する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

高真空室の荷電粒子線通路1と移動機構2を収納した低
真空室3は仕切壁4によって高真空室5から区切られる
。高真空室5の内部には加工、分析、検査等に使う試料
6を固定する試料ホルダ7、荷電粒子線8の制御部9を
、低真空室3の内部にはX軸、Y軸、Z軸の移動機構2
がそれぞれ収納しである。高真空室5の壁には荷電粒子
線源10を取付けてありこの内部も高真空となっている
A low vacuum chamber 3 housing a charged particle beam passage 1 and a moving mechanism 2 of the high vacuum chamber is separated from a high vacuum chamber 5 by a partition wall 4 . Inside the high vacuum chamber 5 are a sample holder 7 for fixing a sample 6 used for processing, analysis, inspection, etc., and a control section 9 for the charged particle beam 8. Inside the low vacuum chamber 3 are X-axis, Y-axis, and Z-axes. Axis movement mechanism 2
are each stored separately. A charged particle beam source 10 is attached to the wall of the high vacuum chamber 5, and the interior thereof is also in a high vacuum.

また、低真空室3の外壁にはX軸、Y軸(図示せず)、
Z軸を駆動するためのモータ、11.12が取付いてお
り、磁性流体シール13.14で真空シールしである。
Also, on the outer wall of the low vacuum chamber 3, an X axis, a Y axis (not shown),
A motor, 11.12, for driving the Z-axis is installed and vacuum sealed with a magnetic fluid seal 13.14.

移動機構2と試料ホルダ7は仕切壁4を通して腕15に
よって継がれている。
The moving mechanism 2 and the sample holder 7 are connected by an arm 15 through the partition wall 4.

真空排気系は、高真空排気ポンプ16.低真空排気ポン
プ17及びバルブ18で構成する。高真空室は低真空排
気ポンプ17によりバルブ18を介して移動機構2を収
納した低真空室3と同時に低真空排気後、高真空排気ポ
ンプ16により1〇一番〜10”−BPa程度に高真空
排気する。また、低真空室3は低真空排気ポンプ17に
より10−1〜10”Pa程度に真空排気する。
The vacuum evacuation system is a high vacuum evacuation pump 16. It consists of a low vacuum pump 17 and a valve 18. The high vacuum chamber is simultaneously evacuated to a low vacuum by the low vacuum pump 17 through the valve 18 to the low vacuum chamber 3 housing the moving mechanism 2, and then raised to about 10-10''-BPa by the high vacuum pump 16. The low vacuum chamber 3 is evacuated to about 10-1 to 10'' Pa by the low vacuum pump 17.

仕切り壁4は腕15がx、y、zに移動する際に動きを
妨げない開口部を有する固定壁19と、腕15の断面形
状と同じ穴を持ち腕15の動きに同調し、腕15が動い
た時固定壁19の開口部をふさぐ事ができる大きさを持
った板20の二重構造となっている。この構造により磁
気回路32に乱れが生じない。この板2oの材質は容器
の壁と同じ材質の78%N i −F eである。また
、板20は固定壁19と接する部分並びに穴と腕15の
間に弗素樹脂等の低摩擦係数の摺動材21゜22を挿入
した。さらに、この板20は高真空室5に配、置した支
え23とばね24によって開口部を持った固定壁19に
常に接触している。
The partition wall 4 includes a fixed wall 19 having an opening that does not hinder the movement of the arm 15 when it moves in x, y, and z, and a fixed wall 19 that has a hole that has the same cross-sectional shape as the arm 15 and synchronizes with the movement of the arm 15. It has a double structure of a plate 20 having a size that can close the opening of the fixed wall 19 when the fixed wall 19 moves. This structure prevents disturbances in the magnetic circuit 32. The material of this plate 2o is 78% Ni-Fe, which is the same material as the wall of the container. In addition, sliding materials 21 and 22 having a low coefficient of friction, such as fluororesin, are inserted into the plate 20 at the portion in contact with the fixed wall 19 and between the hole and the arm 15. Furthermore, this plate 20 is always in contact with the fixed wall 19 having an opening by means of a support 23 and a spring 24 arranged and placed in the high vacuum chamber 5.

