JPH01114502A - Pneumatic radial tyre for aircraft - Google Patents

Pneumatic radial tyre for aircraft

Info

Publication number
JPH01114502A
JPH01114502A JP62270281A JP27028187A JPH01114502A JP H01114502 A JPH01114502 A JP H01114502A JP 62270281 A JP62270281 A JP 62270281A JP 27028187 A JP27028187 A JP 27028187A JP H01114502 A JPH01114502 A JP H01114502A
Authority
JP
Japan
Prior art keywords
layer
tread
belt layer
belt
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62270281A
Other languages
Japanese (ja)
Inventor
Kuninobu Kadota
門田 邦信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP62270281A priority Critical patent/JPH01114502A/en
Publication of JPH01114502A publication Critical patent/JPH01114502A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)

Abstract

PURPOSE:To improve the durability and the partial wear resistance of the tyre in the title by constituting the tire with a toroid shape carcass, a crossing belt layer and a belt layer in the circumferential direction composed of an organic fiber cord with a specified cord angle respectively and specifying the constitution of abovementioned respective layers thereof. CONSTITUTION:By an organic fiber cord arranged in parallel, a toroid shape carcass 1 with a cord angle 70-90 deg., a crossing belt layer 2 with a cord angle 10-70 deg. and a belt layer 3 in the circumferential direction in parallel with the circumferential direction are formed respectively. The crossing belt layer 2 is composed of plural layers so that the number of layer in the tread side area in made layer than that of a central area. Contrarily, the tread layer 3 in the circumferential direction is built up in such a way like the number of layer in the central area is more than that in the side area. The lowest layer out the belt layers 3 in the circumferential direction is composed of a continuous layer spread over the both side area. Further, a difference in the number of the layer between the central area and the side area is set up like it is layer for crossing belt layer 2 than the belt layer 3 in the circumferential direction. By this composition, the durability and partial wear resistance can be improved simultaneously.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は高荷重及び高速にて使用に供される航空機用
空気入りラジアルタイヤに関し、とくにベルト構造の改
良により耐久性及び耐偏摩耗性を同時に向上させる技術
について述べる。
Detailed Description of the Invention (Field of Industrial Application) This invention relates to a pneumatic radial tire for aircraft that is used under high loads and high speeds, and in particular improves durability and uneven wear resistance by improving the belt structure. At the same time, we will discuss the techniques that can be improved.

(従来の技術) 航空機用のラジアル又はセミラジアルタイヤは、特に高
速下で使用される為、耐スタンディングウェーブ性の点
から実質上タイヤの赤道に平行な(以下周方向と表現す
る)コード配列になるベルト層をそなえ、この構造は航
空機用タイヤに要求される耐圧テスト(使用内圧の4倍
内圧で破壊しないこと)を最小のベルト枚数で満足する
ことが出来るので軽量化の点で有利であり、航空機の運
行経費に影響する重量あるいは低発熱性の面で有意義で
ある。一方この構造はベルトコードが周方向に配置され
ている為に転勤時にベルトが伸縮しにくく、トレッドの
センターよりショルダ一部の径が小さいため転勤時にト
レッドショルダ一部がひきずられ偏摩耗を生じるため、
次のベルト構造にて対処していた。
(Prior art) Radial or semi-radial tires for aircraft are used particularly at high speeds, so in order to resist standing waves, the cords are arranged substantially parallel to the tire's equator (hereinafter referred to as the circumferential direction). This structure is advantageous in terms of weight reduction because it can satisfy the pressure resistance test required for aircraft tires (not breaking at an internal pressure four times the operating internal pressure) with a minimum number of belts. , which is significant in terms of weight or low heat generation, which affects aircraft operating costs. On the other hand, with this structure, the belt cords are arranged in the circumferential direction, making it difficult for the belt to expand and contract during transfers, and because the diameter of a portion of the shoulder is smaller than the center of the tread, a portion of the tread shoulder is dragged during transfers, causing uneven wear. ,
The problem was solved with the following belt structure.

すなわち特開昭61−196804号公報に記載されて
いるような、タイヤの赤道と交差配置した交差ベルト層
と周方向ベルト層を併用した構造である。
That is, as described in Japanese Patent Application Laid-Open No. 61-196804, it is a structure in which a cross belt layer intersecting the equator of the tire and a circumferential belt layer are used together.

(発明が解決しようとする問題点) このベルト構造の場合、周方向ベルト層に比べて伸縮し
易い交差ベルト層を増せば、偏摩耗は減少するものの、
交差ベルト層は周方向ベルト層に比べて周方向剛性が低
いので、耐圧テストを満足する為にベルトの枚数が必然
的に増し重量の面で不利になるとともに、ベルト部の厚
みが増すことにより発熱量の増大を招きベルト部のセパ
レーションに対する耐久性も低下するところに問題があ
った。
(Problems to be Solved by the Invention) In the case of this belt structure, uneven wear can be reduced by increasing the number of intersecting belt layers, which are easier to expand and contract than the circumferential belt layers.
Since the cross belt layer has lower circumferential rigidity than the circumferential belt layer, the number of belts is inevitably required to satisfy the pressure test, which is disadvantageous in terms of weight, and the thickness of the belt part increases. There was a problem in that the amount of heat generated increased and the durability against separation of the belt portion also decreased.

