JPH01113687A - Optical measuring apparatus of altitude of cloud - Google Patents

Optical measuring apparatus of altitude of cloud

Info

Publication number
JPH01113687A
JPH01113687A JP62271361A JP27136187A JPH01113687A JP H01113687 A JPH01113687 A JP H01113687A JP 62271361 A JP62271361 A JP 62271361A JP 27136187 A JP27136187 A JP 27136187A JP H01113687 A JPH01113687 A JP H01113687A
Authority
JP
Japan
Prior art keywords
light
angle
hood
receiver
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62271361A
Other languages
Japanese (ja)
Other versions
JPH0820512B2 (en
Inventor
Iesato Sato
佐藤 家郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Electric Co Ltd
Original Assignee
Meisei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Electric Co Ltd filed Critical Meisei Electric Co Ltd
Priority to JP62271361A priority Critical patent/JPH0820512B2/en
Publication of JPH01113687A publication Critical patent/JPH01113687A/en
Publication of JPH0820512B2 publication Critical patent/JPH0820512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To prevent the incident of the sunlight and the sticking of rain or snow, by a construction wherein the optical axes of a projector and a photosensor are inclined with respect to the vertical direction and a hood covering the transparent window planes of a projection plane and a photosensing plane so that they can not be seen vertically from above is provided at a position not intersecting the optical axes. CONSTITUTION:The optical axis (a) of a projector 1 is inclined by an angle theta1 from the vertical direction, while the plane of a transparent window 103 is also inclined by theta1 with respect to the horizontal direction. A photosensor 2 is disposed in the same state as the projector 1. Next, a slanting hood 3 is provided above the projector 1 and the photosensor 2, and an angle theta2 of inclination of the hood is set so that it does not intersect the optical axis (a). Besides, the upward length of the hood 3 is set so that the whole of transparent windows 103 and 203 are covered with the hood when viewed from above. Since the optical axis (a) is inclined by the angle theta1 in this way, measurement can be made in the direction wherein the sunlight is not incident directly, and the sticking of rain or snow or others on the transparent windows can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は航空気象観測等で必要な雲高測定装置(所謂、
シーロメータ)に関し、特に測定媒体として光(例えば
レーザー光)を夏用する光学式雲高測定装置に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cloud height measuring device (so-called,
The present invention relates to a ceilometer (ceilometer), and particularly to an optical cloud height measuring device that uses light (for example, laser light) as a measuring medium in the summer.

〔従来技術〕[Prior art]

天空に向けて発射した光の雲による反射光を受信し、光
の発射から受信までの時間を計測して当該時間から雲の
高さを測定する光学式雲高測定装置が公知である。
2. Description of the Related Art Optical cloud height measurement devices are known that receive reflected light from clouds of light emitted toward the sky, measure the time from the emission of light to reception, and measure the height of the cloud from the time.

従来の光学式雲高測定装置では、光は垂直上方に発射さ
れるようになっており、従って投光器及び受光器の光軸
は垂直上方に設定され、投光器の投光面及び受光器の受
光面は水平になっている。
In conventional optical cloud height measurement devices, the light is emitted vertically upward, so the optical axes of the emitter and receiver are set vertically upward, and the light emitting surface of the emitter and the light receiving surface of the receiver are set vertically upward. is horizontal.

また、太陽光が投光器及び受光器に直接入射して発光素
子及び受光素子を損傷するのを防止するために、投光面
及び受光面に長い円筒状フードを付けるか、又はメカニ
カルシャッターを装備し、太陽光の上記投光器及び受光
器へのIK接入射を防止している。特に高緯度地域に設
置する雲高測定装置では、太陽の軌道が高いため、この
ような太陽光遮断手段を必ず必要とする。
In addition, in order to prevent sunlight from directly entering the emitter and light receiver and damaging the light emitting and light receiving elements, a long cylindrical hood should be attached to the light emitter and light receiver, or a mechanical shutter should be installed. , preventing sunlight from entering the above-mentioned projector and receiver. In particular, cloud height measurement devices installed in high latitude regions always require such sunlight blocking means because the sun's orbit is high.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

れに設げた透光窓面(通常はクラウンガラスを使用して
いる。)に雨や雪が付着し易(、雨又は雪が降り始める
と投光及び受光の強さが弱まり、雲高の測定可能高度が
急激に減少する。
Rain or snow easily adheres to the transparent window surface (usually crown glass is used) installed in the area (when it starts to rain or snow, the strength of the light emitting and receiving light decreases, making it possible to measure cloud height. Altitude decreases rapidly.