試料6のX線方向の駆動は、低真空室3の外壁に取付け
たモータ11によって行なう、モータ11の回転運動は
大気中から低真空室3中へ磁性流体シール13により真
空シールして導入し、ボールねじ25によって直線運動
に変換される。そして、3と高真空室5を区切る低真空
室仕切り壁4を通して腕15を直進させ、この腕15に
継いだ試料ホルダ7を駆動する。
The sample 6 is driven in the X-ray direction by a motor 11 attached to the outer wall of the low vacuum chamber 3. The rotational movement of the motor 11 is introduced from the atmosphere into the low vacuum chamber 3 under vacuum sealing with a magnetic fluid seal 13. , is converted into linear motion by the ball screw 25. Then, the arm 15 is moved straight through the low vacuum chamber partition wall 4 that separates the sample holder 3 from the high vacuum chamber 5, and the sample holder 7 connected to this arm 15 is driven.

Y軸及びZ軸方向の駆動はX@力方向駆動と同様のため
説明を省略する。
The driving in the Y-axis and Z-axis directions is the same as the driving in the X@force direction, so a description thereof will be omitted.

本実施例によれば仕切り壁4によって低真空室3と高真
空室5を区切ったことにより、高真空室5は清浄度の高
い真空とすることができた。また。
According to this embodiment, the low vacuum chamber 3 and the high vacuum chamber 5 were separated by the partition wall 4, so that the high vacuum chamber 5 could be made into a highly clean vacuum. Also.

仕切り壁4は摺動部に低摩擦係数の摺動材21゜22を
用いたことにより、腕15は摺動抵抗を減すことができ
た。その結果、駆動源には容量の小さいモータを使える
ようになった。さらに、低真・空室3と高真空室5をバ
ルブ18によって同時に真空排気するので仕切り壁4に
は大気圧が直接加わらない。
By using sliding materials 21 and 22 with a low coefficient of friction in the sliding parts of the partition wall 4, the sliding resistance of the arms 15 can be reduced. As a result, it became possible to use a small-capacity motor as the drive source. Furthermore, since the low vacuum/empty chamber 3 and the high vacuum chamber 5 are simultaneously evacuated by the valve 18, atmospheric pressure is not directly applied to the partition wall 4.

このため、仕切り壁4は大きさや厚さに制限を受けない
効果がある。
Therefore, there is an effect that the partition wall 4 is not limited in size or thickness.

本実施例では試料を動かす例を用いて説明したが試料を
固定して荷電粒子線を制御する制御系を移動するように
しても効果に変わりはない。
Although this embodiment has been explained using an example in which the sample is moved, the effect remains the same even if the sample is fixed and the control system for controlling the charged particle beam is moved.

また、低真空室と高真空室を区切る仕切り壁は固定壁と
移動する板を入れ替えて反対の位置におくことも可能で
ある。
Furthermore, the partition wall separating the low vacuum chamber and the high vacuum chamber can be placed in opposite positions by replacing the fixed wall and the movable plate.

さらに、荷電粒子線に対して磁気の影響を与えず、かつ
、清浄度の高い高真空室で安定に動作できるようにする
方法はこの他に第3図、第4図に示す案が考えられる。
Furthermore, there are other methods that can be considered to ensure that the charged particle beam does not have magnetic effects and can operate stably in a highly clean, high-vacuum chamber, as shown in Figures 3 and 4. .

第3図に示すように、低真空室3と高真空室5を区切る
仕切壁は一方を移動機構によって動く腕26の移動に支
障ない開口を持った固定壁19とし、他の壁は試料ホル
ダ7と移動機構2を継ぐ腕26と平行に収縮するベロー
ズ27を腕26に固定する。
As shown in FIG. 3, one of the partition walls separating the low vacuum chamber 3 and the high vacuum chamber 5 is a fixed wall 19 with an opening that does not interfere with the movement of the arm 26 that is moved by the moving mechanism, and the other wall is a fixed wall 19 with a sample holder. A bellows 27 is fixed to the arm 26 and contracts in parallel with the arm 26 that connects the moving mechanism 2 to the bellows 27.

移動機構2により腕26を動かすと、腕26に固定した
ベローズ27は常時圧縮されなから他端が固定壁19の
面を摺動する。この時、腕26の動きがなめらかになる
ように固定!t19とベローズ27の間に摺動材28を
挿入した。
When the arm 26 is moved by the moving mechanism 2, the bellows 27 fixed to the arm 26 is not compressed at all times, so the other end slides on the surface of the fixed wall 19. At this time, fix the arm 26 so that its movement is smooth! A sliding member 28 was inserted between t19 and bellows 27.