そこでこの発明は上記の問題を有利に解決し得る、耐偏
摩耗性及び耐久性の向上を同時に満たすベルト構造を与
えることが目的である。
Therefore, an object of the present invention is to provide a belt structure that can advantageously solve the above problems and simultaneously improve uneven wear resistance and durability.

(問題点を解決するための手段) 発明者らは、周方向ベルト層と交差ベルト層の併用構造
でもって偏摩耗の防止をはかり、かつ、ベルト枚数の増
加による発熱量増加がもたらす耐久性低下の問題を解決
する為に、耐圧テスト時及−び転動時のベルトの変形挙
動を詳細に検討したところ、トレッドの中央域と側域と
でベルト構造を変化させることが耐偏摩耗性及び耐久性
の両立に有効であることを見い出した。
(Means for Solving the Problem) The inventors aimed to prevent uneven wear by using a combined structure of a circumferential belt layer and a cross belt layer, and to reduce durability caused by an increase in heat generation due to an increase in the number of belts. In order to solve this problem, we conducted a detailed study of the deformation behavior of the belt during pressure tests and rolling, and found that changing the belt structure between the center and side areas of the tread improves uneven wear resistance and It has been found that this method is effective in achieving both durability.

すなわちこの発明は、互いに平行配列をなす有機繊維コ
ードをタイヤの赤道面に対し70〜90°のコード角に
て配置した複数プライよりなり、少なくとも1プライは
一対のビードコアーのまわりでタイヤの内方から外方へ
巻返した、折返し部を有するトロイド状のカーカス、互
いに平行配列をなす有機繊維コードをタイヤの赤道に対
し10〜70゜のコード角にて配置した少なくとも2層
のコード層よりなり、コード層をそのコードが互いに交
差する配置にて積層した交差ベルト層及び、互いに平行
配列をなす有機繊維コードをタイヤの赤道と実質上平行
に配置した少なくとも2層のコード層よりなる周方向ベ
ルト層、をそなえ、交差ベルト層はタイヤのトレッド側
域での層数がトレッド中央域での層数より多く、周方向
ベルト層はトレッド中央域での層数がトレッド側域での
層数より多くかつ周方向ベルト層のうち少なくとも1層
はトレッド両側域間にわたる連続層からなり、さらに交
差ベルト層および周方向ベルト層におけるトレッド側域
とトレッド中央域での層数の差は交差ベルト層に比し周
方向ベルト層で小さくしてなることを特徴とする航空機
用空気入りラジアルタイヤである。
That is, this invention consists of a plurality of plies in which organic fiber cords are arranged parallel to each other at a cord angle of 70 to 90 degrees with respect to the equatorial plane of the tire, and at least one ply is arranged inward of the tire around a pair of bead cores. A toroidal carcass having a folded part, which is wound outward from the tire, and consists of at least two cord layers in which organic fiber cords are arranged parallel to each other and arranged at a cord angle of 10 to 70 degrees with respect to the equator of the tire. , a circumferential belt consisting of a crossed belt layer in which cord layers are laminated in such a manner that the cords intersect with each other, and at least two cord layers in which organic fiber cords are arranged in parallel to each other and are arranged substantially parallel to the equator of the tire. The cross belt layer has a number of layers in the tread side area of the tire that is greater than the number of layers in the tread center area, and the circumferential belt layer has a number of layers in the tread center area than the number of layers in the tread side area. At least one of the many circumferential belt layers is a continuous layer extending between both side areas of the tread, and the difference in the number of layers between the tread side area and the tread center area in the cross belt layer and the circumferential belt layer is determined by the cross belt layer. This pneumatic radial tire for aircraft is characterized by having a smaller circumferential belt layer.