また、特にメカニカルシャッターを有スるものでは、投
受光視野内に太陽光が入射したときにはメカニカルシャ
ッターが閉じるので観測を中断しなければならず、また
メカニカルシャッターの作動不良で発光素子及び受光素
子が破壊される事故が生ずることがある(投光器及び受
光器の光学レンズの焦点位置に発光素子及び受光素子が
固定されており、入射した太陽光の焦点は発光素子及び
受光素子の位tWtI/C結ばれる。)0また、円筒状
フードを有するものでは、特に高緯度地域に設置される
ものに於いては尚該円筒状フードを極めて長くしなけれ
ばならず、測定視野が狭くなって実用上測定が不可能と
なる。
In addition, especially for those equipped with a mechanical shutter, when sunlight enters the light emitting/receiving field of view, the mechanical shutter closes and observation must be interrupted, and if the mechanical shutter malfunctions, the light emitting element and light receiving element may become damaged. (The light-emitting element and the light-receiving element are fixed at the focal point of the optical lens of the emitter and receiver, and the focus of the incident sunlight is at the point of the light-emitting element and the light-receiving element.) ) 0 In addition, for those with a cylindrical hood, especially those installed in high latitude areas, the cylindrical hood must be extremely long, making the measurement field of view narrow and making practical measurements difficult. It becomes impossible.

本発明は、以上の諸問題を解決すぺ(提案するものであ
る。
The present invention proposes to solve the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

以上の問題点を解決するため、本発明は、光学式雲高測
定装置の投光器及び受光器の光軸を垂直方向に対して傾
斜方向に設定したものであり、また、上記投光器の投光
面及び上記受光器の受光面に設けた透光窓面が垂直方向
上方からみて隠され、かつ上記光軸と交差しない位置に
フードを設けたものであり、更に上記透光窓面が上記光
軸と直交する方向に対してプリュスター角を含む当該ブ
リュスター角近傍の角度だけ傾斜させ設定するようにし
たものである。
In order to solve the above problems, the present invention sets the optical axes of the projector and the receiver of the optical cloud height measurement device in an inclined direction with respect to the vertical direction, and furthermore, the light emitting surface of the projector is and a hood is provided at a position where the light-transmitting window surface provided on the light-receiving surface of the light receiver is hidden when viewed vertically from above and does not intersect with the optical axis, and further, the light-transmitting window surface is hidden from the above-mentioned optical axis. The angle is set so as to be inclined by an angle in the vicinity of the Brewster angle, including the Brewster angle, with respect to a direction perpendicular to the Brewster angle.

〔作用〕[Effect]

投光器及び受光器の透光窓面が傾斜しているので、光軸
方向を太陽の反軌道方向に向けて雲高測定装置を設置す
ることで太陽光の直接入射を避けることができる。
Since the light-transmitting window surfaces of the projector and receiver are inclined, direct sunlight can be avoided by installing the cloud height measuring device with the optical axis directed in the opposite direction of the sun's orbit.

また、特ににに高緯度地域に設置される雲高測定装置に
あっては、フードの存在及び/又は投受光透光面のプリ
ュスター角近傍の角度の傾斜によって太陽光の直接入射
は完全に防ぐことができる。
In addition, especially for cloud height measurement devices installed in high latitude areas, direct sunlight can be completely prevented from entering by the presence of a hood and/or by the inclination of the transmitting/receiving light-transmitting surface at an angle near the Prusster's angle. be able to.

