JPH0111239Y2 - - Google Patents

Info

Publication number
JPH0111239Y2
JPH0111239Y2 JP1983168206U JP16820683U JPH0111239Y2 JP H0111239 Y2 JPH0111239 Y2 JP H0111239Y2 JP 1983168206 U JP1983168206 U JP 1983168206U JP 16820683 U JP16820683 U JP 16820683U JP H0111239 Y2 JPH0111239 Y2 JP H0111239Y2
Authority
JP
Japan
Prior art keywords
deodorizing
odor
fraction
camellia
odors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983168206U
Other languages
Japanese (ja)
Other versions
JPS6076932U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16820683U priority Critical patent/JPS6076932U/en
Publication of JPS6076932U publication Critical patent/JPS6076932U/en
Application granted granted Critical
Publication of JPH0111239Y2 publication Critical patent/JPH0111239Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

産業上の利用分野 本考案は、冷蔵庫等の収容庫内の臭いを除去す
るための脱臭用構造物に関するものである。 従来の技術 従来、冷蔵庫内の臭いをとる脱臭具として、通
気孔を有する箱体内に活性炭を収容したものが普
及している。 また、実開昭51−49752号公報には、フアン部
と、該フアン部を覆いかつ隔壁によつて分離独立
した網体からなる複数の薬剤収容室を持つたカバ
ー部とからなる脱臭装置が示されている。 考案が解決しようとする課題 しかしながら、箱体内に活性炭を収容した脱臭
具は、 ある種の臭いは減少しても、種々の臭いが複
合した臭いに対しては脱臭効果が必ずしも充分
ではないこと、 脱臭効果が比較的短期間の間に低下するこ
と、 一旦吸着した臭い成分が再放出されやすく、
かえつて庫内雰囲気を汚染する場合があるこ
と、 脱臭性能がどの位低下したか、いつごろ取り
替えればよいかが全くわからず、脱臭機能を喪
失しているにもかかわらず使用を続行すること
が多いこと、 などの問題点があり、特にのエンドポイントの
問題の解決は重要な課題となつている。 実開昭51−49752号公報に記載の脱臭装置は、
網体からなるカバー部の複数の薬剤収容室に脱臭
剤、消臭剤、空気浄化剤、芳香剤、除虫剤などそ
れぞれの目的に応じた薬剤を収容して室内の臭い
を総合的に消去しようとするものであるが、フア
ンによりこれらの薬剤を室内に揮散させようとす
るものであるため、装置の構造が極めて複雑とな
り、価格も高くなること、使用に際し電源および
導線を要することなどの問題点があり、冷蔵庫、
下駄箱などの小空間の消臭には事実上適用できな
い。加えて、従来から最も問題になつている上記
のエンドポイントの問題については依然として
何ら解決されていない。 本考案は、上記のような問題点を全て解消しか
つデザイン的にも好ましい脱臭用構造物を提供す
ることを目的とするものである。 課題を解決するための手段 本考案は、「ツバキ科植物留分を吸着させた多
孔質粒状物aを多数の通気孔を有する槽体Aに収
容し、一方ツバキ科植物留分を含有させた経時的
に体積減少する水性ゲルbを上部のみ通気可能と
した透明の槽体Bに収容し、かつこれら両槽体
A,Bの大きさをほぼ同等にすると共に、両槽体
A,Bを連結部材4により双子状に連設したこと
を特徴とする収容庫内の臭いを除去するための脱
臭用構造物。」をその要旨とするものである。 以下本考案を詳細に説明する。 本考案はおいて用いるツバキ科植物留分とは、
茶、山茶花、椿、サカキ、モツコクなどのツバキ
科植物の主として葉部からの留分を言い、ツバキ
科植物を減圧下に乾留したとき、20mmHgの場合
で180〜200℃で沸騰して留出する成分を集めるこ
とにより得られる。この留分は、フラバノール、
フラボノール類、その他多種の有機化合物を含も
のであり、典型的には次の特性値を有する。 1000倍水溶液中で紫外線スペクトルにより276
±2mμに極大吸収を示す。 屈折率:n20 D=1.418±0.02 旋光度:α20 D=0.007゜±0.002゜ 比 重:d20 20=1.025±0.02 (ただし、屈折率、旋光度、比重は、20%
(W/W)プロピレングリコール溶液中で測定し
た値) このような留分は、ツバキ科植物を直接減圧下
に乾留することによつて得られる。 ツバキ科植物の抽出分も若干の効果を奏する
が、ツバキ科植物の留分の方がはるかにすぐれた
効果を奏する。これは乾留により夾雑物が除去さ
れると共に、有効成分が活性化されるためではな
いかと考えられる。 上記のツバキ科植物留分を吸着させる多孔質粒
状物としては、素焼、パーライト、サンゴ、ゼオ
ライト、麦飯石、パルプ、もみ殻・ソバ殻または
その焼成物など無機質・有機質の粒子・粉砕片・
成形物があげられる。これらの中では素焼粉末を
小球状またはペレツト状に成形した素焼製粒子が
脱臭性能がすぐれているので特に好ましい。これ
ら多孔質粒状物へのツバキ科植物留分の吸着は、
通常該留分を水または/および有機溶剤に溶解し
た溶液に多孔質粒状物を浸漬後乾燥するか、多孔
質粒状物にこの溶液をスプレー後乾燥することに
より行われる。上記留分の吸着量は任意に選びう
るが、0.01〜30重量%、なかんずく0.1〜10重量
%の範囲から選ぶことが多い。 上記ツバキ科植物留分を含有させる水性ゲル
は、たとえば、水または水と有機溶剤との混合液
にゲル化剤または/および水溶性高分子を加えて
加熱溶解後冷却固化することにより得られる。冷
却固化により流動性は消失してゲルとなるが、場
合によつては多少流動性が残つていても差支えな
い。ゲル化剤としては石ケン、ベンザル化ソルビ
ツトなどがあれられ、水溶性高分子としてはカラ
ギーナン、寒天、デンプン、プルラン、トロロア
オイ、カルボキシメチルセルロース、ヒドロキシ
エチルセルロース、ビニルピロリドン系重合体、
ビニルアルコール系重合体、アクリルアミド系重
合体、α,β−エチレン性不飽和カルボン酸・
α,β−エチレン性不飽和スルホン酸・ヒドロキ
シアルキルアクリレート等を共重合またはグラフ
ト重合した重合体などが例示される。水性ゲル中
の上記留分の含有量は任意に選びうるが、0.01〜
30重量%、なかんずく0.1〜10重量%の範囲から
選ぶことが多い。 なお、上記ツバキ科植物留分と共にグリオキザ
ール、その他に消臭剤を併用してもよい。 本考案においては、ツバキ科植物留分を吸着さ
せた多孔質粒状物aを、多数の通気孔を有する槽
体Aに収容する。 一方、ツバキ科植物留分を含有させた経時的に
体積減少する水性ゲルbを、上記のみ通気可能と
した透明の槽体Bに収容する。槽体Bを透明にす
るのは、そこに収容した水性ゲルbの減少量を目
視確認できるようにするためである。 これら両槽体A,Bの大きさはほぼ同等に設定
し、両槽体A,Bを連結部材4により連結したと
き、双子状となるようにする。連結部材4として
は、槽体Aと槽体Bの双方を嵌合できる蓋体や受
体などが用いられる。 槽体Aも槽体Bも通気性を有するので、ツバキ
科植物留分を吸着させた多孔質粒状物a、ツバキ
科植物留分を含有させた水性ゲルbの両者共、外
気との通気が可能となる。 本考案の脱臭用構造物は、収容庫内の臭いを除
去するために用いられる。収容庫の代表的なもの
としては冷蔵庫があげられ、本考案の脱臭用構造
物は冷蔵庫内の臭いを効果的に除去できる。その
ほか、下駄箱、ロツカー、食品貯蔵庫、薬品収納
庫、タンス、押入れ、ペツト舎、物置などの収容
庫のカビ臭、汗臭、腐敗臭、動物臭、刺激臭等の
臭いを除去する目的にも用いることができる。 作用および考案の効果 本考案の脱臭用構造物にあつては、多孔質粒状
物aは周囲の空気との接触面積が大であるので、
粒状物表面において臭い成分を捕える作用を有す
る。特に多孔質粒状物として素焼製粒状物を用い
た場合は、ツバキ科植物留分の脱臭力と素焼製粒
状物自体の脱臭力との協力作用により一段とすぐ
れた脱臭力が奏される。 一方、水性ゲルbは、溶媒成分の揮散に伴なう
ツバキ科植物留分の揮散により主として空中にお