この発明の航空機用空気入りラジアルタイヤは、トレッ
ド側域に配置された交差ベルト層とトレッド中央域に配
置された周方向ベルト層とがそれぞれ実質上タイヤの回
転軸より同距離の位置にあって実質上1層を構成し、さ
らに交差ベルト層と周方向ベルト層との間の不連続点が
トレッド接地幅の中心を起点としてこの起点からトレッ
ド接地端までの長さの35〜75%の範囲に位置するこ
と、交差ベルト層の少なくとも1層がトレッド側載量に
わたる連続層であること、 周方向ベルト層と交差ベルト層とが同材質の有機繊維コ
ードよりなること、 交差ベルト層の少なくとも1層が折り返しプライよりな
ること、 周方向ベルト層の少なくとも1層がトレッド側域の一方
と他方とに分かれた分割層であること、より好ましくは
分割層が周方向ベルト層の最外層をなすことおよび、 分割層のトレッド中央域側の端部がトレッド接地幅の中
心を起点としてこの起点からトレッド接地端までの長さ
の35〜75%の範囲に位置すること、が実施態様とし
て推奨される。
In the pneumatic radial tire for aircraft according to the present invention, the intersecting belt layers disposed in the tread side regions and the circumferential belt layers disposed in the tread central region are located at substantially the same distance from the rotation axis of the tire. Substantially constitutes one layer, and furthermore, the discontinuous point between the cross belt layer and the circumferential belt layer ranges from 35 to 75% of the length from the center of the tread contact width as the starting point to the tread contact edge. at least one of the intersecting belt layers is a continuous layer spanning the tread side loading; the circumferential belt layer and the intersecting belt layer are made of organic fiber cords made of the same material; at least one of the intersecting belt layers The layer is comprised of a folded ply; At least one layer of the circumferential belt layer is a dividing layer divided into one side region of the tread and the other; More preferably, the dividing layer is the outermost layer of the circumferential belt layer. And, it is recommended as an embodiment that the end of the split layer on the tread center area side is located in a range of 35 to 75% of the length from the center of the tread contact width as a starting point to the tread contact edge. .

さて第1図に、この発明に従う航空機用タイヤの構造を
図解した。
Now, FIG. 1 illustrates the structure of an aircraft tire according to the present invention.

図中1はカーカス、2は交差ベルト層、3は周方向ベル
ト層、4はトレッド及び5はビードコアである。
In the figure, 1 is a carcass, 2 is a cross belt layer, 3 is a circumferential belt layer, 4 is a tread, and 5 is a bead core.

カーカス1は、この例でビードコア5のまわりをタイヤ
の内側から外側へ巻返した4枚のターンナツププライと
、その折り返し部の外側に沿ってビードトウに向かって
のびる1枚のダウンプライとからなるアップダウン積層
になる。
In this example, the carcass 1 is made up of four turn-up plies wound around the bead core 5 from the inside of the tire to the outside, and one down ply extending toward the bead toe along the outside of the turned-up ply. It becomes an up-down stack.

交差ベルト層2は、有機繊維コードからなるプライの両
側を折り返しその折り返しプライによってトレッド側域
に1層を配置し、1枚のプライからなる2層のコード層
間にトレッド側載量にわたる1枚のプライとトレッド側
域のみにさらに1枚づつプライを追加し、トレッド中央
域で2層、トレッド側域で4層のコード層からなり、両
者の層数差は2層である。なお、図示の例では、折り返
しプライ端でのせん断歪の発生を防止するためプライ端
が内側の交差ヘルド端を包みこむ構成とした。
The cross belt layer 2 consists of folding both sides of a ply made of organic fiber cords, placing one layer in the tread side area by the folded ply, and placing one layer covering the tread side loading between two cord layers made of one ply. One additional ply is added only to the ply and the tread side area, and the tread center area has two cord layers and the tread side area has four cord layers, and the difference in the number of layers between the two is two layers. In the illustrated example, the ply end wraps around the inner cross heald end to prevent shear strain from occurring at the folded ply end.

周方向ベルト層は、交差ベルト層と同材質の有機繊維コ
ードをタイヤの周方向にらせん状に巻き付けて構成した
両トレッド側載量で連続するコード層を4層そなえ、上
記トレッド側域の交差ベルト層の間のトレッド中央域に
2層のコード層を配置し、さらにトレッド側域のみに1
枚づつプライを追加し、トレッド中央域で6層、トレッ
ド側域で5層のコード層からなり、両者の層数差は1層
である。
The circumferential belt layer has four consecutive cord layers with a load on both tread sides, which are constructed by spirally wrapping organic fiber cords made of the same material as the cross belt layer in the circumferential direction of the tire. Two cord layers are placed in the center area of the tread between the belt layers, and one cord layer is placed only in the side area of the tread.
By adding plies one by one, there are 6 cord layers in the center area of the tread and 5 layers in the side areas of the tread, and the difference in the number of layers between the two is 1 layer.

したがってトレッド側域に交差ベルト層をトレッド中央
域に周方向ベルト層をそれぞれ配置したベルト層は2層
となる。なおこれら層における交差ベルト層と周方向ベ
ルト層との間の不連続点Pはトレッド接地幅りの、中心
を起点としてこの起点からトレッド接地端までの長さ(
L/2)の50%に配置しである。
Therefore, there are two belt layers in which the cross belt layer is arranged in the tread side region and the circumferential belt layer is arranged in the tread center region. Note that the discontinuity point P between the cross belt layer and the circumferential belt layer in these layers is the length of the tread contact width from the center to the tread contact end (
L/2).