また、投光器及び受光器の透光窓面は垂直方向上方から
みてその全体がフードに覆われているので、上方向から
の雨又は雪の付層がなく、仮に横方向からの雨又は雪の
付着があったとしても上記透光窓面の傾斜によって流れ
るため(%にブリュスター角近傍の角度の傾斜を加えた
ものは、付層した雨雪が更に流れ易い。)、結果的に雨
雪の付着は極めて少なく、雲高の測定可能高度の減少が
極めて少ない。
In addition, since the transparent window surfaces of the emitter and receiver are entirely covered with a hood when viewed from vertically above, there is no layer of rain or snow from above, and even if rain or snow does not form from the side. Even if there is adhesion, it will flow due to the slope of the translucent window surface (if the slope of the angle near Brewster's angle is added to the percentage, the accumulated rain and snow will flow even more easily), and as a result, the rain and snow will flow. There is very little adhesion, and there is very little decrease in measurable cloud height.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の実施例に係る光学式雲高測定装置の投
受光部の正面図、第2図は第1図に於げるA−A断面図
、第3図は他の実施例の第1図に於けるA−Alfr面
図、第4図は光の入射角度と光の反射率との関係を説明
する図である。
FIG. 1 is a front view of the light emitting and receiving part of an optical cloud height measuring device according to an embodiment of the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. 1, and FIG. 3 is another embodiment. The A-Alfr plane view in FIG. 1 and FIG. 4 are diagrams for explaining the relationship between the incident angle of light and the reflectance of light.

第1図に示すように実施例の投受光部は、投光器1と受
光器2が並設され、投光器1から投光した光(実施例で
はレーザー光)の雲での反射光を受光器2で捉えるよう
になっている。
As shown in FIG. 1, in the light emitting/receiving section of the embodiment, a light emitter 1 and a light receiver 2 are arranged side by side, and the light (laser light in the embodiment) emitted from the light emitter 1 is reflected by a cloud into the light receiver 2. It is designed to be captured by

また、第2図に示すように投光器1の内部には発光素子
(例えばレーザー素子)101と当該発光素子101の
駆動部等の電子回路102等が収納されており、投光器
には例えばクラウンガラス製の透光窓103が嵌め込ま
れている。
Further, as shown in FIG. 2, a light emitting element (for example, a laser element) 101 and an electronic circuit 102 such as a drive section of the light emitting element 101 are housed inside the floodlight 1, and the floodlight is made of, for example, crown glass. A transparent window 103 is fitted therein.

この投光部10光maは垂直方向から角度θ。This light projector 10 light ma is at an angle θ from the vertical direction.

(例えば実施例では20度)だけ傾斜した方向に設定さ
れており、従って透光窓103の而は水平方向に対して
上記角度θ!だけ傾斜している(透光窓103の面は光
軸aと直交する方向に設定されているものとする。)。
(for example, 20 degrees in the embodiment), and therefore the translucent window 103 is set at the above angle θ! with respect to the horizontal direction. (It is assumed that the surface of the transparent window 103 is set in a direction perpendicular to the optical axis a.)

また、受光器2の構造は、上記発光素子101に代え受
光素子が収納されている以外は上記投光器1と同様の構
造であり、光軸の傾きも上記角度θIであり、従って受
光面の透光窓203も同様に角度θ、だげ傾いている。
The structure of the light receiver 2 is the same as that of the light projector 1 except that a light receiving element is housed in place of the light emitting element 101, and the optical axis is also tilted at the angle θI, so that the light receiving surface is transparent. The optical window 203 is also slightly inclined at an angle θ.

以上に説明した投光器1及び受光器2の上部には傾斜状
の7−ド3が設けられており、その傾斜角θ、は先端部
301が光軸aと交差しない角度に設定され、またその
上方への長さは、垂直上方からみて双方の透光窓103
,203の全体が当該フードによって覆われる長さに設
定してある。このようにしてあることにより投光又は受
光が7−ド3によって妨げられることはない。
At the top of the emitter 1 and receiver 2 described above, an inclined 7-door 3 is provided, and its inclination angle θ is set at an angle such that the tip 301 does not intersect with the optical axis a. The upward length is the length of both transparent windows 103 when viewed from vertically above.
, 203 is set to a length that is entirely covered by the hood. By doing so, the projection or reception of light is not obstructed by the 7-door 3.

