JPH01114110A - Piezoelectric thin film surface acoustic wave device - Google Patents

Piezoelectric thin film surface acoustic wave device

Info

Publication number
JPH01114110A
JPH01114110A JP27136887A JP27136887A JPH01114110A JP H01114110 A JPH01114110 A JP H01114110A JP 27136887 A JP27136887 A JP 27136887A JP 27136887 A JP27136887 A JP 27136887A JP H01114110 A JPH01114110 A JP H01114110A
Authority
JP
Japan
Prior art keywords
film
thin film
piezoelectric thin
acoustic wave
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27136887A
Other languages
Japanese (ja)
Inventor
Shinichi Yamamoto
真一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP27136887A priority Critical patent/JPH01114110A/en
Publication of JPH01114110A publication Critical patent/JPH01114110A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To improve the chemical stability by adjusting the film thickness of the surface of a piezoelectric thin film so as to form a thin metallic film to adjust the surface acoustic wave frequency of the title device thereby making the frequency fine adjustment easy with high accuracy and facilitating the rinsing. CONSTITUTION:Comb-line electrodes 6a, 6b are formed on the surface of a silicon substrate 5 and silicon oxide film 7 is vapor-deposited between the electrodes 6a, 6b to cover the surface of them. A zinc oxide film 8 (piezoelectric thin film) is grown on the silicon substrate 5 so as to avoid the continuity between aluminum film and the electrodes 6a, 6b and the film thickness (l) of the film 7 is selected to nearly 1/10 of the film thickness H to prevent the adverse effect on the propagation of the surface acoustic wave. Then the film 8 is formed by a film thickness H by the sputtering vapor-deposition above the part where the electrodes 6a, 6b are alternately consecutive especially. Then the film 9 is formed on the surface of the film 8 by the sputter vapor- deposition and the film thickness (t) is controlled with high accuracy to make the frequency highly accurate and adjustably easily and the rinsing is facilitated to improve the chemical stability.

Description

【発明の詳細な説明】 〔概要〕 圧ffi薄膜とくし形電極とを組合わせて構成され、く
し形電極に高周波電界を印加して表面波を励振、或いは
くし形電極上を伝搬する表面波を電気信号に変換して受
信する圧N I II!弾性表面波装置に関し、 周波数微調整を容易に、かつ、高精度に行ない得、しか
も、容易に洗浄できて化学的安定性の高い表面波装置を
得ることを目的とし、 圧電体1JIIIの表面上に、膜厚を調整して装置の弾
性表面波周波数を調整するための金属薄膜を形成した構
成とする。
[Detailed Description of the Invention] [Summary] It is constructed by combining a pressure FFI thin film and comb-shaped electrodes, and applies a high-frequency electric field to the comb-shaped electrodes to excite surface waves or generate surface waves propagating on the comb-shaped electrodes. The pressure N I II is converted into an electrical signal and received! Regarding surface acoustic wave devices, the purpose is to obtain a surface acoustic wave device that allows fine frequency adjustment easily and with high precision, is easy to clean, and has high chemical stability. In addition, a metal thin film is formed to adjust the surface acoustic wave frequency of the device by adjusting the film thickness.

〔産業上の利用分野〕[Industrial application field]

本発明は、圧電薄膜とくし形電極とを組合わせて構成さ
れ、くし形電極に高周波電界を印加して表面波を励振、
或いはくし形電極上を伝搬する表面波を電気信号に変換
して受信する圧電薄膜弾性表面波装置に関する。
The present invention is constructed by combining a piezoelectric thin film and comb-shaped electrodes, and applies a high-frequency electric field to the comb-shaped electrodes to excite surface waves.
Alternatively, the present invention relates to a piezoelectric thin film surface acoustic wave device that converts surface waves propagating on comb-shaped electrodes into electrical signals and receives the electrical signals.

このような圧電薄膜弾性表面波装置では、所定の周波数
を得るためにくし形電極の膜厚を削り取る等して周波数
調整を行なうが、このような周波数調整を容易に、かつ
高精度に行なう必要がある。
In such piezoelectric thin film surface acoustic wave devices, the frequency is adjusted by shaving off the film thickness of the comb-shaped electrode in order to obtain a predetermined frequency, but it is necessary to perform such frequency adjustment easily and with high precision. There is.

又、くし形電極作製後に装置を洗浄する必要があるが、
この場合も容易に洗浄でき、かつ、化学的変化を生じな
いことが必要である。
Also, it is necessary to clean the device after making the comb-shaped electrodes.
In this case as well, it is necessary that it can be easily cleaned and that no chemical changes occur.

