JPH01111834A - Low strength and high ductile ti alloy for cold working - Google Patents

Low strength and high ductile ti alloy for cold working

Info

Publication number
JPH01111834A
JPH01111834A JP26878987A JP26878987A JPH01111834A JP H01111834 A JPH01111834 A JP H01111834A JP 26878987 A JP26878987 A JP 26878987A JP 26878987 A JP26878987 A JP 26878987A JP H01111834 A JPH01111834 A JP H01111834A
Authority
JP
Japan
Prior art keywords
alloy
strength
ductility
cold working
low strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26878987A
Other languages
Japanese (ja)
Inventor
Hideto Oyama
英人 大山
Yoshio Ashida
芦田 喜郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26878987A priority Critical patent/JPH01111834A/en
Publication of JPH01111834A publication Critical patent/JPH01111834A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a Ti alloy having sufficiently low strength and excellent ductility for cold working by alloying specific ratios of V, Sn and Zr to Ti. CONSTITUTION:The Ti alloy having the compsn. contg., by weight, 10-20% V, each 0.5-9.5% Sn and Zr as well as 1-10% their total amounts, or furthermore contg. 0.5-7% Al and the balance Ti is melted and refined to cast into the ingot. Said ingot is, e.g., heated to 700 deg.C, is hot rolled under 75% pressurizing ratio, is thereafter retained for 10 min to about 900 deg.C and is cooled by water. The Ti alloy having excellent low strength and ductility suitable to cold workability, particularly to cold forgeability and easily executable of cold working can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は低強度・高延性であって冷間加工性に優れたT
i合金に関するものである。
[Detailed description of the invention] [Industrial application field] The present invention is directed to a T having low strength, high ductility, and excellent cold workability.
This relates to i-alloy.

[従来の技術] Ti合金は軽く、強くしかも耐食性に優れているため航
空機や宇宙開発機器を中心に次第に利用範囲が拡がりつ
つあり、最近では自動車や家庭用電化製品等の民生品を
、冷間加工によって製造する場合の部材として使用する
ことも検討されはじめている。冷間加工を効率良く行な
う為には変形抵抗が小さく延性が大であることが必要で
ある。
[Conventional technology] Ti alloys are light, strong, and have excellent corrosion resistance, so their use is gradually expanding, mainly in aircraft and space development equipment. Consideration has also begun to be given to using it as a component for manufacturing by processing. In order to perform cold working efficiently, it is necessary to have low deformation resistance and high ductility.

しかしながら従来量も多く利用されているTi−6A 
l−4Vに代表されるα+β型Ti合金は、延性に乏し
く冷間加工に適さない。この様なα+β型Ti合金より
も加工性を高めたβ型Ti合金も開発されてはいるが、
これは強度が問題とならない冷間圧延性或は板金成形型
性を改良したものであって、変形抵抗を小さく抑えたも
のとはなっていない、変形抵抗を小さくするには強度が
小さいことが必要であるが、従来のβ型Ti合金は冷間
加工用に調質したものでもその引張強度は、例えば90
 Kgf/nm”程度と大きい値を示した。そこで強度
を更に低くしたTi−22V−4Al合金も開発されて
いる(特開昭61−250138)。
However, Ti-6A, which has been used in large quantities
α+β type Ti alloys represented by l-4V have poor ductility and are not suitable for cold working. Although β-type Ti alloys with improved workability than such α+β-type Ti alloys have been developed,
This is an improvement in cold rolling properties or sheet metal moldability where strength is not an issue, but does not reduce deformation resistance.In order to reduce deformation resistance, it is necessary to have low strength. However, even if the conventional β-type Ti alloy is tempered for cold working, its tensile strength is, for example, 90
A Ti-22V-4Al alloy with even lower strength has been developed (Japanese Unexamined Patent Publication No. 250138/1983).

[発明が解決しようとする問題点] しかしながら上記合金であっても80 Kgf/mm2
程度の引張強度を有しており、冷間加工用としては十分
に低強度のものとは言い難い。例えば据込み鍛造に代表
される冷間鍛造を行なう場合は、Ti合金素材が工具に
よって強く拘束されるため変形抵抗は急激に上昇する。
[Problems to be solved by the invention] However, even with the above alloy, 80 Kgf/mm2
It has a tensile strength of about 100%, and it cannot be said that the strength is sufficiently low for cold working. For example, when cold forging such as upsetting forging is performed, the Ti alloy material is strongly restrained by the tool, so the deformation resistance increases rapidly.

その結果引張における変形抵抗が僅か数キロ違っても、
加工時には数十キロものオーダーで違ってくることがあ
る。
As a result, even if the deformation resistance in tension differs by only a few kilograms,
During processing, the difference can be on the order of tens of kilograms.

このため型の寿命を良好に保つ上でも鍛造素材の変形抵
抗を小さくすること、例えば上記した引張強度80 K
gf/mm2程度のものよりも更に強度の低いTi合金
を開発することが望まれていた。
Therefore, in order to maintain a good lifespan of the mold, it is necessary to reduce the deformation resistance of the forging material, for example, the above-mentioned tensile strength of 80 K.
It has been desired to develop a Ti alloy with even lower strength than that of about gf/mm2.