また、第4図に示すように、固定g119の開口部はベ
ローズ27の一端を固定し、他端は穴を有する板29を
固定する。この穴と腕15の断面は同じ形状を°してい
る。また、板29は固定壁19と引張りばね30によっ
て継がれている。さらに。
Further, as shown in FIG. 4, the opening of the fixing g119 fixes one end of the bellows 27, and the other end fixes a plate 29 having a hole. The cross sections of this hole and the arm 15 have the same shape. Further, the plate 29 is connected to the fixed wall 19 by a tension spring 30. moreover.

腕15と板29の間に摺動材31を挿入した。A sliding member 31 was inserted between the arm 15 and the plate 29.

移動機構2によって規制される腕15は移動機構2の動
きによって板29の位置を変化させる。
The arm 15 regulated by the moving mechanism 2 changes the position of the plate 29 by the movement of the moving mechanism 2.

この時、低真空室3と高真空室5は板29に固定したベ
ローズ27が腕15の動きに追従して動くことによって
常に区切られている。
At this time, the low vacuum chamber 3 and the high vacuum chamber 5 are always separated by a bellows 27 fixed to a plate 29 that moves following the movement of the arm 15.

〔発明の効果〕〔Effect of the invention〕

本発明によれば荷電粒子線は試料または荷電粒子線制御
系を移動させる時、磁性を持った移動機構を仕切り壁で
分離することが可能となり、磁気による形状の変化や曲
げ等の悪影響を全く受けない。また、仕切り壁は荷電磁
気線及び試料の入る部屋と移動機構を収納する部屋を真
空的に分けるものである。従って、移動機構は摺動部の
潤滑が容易となり機構部分の長寿命化を計ることが可能
となった。さらに、試料の入る部屋は放出ガス量の少な
い部品で構成することによって清浄度の高い真空となり
荷電粒子線は安定に動作する等の効果がある。
According to the present invention, when a charged particle beam moves a sample or a charged particle beam control system, it is possible to separate the magnetic moving mechanism with a partition wall, and there is no adverse effect such as shape change or bending due to magnetism. I don't accept it. Further, the partition wall vacuum-separates the chamber in which the charged electromagnetic radiation and the sample enter and the chamber in which the moving mechanism is housed. Therefore, the sliding parts of the moving mechanism can be easily lubricated, making it possible to extend the life of the mechanical parts. Furthermore, by constructing the chamber in which the sample enters with parts that emit a small amount of gas, a highly clean vacuum is created, which allows the charged particle beam to operate stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例になる運動導入機構の側断面
図、第2図は腕A−A断面図、第3図及び第4図は本発
明の他の実施例になる区切り壁部分の側断面図である。 1・・・荷電粒子線通路、2・・・移動機構、3・・・
低真空室、4・・・仕切り壁、5・・・高真空室、6・
・・試料、7・・・試料ホルダ、8・・・荷電粒子線、
10・・・荷電粒子線源、11.12・・・モータ、1
3,14・・・磁性流体シール、15.26・・・腕、
16・・・高真空ポンプ、17・・・低真空ポンプ、1
8・・・バルブ、19・・・固定壁、20.29・・・
板、21,22,28.31・・・摺動材、24・・・
ばね、25・・・ボールねじ、27・・・ベローズ、9
・・・制御部、23・・・支え、30・・・引張第1 
図 c73   ぺ1【蔦千森 第2図
FIG. 1 is a side sectional view of a motion introducing mechanism according to an embodiment of the present invention, FIG. 2 is a sectional view taken along the line A-A of the arm, and FIGS. 3 and 4 are partition walls according to other embodiments of the present invention. FIG. 3 is a side sectional view of the portion. 1... Charged particle beam path, 2... Movement mechanism, 3...
Low vacuum chamber, 4... Partition wall, 5... High vacuum chamber, 6.
...sample, 7...sample holder, 8...charged particle beam,
10...Charged particle beam source, 11.12...Motor, 1
3,14...Magnetic fluid seal, 15.26...Arm,
16...High vacuum pump, 17...Low vacuum pump, 1
8...Valve, 19...Fixed wall, 20.29...
Plate, 21, 22, 28. 31...Sliding material, 24...
Spring, 25... Ball screw, 27... Bellows, 9
...Control unit, 23...Support, 30...Tension first
Figure c73 P1 [Tsuta Senmori Figure 2