又第2図(A)〜(E)に、この発明に従う他のベルト
構造の放射断面を示す。実線は交差ベルト層2、点線は
周方向ベルト層3を示す。
FIGS. 2A to 2E also show radial cross sections of other belt structures according to the present invention. The solid line indicates the cross belt layer 2, and the dotted line indicates the circumferential belt layer 3.

(作 用) この発明において各ベルト層を構成するコードに有機繊
維を用いているのは、有機繊維コードは熱収縮し、とく
に加硫熱による効果で熱収縮応力を発生し内圧光てん未
荷重時に周方向のベルトのイニシャルテンションが増し
スタンディングウェーブ抑制に有効に作用するためであ
る。
(Function) In this invention, organic fibers are used for the cords constituting each belt layer. The organic fiber cords shrink due to heat, and generate heat shrinkage stress due to the effect of vulcanization heat. This is because the initial tension of the belt in the circumferential direction increases at times, which effectively acts to suppress standing waves.

一方ベルトの枚数は航空機用タイヤにおける耐圧性を満
足する為に一定枚数以上必要となるが、空気光てんによ
るタイヤの外径成長、特にベルト部の成長は、サイドウ
オールによる成長抑制効果の少ないトレッド中央部が大
きく、この部分の伸びが耐圧テストでのベルトの破断を
左右していることは、第3図に示す通りである。
On the other hand, a certain number of belts is required to satisfy the pressure resistance of aircraft tires, but the growth of the outer diameter of the tire due to air flow, especially the growth of the belt, is limited by the sidewalls, which have little effect on suppressing growth. As shown in Fig. 3, the center part is large, and the elongation in this part affects the belt breakage in the pressure test.

しかし負荷転勤時にはトレッド中央域でのベルトの変形
は小さく、トレッド中央域に対して外径差の大きいショ
ルダ一部の接地端へ近づくほど変形が大きくなり、従っ
てショルダ一部の肩落ち偏摩耗を防止するには、ショル
ダ一部でのベルトの伸縮性が確保されれば良く、トレッ
ド中央域は荷重時にベルトの変形が小さいので周方向ベ
ルト層を配置しても、偏摩耗には悪影響を及ぼさない。
However, during load transfer, the deformation of the belt in the center of the tread is small, and the closer it gets to the contact edge of the shoulder part, which has a large difference in outer diameter from the center of the tread, the greater the deformation. To prevent this, it is sufficient to ensure belt elasticity in the shoulder area, and since belt deformation is small in the central tread area under load, even if a circumferential belt layer is placed, it will not have a negative effect on uneven wear. do not have.

以上のことより周方向ベルト層及び交差ベルト層よりな
るベルト構造においてベルト層のトレッド中央域におけ
る周方向ベルト層の層数が接地端を含むトレッド側域に
おける周方向ベルト層の層数より多く、一方トレッド側
域における交差ベルト層の層数が、中央部における交差
ベルト層の層数よりも多く配置することによってベルト
の枚数を余り増すことなしに規定の耐圧テストを満足す
るタイヤが提供でき、さらにベルト部の発熱も抑制でき
るので耐久性にも優れると同時に耐偏摩耗性も向上させ
得る。
From the above, in a belt structure consisting of a circumferential belt layer and a crossed belt layer, the number of circumferential belt layers in the tread center region of the belt layer is greater than the number of circumferential belt layers in the tread side region including the ground contact edge, On the other hand, by arranging the number of intersecting belt layers in the tread side region greater than the number of intersecting belt layers in the central part, it is possible to provide a tire that satisfies the specified pressure resistance test without significantly increasing the number of belts. Furthermore, heat generation in the belt portion can be suppressed, resulting in excellent durability and uneven abrasion resistance.

ただし周方向ベルト層をトレッド中央域のみに配置した
場合は、高速回転時にショルダ一部が遠心力によって成
長し、スタンディングウェーブが発生し易くベルト端縁
部でのセパレーションを誘発し易い為、周方向ベルト層
の少なくとも1層は、トレッド側載量に渡って配置する
必要がある。
However, if the circumferential belt layer is placed only in the center area of the tread, part of the shoulder will grow due to centrifugal force during high-speed rotation, easily generating standing waves and causing separation at the edge of the belt. At least one of the belt layers must be disposed over the tread side loading.

また交差ベルト層は周方向ベルト層と比較して周方向剛
性が低いので、トレッド中央域と側域での層数差(以下
単に層数差という)が、交差ベルト層と周方向ベルト層
とで等しい場合、全ベルト層に占める交差ベルト層の割
合の多いトレッド側域での周方向剛性がトレッド中央域
より低くなるため、周方向剛性がタイヤ軸線方向で不均
一なベルト構造となる。
In addition, since the cross belt layer has lower circumferential rigidity than the circumferential belt layer, the difference in the number of layers between the central region and the side region of the tread (hereinafter simply referred to as the difference in the number of layers) is the difference between the cross belt layer and the circumferential belt layer. If they are equal, the circumferential stiffness in the tread side regions where the ratio of intersecting belt layers to all belt layers is high is lower than that in the tread center region, resulting in a belt structure in which the circumferential stiffness is non-uniform in the tire axial direction.