本発明はこの様な状況の下なされたものであって、その
目的は従来のTi合金より更に強度を低下させるととも
に、加工の際の割れ発生限界に大きく影響する絞り性を
高めることによって、冷間加工性、特に冷間鍛造性を向
上させて、冷間での部品加工をより容易に行なうことの
できるTi合金を提供する点にある。
The present invention was developed under these circumstances, and its purpose is to further reduce the strength of Ti alloys than conventional Ti alloys, as well as improve drawability, which greatly affects the limit of cracking during processing. The object of the present invention is to provide a Ti alloy that has improved workability, particularly cold forgeability, and can be more easily cold-processed into parts.

[問題点を解決する為の手段] 本発明のTi合金はVを10〜20%、Sn及びZrを
それぞれ0.5〜9.5%且つ総和で1〜10%含有し
、残部Ti及び不可避不純物からなることを要旨とする
ものである。また上記構成に加えて更にAlを0.5〜
7%含有することも本発明の重要な構成要件の1つであ
る。
[Means for solving the problems] The Ti alloy of the present invention contains 10 to 20% of V, 0.5 to 9.5% of Sn and Zr, and 1 to 10% in total, with the balance being Ti and unavoidable The gist is that it consists of impurities. In addition to the above structure, 0.5~
The content of 7% is also one of the important constituent elements of the present invention.

[作用及び実施例コ Tiにβ安定化元素であるVを約15%以上添加してβ
温度域から焼入れを行なうと、β単相のTi合金を得る
ことができるが、■の含有量が15%前後のTi合金は
、常温において応力誘起変態或は双晶変形を起こして変
形抵抗が低下することはよく知られている。しかしこの
様なTi合金でも本発明者等の実験によれば、引張強度
は80 Kgf/ma+2を示して高強度であり、しか
も延性も良好なものではなく冷間加工に十分適したもの
とはなっていない。
[Function and Examples] About 15% or more of V, which is a β stabilizing element, is added to Ti to
If quenching is carried out in the temperature range, a β single-phase Ti alloy can be obtained, but Ti alloys with a content of around 15% undergo stress-induced transformation or twinning deformation at room temperature, resulting in low deformation resistance. It is well known that there is a decline in However, according to the experiments conducted by the present inventors, even such a Ti alloy has a high tensile strength of 80 Kgf/ma+2, and its ductility is also not good, making it difficult to believe that it is fully suitable for cold working. is not.

そこで本発明者等はTtに■を添加することによって起
こる変形抵抗の低下作用を利用しつつ、更に一層の強度
低下をはかり、且つ延性も良好に維持することのできる
添加元素について追跡・研究を重ねた。その結果Vの含
有量を応力誘起変態或は双晶変形の起こる範囲とし、更
にSn及びZrを一定量含有させれば所期の目的が達成
されることを知見した。
Therefore, the present inventors have pursued and researched additive elements that can further reduce the strength and maintain good ductility while taking advantage of the effect of reducing deformation resistance caused by adding (■) to Tt. Layered. As a result, it was found that the intended purpose could be achieved by adjusting the V content to a range in which stress-induced transformation or twinning deformation occurs, and further containing a certain amount of Sn and Zr.

これらの添加元素の適正添加範囲を調査する為下記の実
験を行なった。
In order to investigate the appropriate addition range of these additive elements, the following experiment was conducted.

第1表左欄に示す種々の合金組成のボタン鋳塊(各13
0g)をタングステンアーク溶解法により溶製し、70
0℃で75%の熱間圧延を行なった後、900℃で10
分間保持し水冷を行なった。これより平行部径2 mm
、平行部長さ7mmの引張試験片を1系取し、ひずみ速
度20%/分で引張試験を行ない、強度調査のため0.
2%耐力及び引張強さを測定し、又延性調査のため伸び
及び絞りを測定した。測定結果を第1表右欄に示す。
Button ingots of various alloy compositions shown in the left column of Table 1 (each 13
0g) was melted by tungsten arc melting method, and 70g
After 75% hot rolling at 0℃, 10% hot rolling at 900℃
The mixture was held for a minute and cooled with water. From this, the diameter of the parallel part is 2 mm
A series of tensile test specimens with a parallel length of 7 mm was taken and subjected to a tensile test at a strain rate of 20%/min to investigate the strength.
The 2% proof stress and tensile strength were measured, and the elongation and area of area were measured to investigate ductility. The measurement results are shown in the right column of Table 1.

第  1  表 第1表の結果より添加元素の適正添加量の範囲について
説明する。
Table 1 Based on the results shown in Table 1, the range of appropriate addition amounts of additive elements will be explained.

v:10〜20% ■の添加量が10%未満の場合は、焼入れの際にマルテ
ンサイト変態が起こり、その結果強度が大で延性は低か
った(第1表No、10〜12)。
v: 10-20% When the amount of (1) added was less than 10%, martensitic transformation occurred during quenching, resulting in high strength and low ductility (Table 1 Nos. 10-12).