Claims (1)

【特許請求の範囲】 1、荷電粒子線源と荷電粒子を制御する制御系と試料を
保持する試料台を具備し、該制御系または該試料台を移
動する荷電粒子線装置において、移動機構と荷電粒子線
の間に移動に伴う運動を妨げず、かつ、移動の際に空間
を生じない二重の壁を設け、荷電粒子線は磁気の影響を
受けないことを特徴とする荷電粒子線装置の運動導入機
構。 2、荷電粒子線の通路と移動機構を収納する部屋は、微
小隙間により継き各々の部屋を真空排気した時の圧力差
を利用して荷電粒子線通路を高真空に保つことを特徴と
する請求範囲第1項記載の荷電粒子線装置の運動導入機
構。
[Claims] 1. A charged particle beam apparatus comprising a charged particle beam source, a control system for controlling the charged particles, and a sample stage for holding a sample, and for moving the control system or the sample stage. A charged particle beam device characterized in that a double wall is provided between the charged particle beams that does not impede the movement of the charged particle beams and that does not create a space during movement, and the charged particle beams are not affected by magnetism. movement induction mechanism. 2. The charged particle beam passageway and the chambers housing the movement mechanism are connected by minute gaps, and the charged particle beam passageway is maintained at a high vacuum by utilizing the pressure difference when each chamber is evacuated. A motion introduction mechanism for a charged particle beam device according to claim 1.
JP27014887A 1987-10-28 1987-10-28 Movement introduction mechanism of charged particle beam device Pending JPH01115041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27014887A JPH01115041A (en) 1987-10-28 1987-10-28 Movement introduction mechanism of charged particle beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27014887A JPH01115041A (en) 1987-10-28 1987-10-28 Movement introduction mechanism of charged particle beam device

Publications (1)

Publication Number Publication Date
JPH01115041A true JPH01115041A (en) 1989-05-08

Family

ID=17482212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27014887A Pending JPH01115041A (en) 1987-10-28 1987-10-28 Movement introduction mechanism of charged particle beam device

Country Status (1)

Country Link
JP (1) JPH01115041A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149571A (en) * 2005-11-30 2007-06-14 Hitachi High-Technologies Corp Sample measuring method and charged particle beam apparatus
JP2014116185A (en) * 2012-12-10 2014-06-26 Jeol Ltd Sample positioning device, charged particle beam device, and sample holder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149571A (en) * 2005-11-30 2007-06-14 Hitachi High-Technologies Corp Sample measuring method and charged particle beam apparatus
US8071961B2 (en) 2005-11-30 2011-12-06 Hitachi High-Technologies Corporation Charged particle beam apparatus
JP2014116185A (en) * 2012-12-10 2014-06-26 Jeol Ltd Sample positioning device, charged particle beam device, and sample holder

Similar Documents

Publication Publication Date Title
US4766465A (en) Carry device for fine movement
US6496248B2 (en) Stage device and exposure apparatus and method
US5234303A (en) In-vacuum conveyance robot
EP1260720B1 (en) Hydrostatic bearing and stage apparatus using same
US20040211285A1 (en) Multiple degree of freedom substrate manipulator
JP2005268268A (en) Electron beam exposure apparatus
US11268630B2 (en) Direct-drive flexure-mechanism vacuum control valve
US5105932A (en) Linear and rotary positioning device
JP5576810B2 (en) Sample positioning device for charged particle beam equipment
JPH01115041A (en) Movement introduction mechanism of charged particle beam device
US20050211515A1 (en) Anti-vibration mount apparatus, exposure apparatus, and device manufacturing method
JP6717175B2 (en) valve
JPH06100164A (en) Magnetically coupled carrying device
JP4387270B2 (en) Bearing device for reaction mass in a controlled environment
EP2836874B1 (en) Arrangement of reticle positioning device for actinic inspection of euv reticles
JP3398186B2 (en) Drive in vacuum
US2939955A (en) Electron microscope
US11043367B2 (en) Valve
JPH02262091A (en) Positioning apparatus
JP3842203B2 (en) Substrate processing equipment
US20190376531A1 (en) Dual valve fluid actuator assembly
JP2002110523A (en) Aligner
JPH02225857A (en) Ball screw device
JPH0465853A (en) Conveying robot in vacuum
JP2000346009A (en) Uniaxial actuator