以上のように、光1141Iaが角度θ、だけ傾いてい
ることにより太陽光すが直接入射しない方向く投光器1
及び受光器2を向けて当該雲高測定装置を設置すること
ができる。尚、仮に7−ド3がない場合であちても光I
11]aの傾きにより太陽光bfJ″−発光素子101
(又は受光素子)に直接入射しないようにすることがで
きる。すなわち、例えば透光窓103,203の面の傾
斜角θ8の設定(この角度0重が大きい程、太陽光すの
直接入射がなくなる地域が拡がる。)又は発光素子10
1及び受光素子と透光窓103,203との間の距離の
設定(この距離が長い程、太陽光すの直接入射がなくな
る地域が拡がる。)等により可能である。
As described above, since the light 1141Ia is tilted by the angle θ, the light 1141Ia is directed toward the floodlight 1 so that sunlight does not directly enter the light source 1.
The cloud height measuring device can be installed with the light receiver 2 facing. In addition, even if there is no 7-dore 3, the light I
11] Due to the slope of a, sunlight bfJ'' - light emitting element 101
(or the light-receiving element). That is, for example, the setting of the inclination angle θ8 of the surfaces of the light-transmitting windows 103 and 203 (the larger this angle is, the wider the area where direct sunlight is not incident) or the setting of the light emitting element 10
This is possible by setting the distance between 1 and the light-receiving element and the light-transmitting windows 103, 203 (the longer this distance, the wider the area where direct sunlight is not incident).

また、降雨又は降雪があった場合には、垂直上方からの
雨雪は7−ド3によって遮られて透光窓103,203
には付層せず、横方向からの雨雪(通常、垂直上方から
の雨雪よりも少ない)は−時的に透光窓103,203
に付層しても当該透光窓103,203の傾斜面に沿っ
て流れ落ちるために、多くは付層しない。
In addition, when it rains or snows, the rain and snow from vertically above are blocked by the 7-door 3 and the translucent windows 103, 203
Rain and snow from the side (usually less than rain and snow from vertically upwards) are sometimes layered on the translucent windows 103, 203.
Even if a layer is applied to the transparent window 103, 203, most of the layer is not applied because it flows down along the slope of the transparent window 103, 203.

尚、図には示さないが冬期には投光器1の投光面及び受
光器2の受光面(透光窓103.203)がヒーターで
温められるように構成されており、透光窓103,20
3に付層した雪は溶けて流れ落ちる。
Although not shown in the figure, the light emitting surface of the light emitter 1 and the light receiving surface of the light receiver 2 (light transmitting windows 103 and 203) are heated by heaters in winter, and the light transmitting windows 103 and 20
The snow layered on 3 melts and flows down.

次に他の実施例を第3図により説明する。すなわち、こ
の実施例は投光器1及び受光器2の透光窓103,20
3の曲を、光I+11 aと直交する方向から角度θ2
だけ傾斜させたものであり、当該透光窓103,203
の面の水平方向からの傾斜角度は「θ1十〇1J  と
なり、前記実施例に比べて大きな傾斜となっている。
Next, another embodiment will be explained with reference to FIG. That is, in this embodiment, the light-transmitting windows 103 and 20 of the emitter 1 and the receiver 2 are
3 at an angle θ2 from the direction orthogonal to the light I+11 a.
The translucent windows 103, 203 are tilted by
The angle of inclination of the plane from the horizontal direction is θ1101J, which is a larger inclination than that of the previous embodiment.

この実施例の場合は、光軸aの方向、すなわち光の入射
方向が透光窓103,203の面に対して直交方向とな
らないため、当di光窓103.203での光の反射が
問題となる。すなわち、反射が多いと投光器1からの投
光量及び受光器2での受光量が少なくなり、雲高の測定
可能高度が減少するからである。
In the case of this embodiment, since the direction of the optical axis a, that is, the direction of incidence of light, is not perpendicular to the planes of the light-transmitting windows 103 and 203, reflection of light at the light windows 103 and 203 is a problem. becomes. That is, if there is a lot of reflection, the amount of light projected from the light emitter 1 and the amount of light received by the light receiver 2 will decrease, and the altitude at which cloud height can be measured will decrease.