〔従来の技術〕[Conventional technology]

弾性表面波を励振或いは受信する基本的な構成は第3図
に示す如くである。同図(A)、(B)に示すようなア
ルミニウム(Al>膜のくし形電極1を同図(A)に示
す圧電体単結晶2の表面に、或いは、同図(B)に示す
圧電体薄膜3の上下いずれかの面に作製しく同図(B)
中、4は非圧電体基板)クシ形電極1にへ周波電界を印
加して表面波を励振、或いはくし形ff1il上を伝搬
する表面波を電気信号に変換して受信する。
The basic configuration for exciting or receiving surface acoustic waves is shown in FIG. A comb-shaped electrode 1 made of aluminum (Al> film) as shown in (A) and (B) of the same figure is attached to the surface of the piezoelectric single crystal 2 shown in (A) of the same figure, or (B)
4 is a non-piezoelectric substrate) A frequency electric field is applied to the comb-shaped electrode 1 to excite surface waves, or the surface waves propagating on the comb-shaped electrode 1 are converted into electrical signals and received.

ここで、弾性表面波の動作基本周波数をfo+表面波の
速度をVとすれば、電極幅りと空隙aとを等しく構成し
た場合の電極幅りは、h−V/4foである。一般に、
表面波の実用周波数範囲は数10MHz〜数GHzであ
るので、例えばv=4000m/Sとすれば、電極幅り
は100ura  (fo−10MHz ) 〜0.2
μ1(fo=5GHz )の範囲に構成される。
Here, if the operating fundamental frequency of the surface acoustic wave is fo+the velocity of the surface wave is V, then the electrode width when the electrode width and the gap a are configured to be equal is h-V/4fo. in general,
Since the practical frequency range of surface waves is several tens of MHz to several GHz, for example, if v = 4000 m/S, the electrode width is 100 ura (fo-10 MHz) to 0.2
It is configured in the range of μ1 (fo=5GHz).

ところで、所定の周波数を得るにi、電極幅り或いは圧
電体WI膜の膜厚を所定の随に設定することが必要であ
るが、最終的な周波数機’amは、製作段階においてく
し形電極1の膜厚を削り取ることによってなiれる。こ
の場合、膜厚を少なく調整すればその分だけ膜による応
力が小さくなるので、この部分の弾性表面波の周波数を
高くすることができる。
By the way, in order to obtain a predetermined frequency, it is necessary to set the electrode width or the film thickness of the piezoelectric WI film to a predetermined value. This can be achieved by removing the film thickness of 1. In this case, if the film thickness is adjusted to a smaller value, the stress due to the film will be reduced by that much, so the frequency of the surface acoustic waves in this portion can be increased.

従来、このような周波数微調整の方法としては、化学液
を用いたウェットエツチング法にてくし形電極を削り取
ったり或いはプラズマを用いたドライマツチング法にて
結晶面を削り取る方法がある。
Conventionally, such frequency fine adjustment methods include scraping off the comb-shaped electrode by wet etching using a chemical solution, or scraping off the crystal plane by dry matching using plasma.

一方、くし形電極作製後に装置を清浄にする目的で装置
を洗浄する必要がある。このとき、圧電体薄膜の材料と
しては、製造技術及びスパッタ材料の供給という点で安
定しており、且つ電気機械結合係数の大きな酸化亜鉛(
ZnO)膜が通常用いられる。
On the other hand, it is necessary to clean the device after manufacturing the comb-shaped electrodes. At this time, the material for the piezoelectric thin film is zinc oxide (zinc oxide), which is stable in terms of manufacturing technology and sputtering material supply and has a large electromechanical coupling coefficient.
ZnO) films are commonly used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述の従来例では、周波数微調整に際して化学液を用い
たウェットエツチング法を行なっているのでくし形電極
の膜厚制御が困難であり、一方のプラズマを用いたドラ
イエツチング法では製造装置が大形化し、コスト高とな
り、工程が多くなる問題点があった。
In the conventional example mentioned above, since a wet etching method using a chemical liquid is used to fine-tune the frequency, it is difficult to control the film thickness of the comb-shaped electrode.On the other hand, the dry etching method using plasma requires large manufacturing equipment. There were problems in that the process became more complex, higher costs, and more steps were required.

又、装置の洗浄に関しては次のような問題点があった。Additionally, there were the following problems with cleaning the equipment.