いて臭いの成分を捕える作用を有する。 言わば、臭い成分との戦いにおいて、多孔質粒
状物aは地上戦に参画し、水性ゲルbは空中戦に
参画する。その結果、脱臭スペクトラム巾が極め
て広くなる。 脱臭力に貢献する程度は、後述の参考例1およ
び2からも理解できるように、多孔質粒状物aの
方が水性ゲルbよりも大である。 ところが、水性ゲルbは、もう一つの重要な役
割を果たす。すなわち、多孔質粒状物aの側は外
観変化はないが、水性ゲルbは溶媒成分の揮散に
より経時的に体積減少するので、脱臭力がまた残
つているかどうかを判定するインジケータ、つま
りエンドポイント判定のためのインジケータの役
割を果すのである。 このように本考案にあつては、多孔質粒状物a
と水性ゲルbとがそれぞれ脱臭効果を奏すると共
に、それぞれ単独の場合の不利を互いに巧みに補
完しあつているので、収容庫内の臭い除去のため
の脱臭用構造物として最大の力を発揮する。 そして、本考案の脱臭用構造物の双子状の特異
な外観は、形態的にも上記多孔質粒状物aおよび
水性ゲルbの機能をアピールする上、美観の点、
顧客吸引力の点でも好ましいものとなる。 また全体がコンパクトかつ簡素であるため、小
空間の脱臭に適しており、製造コスト的にも有利
である。 本考案の脱臭用構造物は、そのほか、脱臭機能
が長期にわたり持続すること、一旦吸収した臭い
の成分を再放出しないので、収容庫内の雰囲気を
汚染しないことなどの効果も奏する。 よて本考案は実用上極めて有用である。 実施例 次に実施例をあげて本考案をさらに説明する。 実施例 第1図は、本考案の脱臭用構造物の一例を示し
た斜視図である。ただし、図面では収容物の図示
を省略してある。 茶葉乾燥粉末を乾留して、180〜200℃/20mm
Hgで沸騰して留出する留分を取得した。この留
分の1000倍水溶液の紫外線スペクトル極大吸収は
276±2mμであり、またこの留分の20%(W/
W)プロピレングリコール溶液の屈折率、旋光
度、比重は次の通りであつた。 屈折率:n20 D=1.418±0.02 旋光度:α20 D=0.007゜±0.002゜ 比 重:d20 20=1.025±0.02 上記で得た茶葉留分の稀釈水溶液中に、素焼粉
末を直径3.5mmの小球状に成形した粒子を投入し
て短時間浸漬し、ついで引き上げて温度60℃で熱
風乾燥することにより、素焼製粒子に4重量%の
茶葉留分を吸着させた。(以下粒子aと称する。) また、上記で得た茶葉留分2重量%、カラギー
ナン1.5重量%および水96.5重量%を温度80℃に
て加熱混合して均一な溶液とし、ついで室温にま
で放冷して透明な水性ゲルを得た。(以下ゲルb
と称する。) 第1図に示した槽体を準備し、上記粒子a50g
を多数の溝穴1を有する槽体Aに収容し、又上記
ゲルb50gを上部のみ開放された有色透明の槽体
Bに収容し、さらに溝孔2を有する2つの頭部
3,3′を備えた連結部材4の一例としての蓋体
のそれぞれの頭部3,3′に上記の槽体A,Bを
下側から嵌め込んだ。 このようにして作製した脱臭用構造物を用い
て、各種の臭いの除去性能を調べた。 また比較例として、多数の溝孔を有する箱体に
活性炭60gを収容した市販の脱臭具についても、
同様に各種の臭いの除去性能を調べた。 なお、上記蓋体4に粒子aを収容した槽体Aの
みを取り付けた場合(参考例1)、上記蓋体4に
ゲルbを収容した槽体Bのみを取り付けた場合
(参考例2)についても、同様に各種の臭いの除
去性能を調べた。 臭気源には、単品臭としてアンモニア、トリメ
チルアミン、硫化水素、酢酸を選び、複合臭とし
て少し変敗を開始した食品臭を選んだ。 (イ) アンモニア臭の除去性能 2000cm3の密閉容器中に3%(重量%)アンモニ
ア水2mlと脱臭剤入り容器を入れ、密閉した。1
時間後、2時間後、3時間後にヘツドスペースガ
ス(上部空間のガス)50mlを採取し、希硫酸中に
バブリングした後、ネスラー試薬で呈色し、
400nmの吸光度(OPtical density×10)を測定
した。結果を第1表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a deodorizing structure for removing odors inside a storage compartment such as a refrigerator. BACKGROUND ART Conventionally, as a deodorizing device for removing odors from inside a refrigerator, a device in which activated carbon is housed in a box having ventilation holes has been widely used. Further, Japanese Utility Model Application Publication No. 51-49752 discloses a deodorizing device comprising a fan part and a cover part that covers the fan part and has a plurality of drug storage chambers made of mesh bodies separated and independent by partition walls. It is shown. Problems that the invention aims to solve However, although deodorizing tools containing activated carbon inside the box may reduce certain odors, they are not necessarily effective in deodorizing odors that are a combination of various odors. The deodorizing effect decreases over a relatively short period of time, and odor components that have been adsorbed are likely to be re-released.
It may even contaminate the atmosphere inside the refrigerator, and you may not know how much the deodorizing performance has deteriorated or when it should be replaced, and you may continue to use it even though it has lost its deodorizing function. There are many problems, such as problems with endpoints, and solving endpoint problems in particular has become an important issue. The deodorizing device described in Utility Model Application Publication No. 51-49752 is
The multiple chemical storage chambers in the netted cover section contain chemicals suitable for different purposes, such as deodorizers, deodorants, air purifiers, air fresheners, and insect repellents, to comprehensively eliminate indoor odors. However, since the device uses a fan to vaporize these chemicals into the room, the structure of the device is extremely complex, the price is high, and there are problems such as the need for a power source and conductive wires for use. There are problems with the refrigerator,