ところで、透光体への特定偏光面の光(Pi)の入射角
と当該光の透光体での反射の関係は、第4図のような傾
向を示す。すなわち、光の入射角(透光曲に立てた垂直
憩からの角度)が大きくなっていくと一旦は徐々に反射
率が高くなっていくが、ある角度を過ぎると再び反射率
が低下しはじめ、極小特性となったのち、急激に再び反
射率が上昇し、反射率100%の状態(全反射の状態)
となる。この特性はよく知られた特性であり、P波偏光
面反射率が極小となる角度θaはブリュスター角と捕わ
れ、また全反射となる角度θbは臨界角である。このブ
リュスター角θaと臨界角θbとは透光体の屈折率によ
り異った値となる。
Incidentally, the relationship between the angle of incidence of light (Pi) of a specific polarization plane onto a transparent body and the reflection of the light on the transparent body shows a tendency as shown in FIG. In other words, as the angle of incidence of light (the angle from the vertical angle placed in the translucent curve) increases, the reflectance gradually increases, but after a certain angle, the reflectance begins to decrease again. , after reaching a minimum characteristic, the reflectance suddenly rises again, and the reflectance is 100% (state of total reflection).
becomes. This characteristic is a well-known characteristic, and the angle θa at which the P-wave polarization plane reflectance becomes minimum is taken as the Brewster angle, and the angle θb at which total reflection occurs is the critical angle. The Brewster angle θa and the critical angle θb have different values depending on the refractive index of the transparent body.

以上に説明した反射特性を考慮し、第3図に示す実施例
では角度θ、を上記ブリュスター角θaの近傍に設定し
、投光又は受光の際の透光窓面での反射が少なくなるよ
うにしてある。この角度θ、は理想的にはブリュスター
角θaに設定すべきであるが、このように設定した場合
に於いて、角度θ、が大きくなる方向にずれると急激に
全反射状態となり測定が不”T If@となるため、実
施例では当該角度θ、をブリュスター角θaの近傍(角
度が小さくなる方向の近傍)に設定してある。
Considering the reflection characteristics described above, in the embodiment shown in FIG. 3, the angle θ is set near the Brewster angle θa, which reduces reflection on the transparent window surface when transmitting or receiving light. It's like this. Ideally, this angle θ should be set to the Brewster's angle θa, but when set in this way, if the angle θ deviates in the direction of increasing, it will suddenly become a state of total reflection and the measurement will fail. ``T If@'', so in the embodiment, the angle θ is set near the Brewster angle θa (near the direction in which the angle becomes smaller).

また、実施例で透光窓103,203に開用した白板ガ
ラス(クラウンガラス)では上記ブリュスター角θaは
約33度であり、実施例では上記角度θ、を30度に設
定した。従って光咄aの傾斜角(20v)が加わって、
当該透光窓103.203の面の水平方向からの傾斜は
50度あることとなる。
Further, in the white plate glass (crown glass) used in the transparent windows 103 and 203 in the example, the Brewster angle θa was about 33 degrees, and the angle θ was set at 30 degrees in the example. Therefore, by adding the inclination angle (20v) of the light beam a,
The surface of the transparent window 103.203 has an inclination of 50 degrees from the horizontal direction.

このように透光窓103,203の而が太き(傾斜して
いることにより、第3図に示す実施例では、前記実施例
に比べてより高緯度の地域でも太陽光の直接入射がなく
なり(但し、7−ド3がない場合)、また、降雨、降雪
時にも透光窓103,203の面に付着した雨雪がより
速かに流れ落ちるので、測定地域によってはフード3を
必要としない場合もある。
Because the translucent windows 103 and 203 are thick (and slanted) in this way, in the embodiment shown in FIG. However, depending on the measurement area, the hood 3 may not be necessary, since rain and snow adhering to the surfaces of the translucent windows 103 and 203 will run off more quickly during rain or snowfall (if there is no hood 3). There is also.

また、フード3を設けた場合に於いて、当該フード3内
より外方に向けて41−程度の空気流を作ることにより
(第3図に於いて、ペースに設けた孔4にプロアを接続
して空気を送る)、フード3内に吹き込まれる雨雪(前
記嘴方向からの雨雪)がなくなり、より効果的である。
In addition, when the hood 3 is provided, by creating an air flow of about 41-degrees outward from the inside of the hood 3 (in Fig. 3, the proa is connected to the hole 4 provided in the pace). This is more effective as it eliminates the rain and snow blown into the hood 3 (rain and snow from the direction of the beak).