即ち、圧電体薄膜として前記の理由から酸化亜鉛(Zn
O)が用いられるが、ZnO膜は一般に化学的安定性に
欠け、特に、酸に対して溶解性である。このため、第4
図に示すように、非圧電体基板4上にZnO膜の圧電体
薄膜3を形成され、その表面にくし形電極1を形成され
たものでは、ZnO膜の圧電体薄膜3が外に露出するの
で、このような構成のものでは圧電体薄膜が溶解してし
まう問題点があった。
That is, for the reasons mentioned above, zinc oxide (Zn) is used as the piezoelectric thin film.
Although ZnO films generally lack chemical stability and are particularly soluble in acids. For this reason, the fourth
As shown in the figure, when a piezoelectric thin film 3 of ZnO film is formed on a non-piezoelectric substrate 4 and a comb-shaped electrode 1 is formed on the surface thereof, the piezoelectric thin film 3 of ZnO film is exposed to the outside. Therefore, with such a configuration, there was a problem that the piezoelectric thin film would dissolve.

本発明は、周波数微調整を容易に、かつ、高精度に行な
い得、しかも、容易に洗浄できて化学的安定性の高い圧
電薄膜弾性表面波装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a piezoelectric thin film surface acoustic wave device that allows fine frequency adjustment easily and with high precision, is easy to clean, and has high chemical stability.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、圧電体薄膜の表面上に、膜厚を調整して
装置の弾性表面波周波数を調整するための金m1sIl
を形成してなることを特徴とする圧電薄膜弾性表面波装
置によって解決される。
The above problem is that gold m1sIl is added on the surface of the piezoelectric thin film to adjust the film thickness and adjust the surface acoustic wave frequency of the device.
The problem is solved by a piezoelectric thin film surface acoustic wave device characterized by forming a piezoelectric thin film surface acoustic wave device.

〔作用〕[Effect]

本発明では、圧電体NWAの上に金属薄膜を形成する際
、圧電体isに対する応力が大になり、この部分の弾性
表面波の周波数が低くなる。金属薄膜の膜厚を調整制御
することにより、周波数を微調整し得る。
In the present invention, when a metal thin film is formed on the piezoelectric material NWA, stress on the piezoelectric material is increases, and the frequency of the surface acoustic wave in this portion becomes low. By adjusting and controlling the thickness of the metal thin film, the frequency can be finely adjusted.

〔実施例〕 第1図は本発明装置の一実施例の構成図を示し、同図(
A)は斜視図、同図(B)は断面図である。
[Embodiment] Figure 1 shows a configuration diagram of an embodiment of the device of the present invention.
A) is a perspective view, and (B) is a sectional view.

なお、同図(A>は、図を明瞭にするためにくし形電極
6a、6b、酸化シリコン膜7.M化亜鉛膜8.アルミ
ニウム膜9の各厚み部分を省略して描いである。
Note that, in FIG. 2A, the comb-shaped electrodes 6a, 6b, the silicon oxide film 7, the zinc oxide film 8, and the aluminum film 9 are omitted for clarity.

第1図中、5はシリコン基板(非圧電体基板)で、その
表面に例えばアルミニウム(金でもよい)等のくし形電
極6a、6bが形成されている。7は酸化シリコン(S
fOz)膜(誘電体薄膜)で、シリコン基板5の略仝表
面を覆うように形成されている。8は酸化亜鉛(ZnO
)膜(圧電体薄膜)で、酸化シリコン膜7の表面上で、
特にくし形電極6a、6bが交互に連続する部分の上方
に膜厚Hで形成されている。9は例えばアルミニウム(
A2)膜(或いは金(Au)膜でもよい)で、装置の表
面に膜厚tでスパッタ蒸着によって形成されている。
In FIG. 1, reference numeral 5 denotes a silicon substrate (non-piezoelectric substrate), on the surface of which comb-shaped electrodes 6a, 6b made of, for example, aluminum (or gold may be used) are formed. 7 is silicon oxide (S
fOz) film (dielectric thin film), which is formed to cover substantially the surface of the silicon substrate 5. 8 is zinc oxide (ZnO
) film (piezoelectric thin film) on the surface of the silicon oxide film 7,
In particular, the comb-shaped electrodes 6a and 6b are formed with a film thickness H above the alternately continuous portions. 9 is, for example, aluminum (
A2) A film (or a gold (Au) film may be used), which is formed on the surface of the device by sputter deposition to a thickness t.