It cannot be practically applied to deodorize small spaces such as shoe cabinets. In addition, the above-mentioned endpoint problem, which has traditionally been the most problematic, remains unresolved. The object of the present invention is to provide a deodorizing structure that solves all of the above-mentioned problems and is also preferable in terms of design. Means for Solving the Problems The present invention consists of ``a porous granular material a adsorbed with a plant fraction from the Camellia family, which is housed in a tank body A having a large number of vents, and which contains a plant fraction from the Camellia family. The aqueous gel B, which decreases in volume over time, is housed in a transparent tank B that allows ventilation only in the upper part, and the sizes of both the tanks A and B are made approximately the same. A deodorizing structure for removing odors in a storage warehouse, characterized in that the structures are connected in a twin-like manner by connecting members 4.'' The present invention will be explained in detail below. What is the Camellia family plant distillate used in this invention?
This refers to the distillate mainly from the leaves of plants in the Camellia family, such as tea, sasanqua, camellia, Sakaki, and Motsukoku.When plants in the Camellia family are carbonized under reduced pressure, the distillate boils at 180 to 200℃ at 20 mmHg. It can be obtained by collecting the ingredients. This fraction contains flavanols,
It contains flavonols and various other organic compounds, and typically has the following characteristic values. 276 by UV spectrum in 1000x aqueous solution
Maximum absorption is shown at ±2 mμ. Refractive index: n 20 D = 1.418 ± 0.02 Optical rotation: α 20 D = 0.007° ± 0.002° Specific gravity: d 20 20 = 1.025 ± 0.02 (However, the refractive index, optical rotation, and specific gravity are 20%
(W/W) Value measured in a propylene glycol solution) Such a fraction can be obtained by directly carbonizing a plant of the Camellia family under reduced pressure. Extracts from plants in the Camellia family have some effect, but distillates from plants in the Camellia family have a much better effect. This is thought to be because impurities are removed and the active ingredients are activated by carbonization. The porous granules that adsorb the Camellia family plant fractions mentioned above include inorganic and organic particles, crushed pieces,
Examples include molded products. Among these, unglazed particles obtained by molding unglazed powder into small spheres or pellets are particularly preferred because of their excellent deodorizing performance. The adsorption of Camellia plant fraction to these porous granules is as follows:
This is usually carried out by immersing the porous granules in a solution of the fraction dissolved in water or/and an organic solvent and then drying, or by spraying this solution onto the porous granules and then drying. Although the adsorption amount of the above fraction can be arbitrarily selected, it is often selected from the range of 0.01 to 30% by weight, particularly 0.1 to 10% by weight. The aqueous gel containing the Camellia family plant fraction can be obtained, for example, by adding a gelling agent and/or a water-soluble polymer to water or a mixture of water and an organic solvent, heating and dissolving the mixture, and then cooling and solidifying the mixture. When solidified by cooling, the fluidity disappears and becomes a gel, but depending on the case, there is no problem even if some fluidity remains. Gelling agents include soap, benzalized sorbitol, etc., and water-soluble polymers include carrageenan, agar, starch, pullulan, molasses, carboxymethylcellulose, hydroxyethylcellulose, vinylpyrrolidone polymers,
Vinyl alcohol polymer, acrylamide polymer, α, β-ethylenically unsaturated carboxylic acid,