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明は次のような種々
の長所を有するものであり、本発明は極めて顕著な効果
を奏する。
As is clear from the above description, the present invention has the following various advantages, and the present invention has extremely significant effects.

囚 投光器及び受光器の光軸が傾斜方向に設定されてい
ることKより、雲高測定装置の設置方向を考慮すること
で太陽光の直接入射を避けることができ、例えばメカニ
カルシャッターのような複雑な機構を必要としない。
Since the optical axes of the emitter and receiver are set in an inclined direction, direct sunlight can be avoided by considering the installation direction of the cloud height measurement device, and it is possible to avoid direct sunlight from entering the sky by considering the installation direction of the cloud height measuring device. No special mechanism is required.

CB)  投光器及び受光器の透光窓が垂直上方からみ
て隠され、かつ光軸と交差しない位置沈設けたフードに
より、太陽光の直接入射を高緯度地域に於いて避けるこ
とができる。
CB) Direct incidence of sunlight can be avoided in high latitude areas by using a hood that hides the translucent windows of the emitter and receiver when viewed from vertically above, and is recessed at a position that does not intersect the optical axis.

(0上記7−ドにより、垂直上方からの雨雪の上記透光
窓への付着が防止でき、更に上記透光窓の面が傾斜して
いるので、例えば横方向からの雨雪が上記透光窓に付着
しても速やかに流れ落ちるため例えばワイパーのような
複雑な機構を用いなくても光の透過障害が防止でき、雲
高の測定可能高度の低下が少ない。
(0) The above-mentioned step 7 prevents rain and snow from adhering to the transparent window from vertically above, and since the surface of the transparent window is inclined, for example, rain and snow from the horizontal direction can be prevented from adhering to the transparent window. Even if it adheres to the optical window, it quickly washes off, so it is possible to prevent light transmission obstruction without using a complicated mechanism such as a wiper, and there is little decrease in the measurable cloud height.

■) 投光器及び受光器の透光窓面をブリシスター角近
傍の角度だけ更に傾斜させることにより、上記(C)項
の効果が更に顕著になり、また、太陽光の直接水射も当
tX ML 1%測定装置の設置場所によっては、上記
構成のみで避けることができるため、測定装置の構成が
簡単となる。
■) By further tilting the transparent window surfaces of the emitter and receiver by an angle close to the Brisister angle, the effect of item (C) above becomes even more pronounced, and the direct water irradiation of sunlight is also reduced. Depending on the installation location of the 1% measuring device, this problem can be avoided with only the above configuration, which simplifies the configuration of the measuring device.

■ また、上記フードを設けることの副次的な効果とし
て、フード上部が直接天空に向けて開放されている構造
でない(投、受光器の投、受光面と天空との間にフード
が存在する構造)ため、夏期に於いては投、受光器内部
への熱射が幅減されること釦より機器の障害が生じにく
くなり、また冬期に於いては透光面の加熱用ヒーター(
融雪のために設けられたヒーター)の〃口熱効率がよく
なる。
■ Also, as a secondary effect of providing the above hood, the upper part of the hood does not have a structure that is open directly to the sky. In the summer, heat radiation to the inside of the emitter and receiver is greatly reduced, making it less likely that equipment failure will occur.In the winter, the heater for heating the translucent surface (
The heat efficiency of heaters installed for snow melting improves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の正面図、第2図は第1図に於
けるA−A断面図、第3図は他の実施例の第1図に於け
るA−A@面図、第4図は光の入射角度と反射率の関係
を説明する図である。 1・・・投光器     2・・・受光器3・・・フー
ド 103.203・・・透光窓〇 第3図 第2図
Fig. 1 is a front view of an embodiment of the present invention, Fig. 2 is a sectional view taken along the line A-A in Fig. 1, and Fig. 3 is a cross-sectional view taken along the line A-A in Fig. 1 of another embodiment. , FIG. 4 is a diagram illustrating the relationship between the incident angle of light and the reflectance. 1... Emitter 2... Receiver 3... Hood 103.203... Transparent window 〇Figure 3Figure 2

Claims (1)