上述のような構成になる表面波装置を作製するに際し、
次のような工程で行なう。
When creating a surface wave device with the above configuration,
The process is as follows.

先ず、シリコン基板5の表面にくし形電極6a。First, a comb-shaped electrode 6a is formed on the surface of a silicon substrate 5.

6bを形成し、くし形電極6a,5bの各電極間に、か
つ、これらの表面を覆うように酸化シリコン膜7を蒸着
する。酸化シリコン膜7は、アルミニウムI[19とく
し形電極6a、6bとが導通しないように、かつ、シリ
コン基板7上に酸化亜鉛膜8を成長させるためのもので
ある。この場合、酸化シリコンgI7の膜厚2を酸化亜
鉛膜8の膜厚Hの1/10程度にすれば、弾性表面波の
伝搬に悪影響が及ぶことはない。
6b is formed, and a silicon oxide film 7 is deposited between each of the comb-shaped electrodes 6a and 5b and so as to cover the surfaces thereof. The silicon oxide film 7 is for preventing conduction between the aluminum I[19 and the interdigitated electrodes 6a, 6b, and for growing the zinc oxide film 8 on the silicon substrate 7. In this case, if the film thickness 2 of the silicon oxide film gI7 is set to about 1/10 of the film thickness H of the zinc oxide film 8, the propagation of surface acoustic waves will not be adversely affected.

続いて、酸化シリコンlI7の表面上で、特にくし形電
極6a、6bが交互に連続する部分の上方にスパッタ蒸
着によって膜厚Hで酸化亜鉛膜8を形成する。ここで、
結晶面(001)のシリコン基板と結晶口(0001)
の酸化亜鉛膜とを組合わせた構造の表面波装置を伝搬す
るRayleighwavesの分散特性の理論解析結
果を第2図に示す。
Subsequently, a zinc oxide film 8 with a thickness H is formed by sputter deposition on the surface of the silicon oxide lI7, particularly above the portions where the comb-shaped electrodes 6a and 6b are alternately continuous. here,
Silicon substrate with crystal plane (001) and crystal mouth (0001)
FIG. 2 shows the results of a theoretical analysis of the dispersion characteristics of Rayleigh waves propagating through a surface acoustic wave device having a structure in which a zinc oxide film is combined with a zinc oxide film.

なお、波長をλとするとに=2π/λであるので、第2
図の膜厚KHはノンディメンションである。同図より明
らかな如く、酸化亜鉛膜(圧電体薄膜)8のIg!厚を
大にする程、弾性表面波の位相速度(周、波数)は低く
なる。
Note that if the wavelength is λ, then = 2π/λ, so the second
The film thickness KH in the figure is non-dimensional. As is clear from the figure, the Ig! of the zinc oxide film (piezoelectric thin film) 8! The larger the thickness, the lower the phase velocity (period, wave number) of the surface acoustic wave.

このように、周波数は酸化亜鉛膜8の膜厚によって決定
されるが、酸化亜鉛膜8そのものの膜厚を制御すること
だけで周波数を高精度に制御することは困難である。そ
こで、本発明は、酸化亜鉛膜8をスパッタ蒸着すること
によって大体の周波数を決定した後、この表面にアルミ
ニウム膜9を例えばスパッタ蒸着(真空蒸着や電解メツ
キでもよい)によって形成し、この膜厚tを高精度に制
御して周波数を微調整する。この場合、圧電体薄膜であ
る酸化亜鉛膜8の上にアルミニウム膜9が形成されると
いうことは、酸化亜鉛膜8に対する応力が大になること
であり、これにより、この部分の弾性表面波の周波数が
低くなる。なお、アルミニウムlI9等の金属薄膜を用
いるのは、真空蒸着やスパッタN着を行なう際に信頼性
が高く、しかも、弾性表面波の周波数を下げるのが容易
であるからである。
As described above, the frequency is determined by the thickness of the zinc oxide film 8, but it is difficult to control the frequency with high precision only by controlling the thickness of the zinc oxide film 8 itself. Therefore, in the present invention, after determining the approximate frequency by sputter-depositing a zinc oxide film 8, an aluminum film 9 is formed on this surface by sputter-deposition (vacuum deposition or electrolytic plating may also be used), and this film thickness is Finely adjust the frequency by controlling t with high precision. In this case, the fact that the aluminum film 9 is formed on the zinc oxide film 8, which is a piezoelectric thin film, means that the stress on the zinc oxide film 8 becomes large, and this causes the surface acoustic wave in this part to increase. frequency becomes lower. The reason why a metal thin film such as aluminum lI9 is used is that it is highly reliable when performing vacuum evaporation or sputtering N deposition, and it is easy to lower the frequency of surface acoustic waves.

このように、アルミニウム膜9の膜厚tをスパッタ蒸着
等によって制御することによって周波数を微調整してい
るので、従来例のようなウエットエツヂフグ法にてくし
形電極そのものを削り取る方法に比して高精度に膜厚制
御(周波数調整)し得、又、従来例のようなドライエツ
チング法に比して製造装置が小さくて済み、低コストで
、かつ、少ない工程で済む。
In this way, since the frequency is finely adjusted by controlling the film thickness t of the aluminum film 9 by sputter deposition, etc., this method is compared to the conventional wet etching method in which the comb-shaped electrode itself is scraped off. The film thickness can be controlled with high precision (frequency adjustment), and the manufacturing equipment can be smaller than the conventional dry etching method, resulting in lower cost and fewer steps.

上記のように薄膜作製後、装置を洗浄する。この場合、
一般に化学的安定性に欠ける酸化亜鉛膜8はアルミニウ
ムg!9に覆われて外気に接しておらず、このため、装
置全体を洗浄しても酸化亜鉛膜8に悪影響が及ぶことは
ない。
After forming the thin film as described above, the apparatus is cleaned. in this case,
Zinc oxide film 8, which generally lacks chemical stability, is made of aluminum g! 9 and is not in contact with the outside air, therefore, even if the entire apparatus is cleaned, the zinc oxide film 8 will not be adversely affected.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によれば、くし形電極を削り
取る従来例に比して、金[?膜の膜厚を調整することに
よって周波数を高精度に、かつ、容易に微調整し得、し
かも、製造装置が小形で済むので低コストであり、更に
、圧電体薄膜が金属薄膜によって覆われているので、装
置全体を洗浄しても圧電体iFlに悪影響がなく、化学
的安定性の高い表面波装置を得ることができる。
As explained above, according to the present invention, gold [? By adjusting the thickness of the film, the frequency can be finely adjusted with high precision and easily.Moreover, the manufacturing equipment can be small, so the cost is low.Furthermore, the piezoelectric thin film is covered with a metal thin film. Therefore, even if the entire device is cleaned, there is no adverse effect on the piezoelectric material iF1, and a surface wave device with high chemical stability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の構成図、 第2図は酸化亜鉛膜の位相速度特性図、第3図は一般の
装置の概略図、 第4図は酸化亜鉛股上にくし形電極を形成された装置の
断面図である。 図において、 5はシリコン基板(非圧電体基板)、 6a、6bはくし形電極、 7は酸化シリコン膜(誘電体ysm>、8は酸化亜鉛膜
(圧電体薄膜)、 9はアルミニウムl1l(金属薄膜) を示す。 第1図 嬉2図 (A)           (B) くし形:’tat4フー悄織のダ1鑵崎(面し友儂a1
の和EII&[萌3図 4/ !!4図
Figure 1 is a configuration diagram of the device of the present invention, Figure 2 is a phase velocity characteristic diagram of a zinc oxide film, Figure 3 is a schematic diagram of a general equipment, and Figure 4 is a comb-shaped electrode formed on the crotch of zinc oxide. FIG. 2 is a cross-sectional view of the device. In the figure, 5 is a silicon substrate (non-piezoelectric substrate), 6a and 6b are comb-shaped electrodes, 7 is a silicon oxide film (dielectric ysm>), 8 is a zinc oxide film (piezoelectric thin film), and 9 is an aluminum l1l (metal thin film). ) is shown. Figure 1: Figure 2: (A) (B) Comb: 'tat4 Fu Yuori's Da 1 Aizaki (Moshi Yuki a1
Japanese EII & [Moe 3 Figure 4/! ! Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)非圧電体基板(5)上にくし形電極(6a,6b
)を形成し、更にその上に圧電体薄膜(8)を設けた構
造の圧電薄膜弾性表面波装置において、上記圧電体薄膜
(8)の表面上に、膜厚を調整して装置の弾性表面波周
波数を調整するための金属薄膜(9)を形成してなるこ
とを特徴とする圧電薄膜弾性表面波装置。
(1) Comb-shaped electrodes (6a, 6b) on the non-piezoelectric substrate (5)
), and a piezoelectric thin film (8) is further provided on the piezoelectric thin film surface acoustic wave device, the elastic surface of the device is formed by adjusting the film thickness on the surface of the piezoelectric thin film (8). A piezoelectric thin film surface acoustic wave device comprising a thin metal film (9) for adjusting wave frequency.
(2)該金属薄膜(9)は、該圧電体薄膜(8)全体を
覆うように形成してなることを特徴とする特許請求の範
囲第1項記載の圧電薄膜弾性表面波装置。
(2) The piezoelectric thin film surface acoustic wave device according to claim 1, wherein the metal thin film (9) is formed to cover the entire piezoelectric thin film (8).
(3)該非圧電体基板(5)と該圧電体薄膜(8)との
間で、該くし形電極(6a,6b)の各電極間に、かつ
、これらの表面を覆うように該電体薄膜(7)を形成し
てなることを特徴とする特許請求の範囲第1項記載の圧
電薄膜弾性表面波装置。
(3) Between the non-piezoelectric substrate (5) and the piezoelectric thin film (8), between each electrode of the comb-shaped electrodes (6a, 6b) and so as to cover the surfaces thereof. A piezoelectric thin film surface acoustic wave device according to claim 1, characterized in that a thin film (7) is formed.
JP27136887A 1987-10-27 1987-10-27 Piezoelectric thin film surface acoustic wave device Pending JPH01114110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27136887A JPH01114110A (en) 1987-10-27 1987-10-27 Piezoelectric thin film surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27136887A JPH01114110A (en) 1987-10-27 1987-10-27 Piezoelectric thin film surface acoustic wave device