Examples include copolymerization or graft polymerization of α,β-ethylenically unsaturated sulfonic acid/hydroxyalkyl acrylate. The content of the above fraction in the aqueous gel can be selected arbitrarily, but from 0.01 to
It is often selected from the range of 30% by weight, especially 0.1 to 10% by weight. In addition, glyoxal and other deodorants may be used together with the Camellia family plant fraction. In the present invention, porous granules (a) adsorbed with a plant fraction from the Camellia family are housed in a tank A having a large number of ventilation holes. On the other hand, an aqueous gel (B) containing a plant fraction of the Camellia family whose volume decreases over time is housed in a transparent tank (B) which allows only the above-mentioned ventilation. The reason why the tank body B is made transparent is to enable visual confirmation of the amount of reduction in the aqueous gel B contained therein. The sizes of both the tubs A and B are set to be approximately the same, so that when the tubs A and B are connected by the connecting member 4, they form a twin shape. As the connecting member 4, a lid, a receiver, etc. that can fit both the tank body A and the tank body B are used. Since both tank body A and tank body B have air permeability, both the porous granular material a adsorbing the plant fraction of the Camellia family and the aqueous gel B containing the plant fraction of the Camellia family can be ventilated with the outside air. It becomes possible. The deodorizing structure of the present invention is used to remove odors inside a storage warehouse. A typical storage room is a refrigerator, and the deodorizing structure of the present invention can effectively remove odors inside the refrigerator. In addition, it can also be used to remove odors such as musty odor, sweat odor, rotten odor, animal odor, pungent odor, etc. from shoe cabinets, lockers, food storage, medicine storage, chests of drawers, closets, pet houses, storerooms, etc. Can be used. Function and Effects of the Invention In the deodorizing structure of the present invention, since the porous particles a have a large contact area with the surrounding air,
It has the effect of trapping odor components on the surface of granules. In particular, when unglazed granules are used as the porous granules, the deodorizing power of the plant fraction of the Camellia family and the deodorizing power of the unglazed granules themselves work together to provide even better deodorizing power. On the other hand, the aqueous gel b mainly has the effect of trapping odor components in the air by volatilizing the Camellia family plant fraction along with the volatilization of the solvent components. In other words, in the fight against odor components, the porous particulate material a participates in the ground battle, and the aqueous gel b participates in the aerial battle. As a result, the deodorizing spectrum width becomes extremely wide. As can be understood from Reference Examples 1 and 2 described later, the degree of contribution of the porous particulate material a to the deodorizing power is greater than that of the aqueous gel b. However, the aqueous gel b plays another important role. In other words, there is no change in the appearance of the porous particulate material a, but the volume of the aqueous gel b decreases over time due to the volatilization of the solvent component, so it is an indicator to determine whether the deodorizing power remains or not, that is, an end point determination. It serves as an indicator for In this way, in the present invention, the porous particulate material a
and aqueous gel b each have a deodorizing effect, and they skillfully complement each other's disadvantages when used alone, so they exert maximum power as a deodorizing structure for removing odors from inside storage. . The unique twin-like appearance of the deodorizing structure of the present invention not only emphasizes the functions of the porous particulate material a and the aqueous gel b in terms of morphology, but also has an aesthetic point of view.
It is also favorable in terms of customer attraction. Furthermore, since the entire device is compact and simple, it is suitable for deodorizing small spaces and is advantageous in terms of manufacturing cost. In addition, the deodorizing structure of the present invention maintains its deodorizing function for a long period of time, and since it does not re-release odor components once absorbed, it does not pollute the atmosphere inside the storage room. Therefore, the present invention is extremely useful in practice. Examples Next, the present invention will be further explained with reference to examples. Embodiment FIG. 1 is a perspective view showing an example of the deodorizing structure of the present invention. However, illustration of the stored items is omitted in the drawings. Dry tea leaf powder is carbonized to 180-200℃/20mm.
A fraction was obtained by boiling with Hg. The maximum absorption in the ultraviolet spectrum of a 1000 times aqueous solution of this fraction is
276±2 mμ, and 20% of this fraction (W/
W) The refractive index, optical rotation, and specific gravity of the propylene glycol solution were as follows. Refractive index: n 20 D = 1.418 ± 0.02 Optical rotation: α 20 D = 0.007° ± 0.002° Specific gravity: d 20 20 = 1.025 ± 0.02 Into the diluted aqueous solution of the tea leaf fraction obtained above, unglazed powder was added to a diameter of 3.5 mm. Particles shaped into small spheres of 1.0 mm in size were put into the solution, immersed for a short time, then pulled out and dried with hot air at a temperature of 60° C., so that 4% by weight of tea leaf fraction was adsorbed onto the unglazed particles. (Hereinafter referred to as particles a) In addition, 2% by weight of the tea leaf distillate obtained above, 1.5% by weight of carrageenan and 96.5% by weight of water were heated and mixed at a temperature of 80°C to form a uniform solution, and then allowed to cool to room temperature. Upon cooling, a clear aqueous gel was obtained. (hereinafter gel b
It is called. ) Prepare the tank body shown in Figure 1, and add 50g of the above particles a.
is stored in a tank A having a large number of slots 1, and 50g of the gel B is stored in a colored transparent tank B with only the top open, and two heads 3 and 3' having slots 2 are placed. The above-mentioned tank bodies A and B were fitted from below into the respective heads 3 and 3' of the lid body as an example of the connecting member 4 provided. Using the deodorizing structure produced in this manner, the performance of removing various odors was investigated. As a comparative example, a commercially available deodorizing device containing 60g of activated carbon in a box with many slots was also used.
Similarly, the removal performance of various odors was investigated. Regarding the case where only tank body A containing particles a is attached to the lid 4 (Reference example 1), and the case where only tank B containing gel b is attached to the lid 4 (Reference example 2). Similarly, the removal performance of various odors was investigated. For the odor sources, ammonia, trimethylamine, hydrogen sulfide, and acetic acid were selected as individual odors, and a food odor that had started to deteriorate slightly was selected as a compound odor. (a) Ammonia odor removal performance A container containing 2 ml of 3% (wt%) ammonia water and a deodorizing agent was placed in a 2000 cm 3 airtight container, and the container was sealed. 1
After 3 hours, 2 hours, and 3 hours, 50 ml of headspace gas was collected, bubbled into dilute sulfuric acid, and colored with Nessler's reagent.
Absorbance at 400 nm (OPtical density x 10) was measured. The results are shown in Table 1.

【表】 (ロ) アンモニア臭の繰り返し脱臭性能 上記(1)の測定終了後、さらに3%(重量%)ア
ンモニア水2mlを追加して加え、24時間後の残留
濃度を測定するという操作を繰り返した。結果を
第2表に示す。
[Table] (B) Repeated deodorization performance of ammonia odor After completing the measurement in (1) above, repeat the operation of adding 2 ml of 3% (wt%) ammonia water and measuring the residual concentration 24 hours later. Ta. The results are shown in Table 2.

【表】 (ハ) 吸着アンモニアの再放出性 上記(2)の繰り返し試験終了後の脱臭剤入り容器
をアンモニアガスの全くない2000cm3の密閉容器に
入れて静置した。1時間後にヘツドスペースガス
を採取し、上記(1)の場合と同様にして吸光度を測
定した。結果を第3表に示す。
[Table] (c) Re-releasing properties of adsorbed ammonia After completing the repeated test in (2) above, the container containing the deodorizer was placed in a 2000 cm 3 airtight container containing no ammonia gas and allowed to stand still. One hour later, headspace gas was sampled and the absorbance was measured in the same manner as in (1) above. The results are shown in Table 3.

【表】 (ニ) トリメチルアミン臭の除去性能 2000cm3の密閉容器中に3%(重量%)トリメチ
ルアミン水溶液2mlと脱臭具を入れ、密閉した。
1時間後、2時間後、3時間後にヘツドスペース
ガス1mlを採取し、ガスクロマトグラフに注入し
た。結果を第4表に示す。
[Table] (d) Trimethylamine odor removal performance 2 ml of a 3% (wt%) trimethylamine aqueous solution and a deodorizing tool were placed in a 2000 cm 3 airtight container, and the container was sealed.
After 1 hour, 2 hours, and 3 hours, 1 ml of headspace gas was collected and injected into a gas chromatograph. The results are shown in Table 4.