【特許請求の範囲】 1 投光器及び受光器の光軸を傾斜方向に設定し、上記
投光器の投光面及び上記受光器の受光面にそれぞれ設け
た透光窓面が垂直方向上方からみて隠され、かつ上記光
軸と交差しない位置にフードを設けた光学式雲高測定装
置。 2 投光器及び受光器の光軸を傾斜方向に設定し、上記
投光器の投光面及び上記受光器の受光面にそれぞれ設け
た透光窓面が上記光軸と直交する方向に対してブリュス
ター角を含む当該ブリュスター角近傍の角度だけ傾斜さ
せて設定してある光学式雲高測定装置。
[Scope of Claims] 1. The optical axes of the emitter and receiver are set in an inclined direction, and the transparent window surfaces provided on the light emitting surface of the emitter and the light receiving surface of the light receiver are hidden when viewed from vertically above. , and an optical cloud height measuring device provided with a hood at a position that does not intersect the optical axis. 2. The optical axes of the emitter and receiver are set in an inclined direction, and the light-transmitting window surfaces provided on the light-emitting surface of the emitter and the light-receiving surface of the receiver are at Brewster's angle with respect to the direction orthogonal to the optical axis. An optical cloud height measurement device that is tilted at an angle near the Brewster angle, including the Brewster angle.
JP62271361A 1987-10-27 1987-10-27 Optical cloud height measuring device Expired - Fee Related JPH0820512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62271361A JPH0820512B2 (en) 1987-10-27 1987-10-27 Optical cloud height measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62271361A JPH0820512B2 (en) 1987-10-27 1987-10-27 Optical cloud height measuring device

Publications (2)

Publication Number Publication Date
JPH01113687A true JPH01113687A (en) 1989-05-02
JPH0820512B2 JPH0820512B2 (en) 1996-03-04

Family

ID=17499001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62271361A Expired - Fee Related JPH0820512B2 (en) 1987-10-27 1987-10-27 Optical cloud height measuring device

Country Status (1)

Country Link
JP (1) JPH0820512B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2524077B (en) * 2014-03-14 2016-05-11 Halo Photonics Ltd Aperture protector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51149077A (en) * 1975-06-17 1976-12-21 Matsushita Electric Works Ltd Light reciever in light beam body detector
JPS601527A (en) * 1983-06-20 1985-01-07 Fuji Xerox Co Ltd Photosensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51149077A (en) * 1975-06-17 1976-12-21 Matsushita Electric Works Ltd Light reciever in light beam body detector
JPS601527A (en) * 1983-06-20 1985-01-07 Fuji Xerox Co Ltd Photosensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2524077B (en) * 2014-03-14 2016-05-11 Halo Photonics Ltd Aperture protector

Also Published As

Publication number Publication date
JPH0820512B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
US6855947B2 (en) Optical precipitation sensor for monitoring the accumulation of precipitation upon automotive glass
JP4987697B2 (en) Dimmable rear view assembly with glare sensor
EP3373049B1 (en) Projection light source device
ES2548420T3 (en) Sensor device, especially for a motor vehicle
JPS58189441A (en) Selection type light pervious panel
US4841672A (en) Device for protection from the sun
JP7473563B2 (en) Automotive LiDAR Assembly with Anti-Reflection Unit
JP2000193586A (en) Optical raindrop detector
JPH01113687A (en) Optical measuring apparatus of altitude of cloud
JP2002534662A (en) Detector for detecting dirt on the transparent plate surface
JP4448562B2 (en) House lighting structure
JP2000285710A (en) Daylighting structure for building
KR101004477B1 (en) Multi-functional Rain Sensor with Prism
JP2002257717A (en) Raindrop detector, and raindrop/fogging detector
KR100981217B1 (en) Compact Sensor for sensing rain
JP3687572B2 (en) Target device, target tracking system, and target tracking method
KR100981215B1 (en) Rain sensor
JPS6228272B2 (en)
CN210465732U (en) Lens, sensor assembly and vehicle
KR102121398B1 (en) Rain Sensor Module with Aspherical Lens
JP2878549B2 (en) Lighting device
JP6839157B2 (en) Exterior wall material
EA043877B1 (en) LIDAR UNIT FOR USE IN MOTOR VEHICLES, CONTAINING ANTI-REFLECTION ELEMENT
JP3222212B2 (en) Camera with built-in light receiver for remote control
JPH0432647Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees