JPH01112747A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH01112747A
JPH01112747A JP62270739A JP27073987A JPH01112747A JP H01112747 A JPH01112747 A JP H01112747A JP 62270739 A JP62270739 A JP 62270739A JP 27073987 A JP27073987 A JP 27073987A JP H01112747 A JPH01112747 A JP H01112747A
Authority
JP
Japan
Prior art keywords
region
trench
diffusion layer
isolation
isolation region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62270739A
Other languages
Japanese (ja)
Inventor
Matsuo Ichikawa
市川 松雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62270739A priority Critical patent/JPH01112747A/en
Publication of JPH01112747A publication Critical patent/JPH01112747A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To assure the dielectric isolation of an insulating film into a flat one without unevenness whatever the distances are between mutual elements, between mutual diffusion layers, and between any element and any diffusion layer by providing a selective oxidation/separation region between mutual trench separation regions. CONSTITUTION:When only trench isolation is insufficient to separate one element from another, one diffusion layer from another, and any element from any diffusion layer, an optimum trench isolation region 2 adjacent to the elements 4, 5, 6 or the diffusion layer 8 is provided, and a selective oxidation and isolation region 3 is provided in a region where no trench region is existent, for formation of an isolation region. There is assured no bad surface having any unevenness and any stepped part whatever such a distance is, for example the distance is insufficiently buried permitting the occurrence of any recess part or it is buried in excess permitting the occurrence of any projecting part. Furthermore, there is no fear of any broken line being produced or of any cavity from being formed in a metal layer or an insulating film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は同−半4体基板内にトレンチ分Wl領域と選択
酸化分限領域を持つ半導体集積回路装置に関し、トレ/
ヂ分1fltfIIT域相互間に選択酸化分限領域を設
けた構造に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit device having a trench portion Wl region and a selective oxidation portion region in the same half-quad substrate.
This invention relates to a structure in which a selective oxidation limited region is provided between two fltfIIT regions.

〔発明の概要〕[Summary of the invention]

本発明は同一半導体基板内にトレンチ分額と選択酸化分
離の両者を持つ半導体集積回路装置において、素子と素
子の間でトレンチ分離だけでは距離がありすぎる場合に
、素子に隣接してトレンチ分離領域をもうけ、そのトレ
ンチ分離領1jt 411 互tv間に選択分離領域を
もうけておぎなった事を特徴としている。
In a semiconductor integrated circuit device having both trench isolation and selective oxidation isolation in the same semiconductor substrate, the present invention provides a trench isolation area adjacent to the element when there is too much distance between elements for trench isolation alone. It is characterized in that a selective isolation region is provided between the trench isolation regions 1jt and tv.

〔従来の技術〕[Conventional technology]

半導体集積回路の高集積化及び微細化も年々進ろ、現在
m産されている製品は1.2μmルールのIM−DRA
Mや256 K −S RA Mである。
The integration and miniaturization of semiconductor integrated circuits are progressing year by year, and the currently produced products are IM-DRAs with a 1.2 μm rule.
M or 256K-S RAM.

現在開発されて、景産化を検討しはじめているのが、0
.8μmルールの4 M −D RA Mやl M −
3RAMである。現在、開発が検討されているのが、0
.5μmルールの18 M−D RA Mや41−1−
 S RA Mである。
The one that is currently being developed and is starting to consider commercialization is 0.
.. 8μm rule 4M-D RAM and lM-
It is 3RAM. Currently, development is being considered for 0
.. 18 M-D RAM and 41-1- with 5μm rule
It is SRAM.

トレンチ分離法は0.8μmルールから一部使Jllさ
れ始めているが、本確的に使用されるのは、0.5μm
ルールからであると考えられる。これは、微細化が進む
にしたがって、LOGO3の、バーズビークやそれによ
って引きおこされる狭チャンネル効果が問題になり、微
細な幅の分離にトレンチ分離がかかせないからである。
The trench isolation method has started to be used in some cases starting from the 0.8 μm rule, but it is actually used for the 0.5 μm rule.
This is probably due to the rules. This is because, as miniaturization progresses, the bird's beak of LOGO3 and the narrow channel effect caused by it become a problem, and trench isolation is indispensable for isolation with a fine width.

しかし、素子の分離にはトレンチ分m法が有用であるが
、パッドの下とかチップの周辺の広い領域ではLOCO
8法が使用され、両方法のミツ、クスである。
However, although the trench method is useful for device isolation, LOCO
8 methods are used, both methods are mitsu and kusu.