このベルト構造は、内圧光てん時にショルダー部が伸び
易いためにクラウンの曲率半径がショルダ一部で大きく
なり、とくにオーバーロード(複輪の1つがパンクした
状態)での負荷転勤時にショルダ一部の接地圧が増して
トレッドの発熱が増大し、トレッドとベルト部とのセパ
レーションが発生し易い。
With this belt structure, the radius of curvature of the crown becomes large in a part of the shoulder because the shoulder part tends to stretch when the internal pressure is applied. Ground contact pressure increases, heat generation in the tread increases, and separation between the tread and the belt is likely to occur.

したがって層数差を交差ベルト層よりも周方向ベルト層
で小さくし、トレッド中央域と側域とで周方向剛性を均
一にすることが肝要である。
Therefore, it is important to make the difference in the number of layers smaller in the circumferential belt layers than in the intersecting belt layers, and to make the circumferential rigidity uniform between the tread center region and side regions.

なお上記のベルト構造においても、荷重時にベルト部は
厚み方向に曲げ変形をうけカーカス層に近い領域はどよ
り大きな変形が加わるため、負荷転勤時にベルト周方向
伸びの大きいトレッド側域のカーカス層に近い領域に交
差ベルト層を多(配置する、この発明に従うベルト構造
によって、耐偏摩耗性を損うことはほとんどない。
In addition, even in the above belt structure, when a load is applied, the belt part undergoes bending deformation in the thickness direction, and the area near the carcass layer experiences greater deformation than the other areas. Therefore, when the load is transferred, the carcass layer in the tread side area, where belt elongation is large in the circumferential direction, undergoes bending deformation. The belt structure according to the invention, which has multiple intersecting belt layers in close regions, hardly impairs the uneven wear resistance.

この発明においては上記した基本構成の下、次の各条件
を満足することが実施に当たりさらに有利である。すな
わち、 トレッド中央域での全ベルト層の厚さ増大を抑えて耐久
性を向上させるため、トレッド側域に配置された交差ベ
ルト層とトレッド中央域に配置された周方向ベルト層と
が実質上lNを構成するようにする。ここで交差ベルト
層と周方向ベルト層との間の不連続点がトレッド接地幅
の中心から接地端までの長さの35〜75%の範囲に位
置することが次の理由から好ましい。
In this invention, it is more advantageous to satisfy the following conditions under the above-mentioned basic configuration. That is, in order to suppress the increase in the thickness of all belt layers in the tread center region and improve durability, the cross belt layers arranged in the tread side regions and the circumferential belt layers arranged in the tread center region are substantially 1N. Here, it is preferable that the discontinuity point between the cross belt layer and the circumferential belt layer be located in a range of 35 to 75% of the length from the center of the tread contact width to the contact edge for the following reason.

耐圧テスト時及び負荷転勤時のベルトの周方向伸び分布
をその最大値を100とした指数で第3図に示したが、
耐圧テスト時にはトレッド接地幅の35%未満の領域で
はベルトの伸びが大きく、一方負荷転勤時には逆に接地
幅中心での変形が小さく、接地幅の75%をこえるショ
ルダ一部の領域でベルトの伸びは大きい。°従って交差
ベルト層と周方向ベルト層の間の不連続点の位置を上記
した範囲にすることによって、トレッド中央域の周方向
ベルト層が耐圧テストにおける剛性の確保に有効に寄与
する一方、負荷転勤時には、変形の大きいショルダ一部
に伸び易い交差ベルト層が配置され、周方向ベルト層が
この領域で変形を拘束して耐偏摩耗性に悪影響を及ぼす
ことがない。
Figure 3 shows the circumferential elongation distribution of the belt during pressure resistance tests and load transfer using an index with the maximum value as 100.
During the pressure resistance test, belt elongation was large in the region of less than 35% of the tread contact width, while during load transfer, on the other hand, deformation at the center of the contact width was small, and belt elongation occurred in some shoulder regions exceeding 75% of the contact width. is big. °Therefore, by setting the position of the discontinuity between the cross belt layer and the circumferential belt layer within the above-mentioned range, the circumferential belt layer in the center area of the tread can effectively contribute to ensuring rigidity in the pressure test, while at the same time At the time of transfer, a cross belt layer that is easy to stretch is arranged in a part of the shoulder where deformation is large, and the circumferential belt layer restrains deformation in this area, so that uneven wear resistance is not adversely affected.