Publications (1)

Publication Number Publication Date
JPH01114110A true JPH01114110A (en) 1989-05-02

Family

ID=17499096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27136887A Pending JPH01114110A (en) 1987-10-27 1987-10-27 Piezoelectric thin film surface acoustic wave device

Country Status (1)

Country Link
JP (1) JPH01114110A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7327069B2 (en) * 2005-03-04 2008-02-05 Hon Hai Precision Industry Co., Ltd. Surface acoustic wave device and method for making same and mobile phone having same
KR100856217B1 (en) * 2006-02-28 2008-09-03 후지쓰 메디아 데바이스 가부시키가이샤 Elastic boundary wave device, resonator and filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7327069B2 (en) * 2005-03-04 2008-02-05 Hon Hai Precision Industry Co., Ltd. Surface acoustic wave device and method for making same and mobile phone having same
KR100856217B1 (en) * 2006-02-28 2008-09-03 후지쓰 메디아 데바이스 가부시키가이샤 Elastic boundary wave device, resonator and filter

Similar Documents

Publication Publication Date Title
US6307447B1 (en) Tuning mechanical resonators for electrical filter
Dubois et al. BAW resonators based on aluminum nitride thin films
US20010038255A1 (en) Film acoustic wave device, manufacturing method and circuit device
CN110417374A (en) A kind of thin film bulk acoustic wave resonator and preparation method thereof
JP7270349B2 (en) SAW device and manufacturing method
JPH09326668A (en) Piezoelectric element and production of the same
JPH01114110A (en) Piezoelectric thin film surface acoustic wave device
CN110426451A (en) The method for measurement of etch-rate measuring equipment and lateral etch rate
JP2001332953A (en) Surface acoustic wave device
JPH0918270A (en) Production of end face reflection type surface acoustic wave device
JP3140767B2 (en) Manufacturing method of surface acoustic wave device
Laidoudi et al. High overtone acoustic resonator HBAR based on IDT's/c-tilted ZnO/Si for timing applications
JP3401112B2 (en) Oscillation circuit for piezoelectric crystal oscillation type film thickness meter
JPH0131728B2 (en)
US3465177A (en) Thin film piezoelectric transducer
JPH02301210A (en) Frequency adjustment method for surface acoustic wave device
JPH0247886B2 (en)
US11575081B2 (en) MEMS structures and methods of forming MEMS structures
DeMiguel-Ramos et al. Hafnium nitride as high acoustic impedance material for fully insulating acoustic reflectors
KR100460218B1 (en) Method of manufacturing surface acoustic wave device
JPS6172408A (en) Surface acoustic wave element
JPH03242012A (en) Manufacture of surface acoustic wave device
JPH05129874A (en) Crystal oscillator chip
JPH075687Y2 (en) Magnetostatic wave delay element
JPS5818810B2 (en) Onsagata Atsuddenkuyokushindoushi