【表】 (ホ) 硫化水素臭の繰り返し脱臭性能 2000cm3の密閉容器中に脱臭剤入り容器を入れる
と共に、硫化水素7000ppmを注入した。24時間後
に注射器でヘツドスペースガス50mlをとり、検知
管で残留濃度を測定した。測定終了後さらに硫化
水素7000ppmを追加注入し、24時間後の残留濃度
を測定するという操作を繰り返した。結果を第5
表に示す。
[Table] (e) Repeated deodorizing performance of hydrogen sulfide odor A container containing a deodorizer was placed in a 2000 cm 3 airtight container, and 7000 ppm of hydrogen sulfide was injected. After 24 hours, 50 ml of headspace gas was taken with a syringe and the residual concentration was measured with a detection tube. After the measurement was completed, an additional 7000 ppm of hydrogen sulfide was injected, and the residual concentration was measured 24 hours later, and this operation was repeated. 5th result
Shown in the table.

【表】 (ヘ) 酢酸臭の除去性能 2000cm3の密閉容器中に氷酢酸1mlと脱臭剤入り
容器を入れ、密閉した。1時間後、2時間後、24
時間後にヘツドスペースガス1mlを採取し、ガス
クロマトグラフに注入した。結果を第6表に示
す。
[Table] (F) Performance in removing acetic acid odor 1 ml of glacial acetic acid and a container containing a deodorizer were placed in a 2000 cm 3 airtight container and the container was sealed. 1 hour later, 2 hours later, 24
After an hour, 1 ml of headspace gas was taken and injected into the gas chromatograph. The results are shown in Table 6.

【表】 (ト) 食品変敗臭の除去性能 冷蔵庫の容積が116の家庭用冷蔵庫の冷蔵室
に、臭気源として少し変敗をはじめた食品(魚
肉、獣肉および野菜)1.2Kgを収納し、合せて脱
臭剤入り容器を載置した。24時間経過後冷蔵室の
ドアを開けると同時に臭気の程度を調べた。結果
を第7表に示す、なお第7表中「ブランク」と
は、脱臭剤を用いなかつた場合である。 臭気の感知は訓練された6人のパネラーが行
い、次の6段階で判断した。 臭気強度 0……無臭 1……やつと感知できるにおい 2……何のにおいかがわかる弱いにおい 3……楽に感知できるにおい 4……強いにおい 5……強烈なにおい
[Table] (g) Performance in removing food spoilage odors When storing 1.2 kg of food (fish, meat, and vegetables) that has started to spoil slightly as a source of odors in the refrigerator compartment of a household refrigerator with a refrigerator capacity of 116 cm, A container containing deodorizer was also placed on it. After 24 hours had passed, the degree of odor was examined at the same time as the refrigerator door was opened. The results are shown in Table 7. In Table 7, "blank" refers to the case where no deodorizing agent was used. Odor detection was carried out by six trained panelists and judged on the following six levels. Odor intensity 0...Odorless 1...Odor that can be easily detected 2...Weak odor that tells you what the odor is 3...Odor that can be easily detected 4...Strong odor 5...Strong odor

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案の脱臭用構造物の一例を示し
た斜視図である。ただし、図面では収容物の図示
を省略してある。 A,B……槽体、a……ツバキ科植物留分を吸
着させた多孔質粒状物、b……ツバキ科植物留分
を含有させた経時的に体積減少する水性ゲル、1
……溝穴、2……溝穴、3,3′……頭部、4…
…連結部材、蓋体。
FIG. 1 is a perspective view showing an example of the deodorizing structure of the present invention. However, illustration of the stored items is omitted in the drawings. A, B...tank body, a...porous granules adsorbing a plant fraction of the Camellia family, b...aqueous gel containing a plant fraction of the Camellia family that decreases in volume over time, 1
...Slot, 2...Slot, 3,3'...Head, 4...
...Connection member, lid body.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ツバキ科植物留分を吸着させた多孔質粒状物a
を多数の通気孔を有する槽体Aに収容し、一方ツ
バキ科植物留分を含有させた経時的に体積減少す
る水性ゲルbを上部のみ通気可能とした透明の槽
体Bに収容し、かつこれら両槽体A,Bの大きさ
をほぼ同等にすると共に、両槽体A,Bを連結部
材4により双子状に連設したことを特徴とする収
容庫内の臭いを除去するための脱臭用構造物。
Porous granular material adsorbed with Camellia plant fraction a
is housed in a tank body A having a large number of ventilation holes, while an aqueous gel b containing a plant fraction of the Camellia family whose volume decreases over time is housed in a transparent tank body B that allows ventilation only in the upper part, and A deodorizing method for removing odors in a storage warehouse, which is characterized in that the sizes of both the tank bodies A and B are approximately the same, and that the two tank bodies A and B are connected in a twin-like manner by a connecting member 4. Structures for use.
JP16820683U 1983-10-29 1983-10-29 Deodorizing structure Granted JPS6076932U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16820683U JPS6076932U (en) 1983-10-29 1983-10-29 Deodorizing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16820683U JPS6076932U (en) 1983-10-29 1983-10-29 Deodorizing structure

Publications (2)

Publication Number Publication Date
JPS6076932U JPS6076932U (en) 1985-05-29
JPH0111239Y2 true JPH0111239Y2 (en) 1989-03-31

Family

ID=30367793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16820683U Granted JPS6076932U (en) 1983-10-29 1983-10-29 Deodorizing structure

Country Status (1)

Country Link
JP (1) JPS6076932U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269007A (en) * 1998-03-22 1999-10-05 Nippon Doubutsu Yakuhin Kk Insect repellent and deodorizer
WO2023199856A1 (en) * 2022-04-15 2023-10-19 株式会社大真空 Carbon dioxide capture module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861751A (en) * 1981-10-09 1983-04-12 白井松新薬株式会社 Deodrant preparation containing extract from camellia plant as available component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541474Y2 (en) * 1974-10-14 1979-01-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861751A (en) * 1981-10-09 1983-04-12 白井松新薬株式会社 Deodrant preparation containing extract from camellia plant as available component

Also Published As

Publication number Publication date
JPS6076932U (en) 1985-05-29

Similar Documents

Publication Publication Date Title
JP4869534B2 (en) Humidity sensitive composition
JPS6143091B2 (en)
JPH0111239Y2 (en)
JPS6187562A (en) Deodorant preparation containing perssimon extract as effective component
US3091511A (en) Process of deodorizing
PT85230B (en) PROCESS FOR THE PREPARATION OF REACTIVE ABSORBENTS FOR THE CONSERVATION OF VEGETABLE PRODUCTS HARVESTED
JP4249862B2 (en) Deodorants
JPS6194659A (en) Deodorant
CN105641732A (en) Moving wind driven food deodorizing fresh-preserving device
JPS61103447A (en) Deodorant
JP2001049287A (en) Perfume composition
JP2003047648A (en) Gel antibacterial deodorant and preparation method of gel antibaceterial deodorant
US20020076359A1 (en) Chemical composition used as an air filter and method of use
JPS626665A (en) Food preservative
JPS61135667A (en) Deodorant
JPH0857028A (en) Deodorant
JPS61265145A (en) Solid deodorant
JPH1156988A (en) Humidity conditioning agent and furniture arranged with it
JPH0417696B2 (en)
JPS627321Y2 (en)
KR100623139B1 (en) Deodorizing methods for an offensive odor peculiar to sulfides
JPS61181535A (en) Solid deodorant
JPS59189855A (en) Deodorant
JPS6324971B2 (en)
JPS63150075A (en) Deodorizing material