第2図、第3図に従来方゛法の断面略図を示し、以下に
従来方法について説明する。
FIGS. 2 and 3 show schematic cross-sectional views of the conventional method, and the conventional method will be described below.

第2図に示すように、21はP型Si単結晶基板であり
22は絶縁膜であり、23はゲート酸化膜、24は多結
晶シリコン居、25はシリサイド層、2Gは酸化膜、2
7はN+拡散層である。
As shown in FIG. 2, 21 is a P-type Si single crystal substrate, 22 is an insulating film, 23 is a gate oxide film, 24 is a polycrystalline silicon layer, 25 is a silicide layer, 2G is an oxide film, 2
7 is an N+ diffusion layer.

図に示すように、素子と素子、又は拡散層と拡散層の間
の間隔が充分狭い場合には、トレンチアイソレーン−1
7単独で分離しても、絶縁連でトレンチをうめる時、あ
まり凸にも凹にもならずにうめる事ができる。
As shown in the figure, if the spacing between elements or between diffusion layers is sufficiently narrow, trench isolane-1
7 Even when separated alone, when filling a trench with an insulating chain, it can be filled without becoming too convex or concave.

第3図に示すように、31は■)型Si単結晶シリコン
基板であり、32は絶縁膜、33はゲート酸化膜、34
は多結晶シリコン居、35はシリサイド層、36は酸化
膜、37はN+拡拡散である。
As shown in FIG. 3, 31 is a ■) type Si single crystal silicon substrate, 32 is an insulating film, 33 is a gate oxide film, and 34 is a
35 is a silicide layer, 36 is an oxide film, and 37 is an N+ diffusion layer.

図に示すように、素子と素子、又は拡散層と拡散層の間
の間隔が広すぎる場合は、特にトレンチ内に充11する
絶縁膜を最小間隔のトレンチに合せて充填した場合、う
めきれずに凹部を生じてしまい、段差形状が悪く、断線
の原因や空洞を作る原因になる。又、広い間隔に合せて
絶縁膜をうめようとすると狭い間隔のトレンチ部分が突
起になってしまい、同じように段差形状が悪くなる。
As shown in the figure, if the spacing between elements or between diffusion layers is too wide, especially if the trenches are filled with an insulating film that matches the trench with the minimum spacing, This creates a concave portion, resulting in a poor step shape, which can cause wire breakage and the creation of cavities. Furthermore, if an attempt is made to fill in the insulating film in accordance with the wide spacing, the trench portions with the narrow spacing will become protrusions, and the shape of the step will also become poor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は素子と素子、拡散層と拡散層及び素子と拡散層
の間の間隔がどのような間隔でも、平坦で凹凸のない絶
縁膜分離の技術を提供する事にある。
The object of the present invention is to provide a technique for separating insulating films that are flat and free from irregularities, regardless of the spacing between elements, between diffusion layers, and between elements and diffusion layers.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の手段は素子と素子、拡散層と拡散層及び素子と
拡散層の間でトレンチ分離だけでは距離がありすぎる場
合に、素子又は拡散層に隣接して最も適した中のトレン
チ分離領域をもうけ、その間のあまった領域に選択酸化
分離領域をもうけて分離領域を形成する方法である。
The means of the present invention provides trench isolation regions that are most suitable adjacent to the elements or diffusion layers when the distances between elements, diffusion layers, and diffusion layers are too great for trench isolation alone. In this method, an isolation region is formed by creating a selective oxidation isolation region in the remaining region in between.

〔実施例〕〔Example〕

第1図に本発明の方法による断面構造の略図を示し、以
下に本発明について説明する。
FIG. 1 shows a schematic diagram of a cross-sectional structure obtained by the method of the present invention, and the present invention will be explained below.

第1図に示すように、1はP型Si単結晶基板であり、
2は絶縁膜、3は酸化膜、4はゲート酸化膜、5は多結
晶シリコン層、6は、シリサイド層、7は酸化膜、8は
N+拡散層である。
As shown in FIG. 1, 1 is a P-type Si single crystal substrate,
2 is an insulating film, 3 is an oxide film, 4 is a gate oxide film, 5 is a polycrystalline silicon layer, 6 is a silicide layer, 7 is an oxide film, and 8 is an N+ diffusion layer.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明の方法を用いると、素子と素子、
拡散層と拡散層及び素子と拡散層の間隔が最小間隔では
なく、どんな間隔においても、うめきれずに凹部を生じ
るとか、うめすぎて凸部を生じるとかして、凹凸ができ
段差形状を悪くする事はない。それによって平坦かされ
るので、断線や金l1iI層又は絶縁膜の空洞ができる
心配もない信頓性の高い集積回路装置を提供できる。
As described above, when the method of the present invention is used, an element and an element,
The spacing between the diffusion layers and the element and the diffusion layer is not the minimum spacing, and regardless of the spacing, it may not be able to fill in completely and create a concave portion, or it may be too deep to cause a convex portion, resulting in unevenness and worsening the step shape. There isn't. Since the surface is flattened by this, it is possible to provide a highly reliable integrated circuit device without the risk of wire breakage or cavities in the gold l1iI layer or insulating film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法による半導体集積回路装置の断面
略図である。 第2図、第3図は従来の方法による半導体集積回路装置
の断面略図である。 以  上 出願人 セイコーエプン/株式会社
FIG. 1 is a schematic cross-sectional view of a semiconductor integrated circuit device manufactured by the method of the present invention. FIGS. 2 and 3 are schematic cross-sectional views of a semiconductor integrated circuit device manufactured by a conventional method. Applicant: Seiko Epun Co., Ltd.

Claims (1)

【特許請求の範囲】 1)同一半導体基板内にトレンチ分離領域と選択酸化分
離領を有する半導体集積回路装置において、該トレンチ
分離領域と隣接する該トレンチ分離領の間に、該選択酸
化分離領域を設置した事を特徴とする半導体集積回路装
置。 2)該選択酸化分離領域は、たがいに隣接する該トレン
チ分離領域のすくなくとも一方に、側面同士を接した事
を特徴とする特許請求の範囲第1項記載の半導体集積回
路装置。
[Scope of Claims] 1) In a semiconductor integrated circuit device having a trench isolation region and a selective oxidation isolation region in the same semiconductor substrate, the selective oxidation isolation region is provided between the trench isolation region and the adjacent trench isolation region. A semiconductor integrated circuit device characterized by being installed. 2) The semiconductor integrated circuit device according to claim 1, wherein the selective oxidation isolation regions have side surfaces in contact with at least one of the trench isolation regions adjacent to each other.
JP62270739A 1987-10-27 1987-10-27 Semiconductor integrated circuit device Pending JPH01112747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62270739A JPH01112747A (en) 1987-10-27 1987-10-27 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62270739A JPH01112747A (en) 1987-10-27 1987-10-27 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH01112747A true JPH01112747A (en) 1989-05-01

Family

ID=17490297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62270739A Pending JPH01112747A (en) 1987-10-27 1987-10-27 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH01112747A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4406257A1 (en) * 1994-01-12 1995-07-13 Gold Star Electronics Semiconductor device with isolation region

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4406257A1 (en) * 1994-01-12 1995-07-13 Gold Star Electronics Semiconductor device with isolation region

Similar Documents

Publication Publication Date Title
US4888300A (en) Submerged wall isolation of silicon islands
JPS63314844A (en) Manufacture of semiconductor device
JPS6039846A (en) Manufacture of semiconductor integrated circuit device
US4876214A (en) Method for fabricating an isolation region in a semiconductor substrate
JPS6015944A (en) Semiconductor device
JPH02277253A (en) Manufacture of semiconductor device
JPH01112747A (en) Semiconductor integrated circuit device
JPH01215036A (en) Semiconductor integrated circuit device
JPS61228650A (en) Manufacture of semiconductor device
JPH0396249A (en) Manufacture of semiconductor device
JPH04263454A (en) Semiconductor integrated circuit device
JPS63188952A (en) Manufacture of semiconductor device
JPS61191042A (en) Manufacture of semiconductor integrated circuit
JPH02304926A (en) Element isolation structure and manufacture thereof
KR100881750B1 (en) Semiconductor memory device and method for manufacturing the same
JPS6167932A (en) Manufacture of semiconductor integrated circuit device
JPS60105247A (en) Manufacture of semiconductor device
JPS63314870A (en) Insulated-gate field-effect transistor and manufacture thereof
JPH0582637A (en) Semiconductor device
JP2024045054A (en) semiconductor element
JPS61110446A (en) Semiconductor device
JPH02134848A (en) Semiconductor device
JPS62217629A (en) Semiconductor device
KR100245084B1 (en) Method of forming an element isolation film in a semiconductor device
JPS5851534A (en) Manufacture of semiconductor device