交差ベルト層をトレッド側域のみに配置した場合トレッ
ド中央域は周方向ベルト層のみとなり、トレッド幅方向
にはベルトコードが配置されていないのでタイヤ回転軸
方向の剛性及び剪断剛性が極端に低く、交差ベルト層を
配置したトレッド側域との間に大きな剛性段差が生じ、
その境界の部分に応力集中が起こり、セパレーション等
の故障を起こし易い。従って交差ベルト層の少なくとも
1層はトレッド側載量にわたる連続層であることが望ま
しい。
If the crossed belt layers are placed only in the tread side areas, the central tread area will have only the circumferential belt layer, and since no belt cords are placed in the tread width direction, the rigidity in the tire rotational axis direction and shear rigidity will be extremely low. A large rigidity difference occurs between the tread side area where the crossed belt layer is placed,
Stress concentration occurs at the boundary, which tends to cause failures such as separation. Therefore, it is desirable that at least one of the cross belt layers be a continuous layer over the tread side load.

交差ベルト層端縁部における眉間応力集中の緩和の点か
ら、交差ベルト層の少なくとも1層が折り返しプライよ
りなることが好ましい。
From the viewpoint of alleviating stress concentration between the eyebrows at the edge of the crossed belt layer, it is preferable that at least one layer of the crossed belt layer is made of a folded ply.

負荷転勤時にタイヤの周方向に伸縮し易いベルト構造の
方がタイヤ踏面部のトレッド中央部と、ショルダ一部の
外周差に起因するトレッドの剪断変形を緩和し、ショル
ダ一部の引きずりによる偏摩耗を抑制できる。負荷転勤
時にベルト部は荷重直下で曲げ変形を受け、トレッドよ
り離れた領域すなわちカーカス層に隣接する領域はどよ
り周方向に伸ばされるので、その領域に周方向へより伸
縮し易い交差ベルト層を配置することが有効である。
A belt structure that easily expands and contracts in the circumferential direction of the tire during load transfer alleviates the shearing deformation of the tread caused by the difference in the outer circumference between the center part of the tread on the tire tread and part of the shoulder, thereby reducing uneven wear caused by dragging part of the shoulder. can be suppressed. During load transfer, the belt part undergoes bending deformation directly under the load, and the region away from the tread, that is, the region adjacent to the carcass layer, is stretched more circumferentially. Therefore, a cross belt layer that is more elastic in the circumferential direction is provided in that region. It is effective to place

また上記した基本構成においては、分割された交差ベル
ト層間(以下中間部という)に周方向ベルト層が存在し
ない構造もあり得るが、この場合中間部の空間をゴムシ
ートで埋めたとしても加硫時にゴム流れやベルトコード
の収縮によって上方の周方向ベルト層のプライが中間部
に落ち込むべルト乱れなどの製造不良を生じ易い。そこ
で上方からのプライ落ち込みのおそれのない最外側にト
レッド側域のみにプライを配した分割層を配することが
好ましい。さらに分割層のトレッド中央域側の端部が、
交差ベルト層における連続点Pと同様、トレッド接地幅
の中心を起点としてこの起点からトレッド接地端までの
長さの35〜75%の範囲に位置することがより好まし
い。
In addition, in the basic configuration described above, there may be a structure in which there is no circumferential belt layer between the divided intersecting belt layers (hereinafter referred to as the middle part), but in this case, even if the space in the middle part is filled with a rubber sheet, the vulcanization At times, manufacturing defects such as belt disorder in which the ply of the upper circumferential belt layer falls into the middle part due to rubber flow or contraction of the belt cord are likely to occur. Therefore, it is preferable to arrange a split layer in which plies are arranged only in the tread side region on the outermost side where there is no risk of ply falling from above. Furthermore, the end of the split layer on the tread center area side is
As with the continuous point P in the cross belt layer, it is more preferable that the continuous point P is located in a range of 35 to 75% of the length from the center of the tread contact width as a starting point to the tread contact end.

(実施例) タイヤサイズ[46xlB、0R20の航空機用タイヤ
に用いたカーカスの構造を第1図に示し、カーカスには
ナイロン66 (1680d/3)をタイヤ周方向に対
してほぼ90°の角度で配置しである。
(Example) Figure 1 shows the structure of a carcass used for an aircraft tire with a tire size of 46x1B and 0R20. It is arranged.

ベルト層が第4図(A)〜(D)に交差ベルト層を実線
で周方向ベルト層を破線にて示す構造のタイヤをそれぞ
れ製作し、それぞれのタイヤについてベルト部重量、耐
圧テスト破壊圧力、ベルト耐久性及び偏摩耗性(ショル
ダ一部リプの摩耗量)を調べ、その結果を各ベルト層の
諸元とともに下表に併記する。
Tires with belt layers shown in FIGS. 4(A) to (D), in which the intersecting belt layers are shown by solid lines and the circumferential belt layers are shown by broken lines, were manufactured, and for each tire, the weight of the belt part, the pressure resistance test burst pressure, The belt durability and uneven abrasion (amount of wear on part of the shoulder lip) were investigated, and the results are listed in the table below along with the specifications of each belt layer.

なお実施例における周方向ベルト層と交差ベルト層との
間の不連続点および周方向ベルト層における分割層のト
レッド中央域側の端部はトレッド接地幅の中心を起点と
してこの起点からトレッド側端までの長さの50%の位
置に設定した。
In addition, in the examples, the discontinuity point between the circumferential belt layer and the cross belt layer and the end of the dividing layer in the circumferential belt layer on the tread center region side are from the center of the tread contact width as the starting point to the tread side end. It was set at 50% of the length up to.

上表において耐圧テスト、ベルト耐久性テストはFAA
 91格に準拠し、ベルト耐久性に関しては、Q m1
le/hから225 m1le/hまで速度を上げたの
ち、荷重を取り除く離陸シュミレーシゴンを50回まで
繰り返し、完走した場合はタイヤを解剖してベルト部の
亀裂状態を比べた。
In the above table, pressure test and belt durability test are FAA
Based on 91 rating, regarding belt durability, Q m1
After increasing the speed from 225 m1le/h to 225 m1le/h, the takeoff simulation was repeated up to 50 times to remove the load, and if the test was completed, the tires were dissected and the state of cracks in the belt was compared.

偏摩耗性に関しては、ドラムでの促進摩耗試験後のトレ
ッドシッルダ一部のリプの摩耗!(各リブの平均摩耗深
さ)を同中央部のリプの摩耗量を100としたときの指
数で示したもので、100に近いほどショルダーリブの
摩耗量がトレッド中央部のリブの摩耗量に近(シールグ
一部のリプの肩落ち偏摩耗が改良されたことを示す。
Regarding uneven wear, some lips of the tread sill were worn out after an accelerated wear test on a drum! (Average wear depth of each rib) is expressed as an index when the wear amount of the rib at the center is set as 100. The closer the value is to 100, the more wear the shoulder rib wears to the rib at the center of the tread. Close (indicates that the uneven wear on the shoulders of some seals has been improved).

オーバーロード時(一部のタイヤがバンク等)の耐久性
に関しては、トレッド側域部での接地圧の上昇に伴なう
発熱増の程度を示すものとして正規荷重の150%のオ
ーバーロードにてOm1le八から225 m1le八
まで速度を上げる111B!シエミレーシヨンを行ない
、その際のトレッド側域部での最高温度を測定した結果
を実施例を100とした指数で示す。
Regarding durability under overload (some tires are banked, etc.), it indicates the degree of increase in heat generation due to increase in ground pressure at the tread side area.At overload of 150% of normal load. 111B increases the speed from Om1le8 to 225 m1le8! The maximum temperature at the side area of the tread during shear emission was measured, and the results are expressed as an index with the example as 100.

同表より明らかなように、この発明のタイヤはベルト重
量をあまり増加させることなくかつベルト耐久性をそこ
なうことなく耐圧性を満足し、さらにオーバーロード時
にもベルト部温度が過度に増大せず安全性が一層向上し
、同時に耐偏摩耗性も大幅に向上できることがわかる。
As is clear from the table, the tire of the present invention satisfies the pressure resistance without significantly increasing the belt weight and without deteriorating the belt durability, and is also safe because the belt temperature does not increase excessively even in the event of an overload. It can be seen that the properties are further improved, and at the same time, the uneven wear resistance is also significantly improved.

(発明の効果) この発明の航空機用タイヤは、耐久性及び耐偏摩耗性を
向上させることができ、従来は難しかった各特性の向上
を高次元でかつ同時に達成し得る。
(Effects of the Invention) The aircraft tire of the present invention can improve durability and uneven wear resistance, and can simultaneously achieve improvements in each characteristic at a high level, which has been difficult in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に従う航空機用タイヤの断面図、 第2図(A)〜(E)は他のベルト層の構造を示す説明
図、 第3図はトレッド各領域におけるベルト周方向伸びを示
すグラフ、 第4図(A)〜(0)はベルト層の構造を示す説明図で
ある。 l・・・カーカス    2・・・交差ベルト層3・・
・周方向ベルl−N 4・・・トレッド5・・・ビード
コア 特許出願人   株式会社ブリヂストン第2図 (A CCC) (B)(i)。 (Eン 第3図
Fig. 1 is a cross-sectional view of an aircraft tire according to the present invention, Figs. 2 (A) to (E) are explanatory diagrams showing the structure of other belt layers, and Fig. 3 shows circumferential elongation of the belt in each region of the tread. The graphs and FIGS. 4(A) to 4(0) are explanatory diagrams showing the structure of the belt layer. l...Carcass 2...Cross belt layer 3...
- Circumferential direction bell l-N 4... Tread 5... Bead core patent applicant Bridgestone Corporation Figure 2 (A CCC) (B) (i). (Fig. 3

Claims (1)

【特許請求の範囲】 1、互いに平行配列をなす有機繊維コードをタイヤの赤
道面に対し70〜90°のコード角にて配置した複数プ
ライよりなり、少なくとも1プライは一対のビードコア
ーのまわりでタイヤの内方から外方へ巻返した、折返し
部を有するトロイド状のカーカス、 互いに平行配列をなす有機繊維コードをタイヤの赤道に
対し10〜70°のコード角にて配置した少なくとも2
層のコード層よりなり、コード層をそのコードが互いに
交差する配置にて積層した交差ベルト層及び、 互いに平行配列をなす有機繊維コードをタイヤの赤道と
実質上平行に配置した少なくとも2層のコード層よりな
る周方向ベルト層、をそなえ、 交差ベルト層はタイヤのトレッド側域での層数がトレッ
ド中央域での層数より多く、周方向ベルト層はトレッド
中央域での層数がトレッド側域での層数より多くかつ周
方向ベルト層の少なくとも1層はトレッド両側域間にわ
たる連続層からなり、さらに交差ベルト層および周方向
ベルト層におけるトレッド側域とトレッド中央域での層
数の差は交差ベルト層に比し周方向ベルト層で小さくし
てなることを特徴とする航空機用空気入りラジアルタイ
ヤ。
[Scope of Claims] 1. Consisting of a plurality of plies of organic fiber cords arranged in parallel to each other at a cord angle of 70 to 90 degrees with respect to the equatorial plane of the tire, at least one ply is arranged around a pair of bead cores. a toroidal carcass having a folded part, which is wound from the inside to the outside of the tire;
a cross belt layer consisting of a layer of cords, the cord layers being laminated in such a way that the cords intersect with each other; and at least two cord layers comprising organic fiber cords arranged in parallel to each other substantially parallel to the equator of the tire. The cross belt layer has a circumferential belt layer in which the number of layers in the tread side area of the tire is greater than the number of layers in the tread center area, and the circumferential belt layer has a number of layers in the tread center area of the tire that is greater than the number of layers in the tread center area. at least one layer of the circumferential belt layer is a continuous layer extending between both side regions of the tread, and the difference in the number of layers between the tread side region and the tread center region in the cross belt layer and the circumferential belt layer. is a pneumatic radial tire for aircraft, characterized in that the circumferential belt layer is smaller than the cross belt layer.
JP62270281A 1987-10-28 1987-10-28 Pneumatic radial tyre for aircraft Pending JPH01114502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62270281A JPH01114502A (en) 1987-10-28 1987-10-28 Pneumatic radial tyre for aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62270281A JPH01114502A (en) 1987-10-28 1987-10-28 Pneumatic radial tyre for aircraft

Publications (1)

Publication Number Publication Date
JPH01114502A true JPH01114502A (en) 1989-05-08

Family

ID=17484072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62270281A Pending JPH01114502A (en) 1987-10-28 1987-10-28 Pneumatic radial tyre for aircraft

Country Status (1)

Country Link
JP (1) JPH01114502A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284375A (en) * 2003-03-19 2004-10-14 Bridgestone Corp Pneumatic radial tire for high speed heavy load
JP2011526555A (en) * 2008-06-30 2011-10-13 ソシエテ ド テクノロジー ミシュラン Aircraft tire crown
JP2016008919A (en) * 2014-06-25 2016-01-18 住友ゴム工業株式会社 Simulation method and simulation device for tire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284375A (en) * 2003-03-19 2004-10-14 Bridgestone Corp Pneumatic radial tire for high speed heavy load
JP2011526555A (en) * 2008-06-30 2011-10-13 ソシエテ ド テクノロジー ミシュラン Aircraft tire crown
JP2016008919A (en) * 2014-06-25 2016-01-18 住友ゴム工業株式会社 Simulation method and simulation device for tire

Similar Documents

Publication Publication Date Title
JP3016622B2 (en) Pneumatic radial tire
JP5481336B2 (en) Aircraft tires with improved bead structure
JPS62251203A (en) Pneumatic tire
JPH0545441B2 (en)
US5178703A (en) Breaker with wound band
JP2899198B2 (en) High speed heavy duty tire
JP4589640B2 (en) Aircraft tire with improved bead structure
JPS5845366B2 (en) Pneumatic radial tires with excellent high-speed durability
JPH0382604A (en) High-performance pneumatic radial tire
JPH0648111A (en) Radial tire
JPH01114502A (en) Pneumatic radial tyre for aircraft
JPH0592709A (en) High speed and heavy load tire
EP4249290A1 (en) Tire
JPS61196805A (en) Pneumatic radial-ply tire
JPH08216618A (en) Pneumatic radial tire
JPH02279401A (en) Bias tire for aircraft
JPH07164839A (en) Tire for high speed and heavy load
JP2001163008A (en) Pneumatic tire for heavy load at high speed
JP2786805B2 (en) High speed heavy duty tire
JPH0281706A (en) Pneumatic tire for heavy load
JPH0481301A (en) Tire for high speed and heavy load
EP0371754B1 (en) Radial tyre
JPH02310105A (en) Pneumatic tire
EP3750721B1 (en) Tire and radial aicraft tire
EP3736141B1 (en) Radial tire