一方20%を超える場合は、応力誘起変態及び双晶変形
の発生領域を完全に逸脱してすべり変形が起こる為強度
が大であった(No、26)。この結果必要な強度の低
下効果及び延性の向上効果を得る為には、■の添加量は
10〜20%であるとの結論を得た。尚より好ましいの
は12〜18%であった(No、3.7)。
On the other hand, when it exceeds 20%, the strength is high because sliding deformation occurs completely outside the region where stress-induced transformation and twinning deformation occur (No. 26). As a result, it was concluded that in order to obtain the necessary effect of reducing strength and improving ductility, the amount of addition of (2) should be 10 to 20%. Furthermore, 12 to 18% was more preferable (No, 3.7).

Sn及びzr:いずれも0.5〜9.5%且つ総和で1
〜10% ■の存在下でSn或はZrを添加すると強度の低下及び
延性の向上をはかることができたが、この場合、Sn又
はZrのいずれか1種を添加するよりも、Sn及びZr
の双方を添加して共存させるとぎはそれらの相乗作用が
認められ上記効果は、はるかに顕著であった(No、4
と17或は18参照)。Sn及びZrはVのβ安定化作
用を一層促進するものと思われる。
Sn and zr: both 0.5 to 9.5% and total 1
Adding Sn or Zr in the presence of ~10% (1) could reduce strength and improve ductility; however, in this case, Sn and Zr
When both were added to coexist, their synergistic effect was observed, and the above effect was much more pronounced (No. 4).
and 17 or 18). It is believed that Sn and Zr further promote the β-stabilizing effect of V.

但しSn及びZrの添加量の総和が1%未満の場合は、
無添加の場合より強度が上昇し、延性が低下した(No
、15. 16と18或は24と29参照)。添加量を
総和で1%以上とすると強度が低下し始めると共に、延
性が向上しはじめた。そして添加量が7%前後を極値と
して、強度が上昇しはじめ且つ延性が低下していくが、
10%以下の添加量であれば添加効果が認められた(N
o。
However, if the total amount of Sn and Zr added is less than 1%,
The strength increased and the ductility decreased compared to the case without additives (No.
, 15. 16 and 18 or 24 and 29). When the total addition amount was 1% or more, the strength began to decrease and the ductility began to improve. Then, when the addition amount reaches an extreme value of around 7%, the strength begins to increase and the ductility decreases.
Addition effects were observed if the amount added was 10% or less (N
o.

1〜9)。尚より好ましい添加量は総和で2〜8%であ
る。又Sn及びZrは、いずれも0.5%以上添加する
必要があり(NO,4と21参照)、いずれかが0.5
%未満の場合は強度、延性共に不十分であった(No、
4と22或は1と13参照)。
1-9). A more preferable addition amount is 2 to 8% in total. In addition, it is necessary to add Sn and Zr in an amount of 0.5% or more (see NO, 4 and 21).
%, both strength and ductility were insufficient (No,
4 and 22 or 1 and 13).

しかしSn及びZrの添加量が10%を超えると強度が
急激に上昇し延性が低下した( N o、 2と14或
は6と19.20.23或は9と25を参照)。
However, when the amounts of Sn and Zr added exceeded 10%, the strength sharply increased and the ductility decreased (see No. 2 and 14 or 6 and 19, 20, 23 or 9 and 25).

以上の結果から明らかな様に、本発明の実施例であるN
o、1〜9をNo、10〜29の比較例の中からVの含
有量が同一であるもの同士と比べると、いずれも本発明
例の方が強度がより抑制され、また延性はより向上して
いることがわかった。
As is clear from the above results, N
Comparing Comparative Examples No. o, 1 to 9 and Comparative Examples 10 to 29 with the same V content, the strength of the present invention examples is more suppressed and the ductility is further improved. I found out that it was.

本発明者等は更にAl添加による強度低下及び延性向上
の効果について実験・検討した。その結果、Sn或はZ
rを添加することなくAlを添加すると延性は向上する
が強度も上昇することがわかった。そこでSn及びZr
を添加した本発明に係るTi合金に一定量のAlを添加
したところ、延性には殆んど影響を及ぼさないが強度を
より一層低下させることができることがわかフた。この
場合の引張試験片の作成は、前記したA1無添加の場合
と同様とした。
The present inventors further experimented and investigated the effect of adding Al on reducing strength and improving ductility. As a result, Sn or Z
It was found that adding Al without adding r improves ductility but also increases strength. Therefore, Sn and Zr
When a certain amount of Al was added to the Ti alloy according to the present invention, it was found that the strength could be further reduced, although the ductility was hardly affected. The tensile test piece in this case was prepared in the same manner as in the case without A1 added.

第2表左欄に合金組成を、同右欄に実験結果を示す。The alloy composition is shown in the left column of Table 2, and the experimental results are shown in the right column.

第2表の結果よりA1の適正添加量の範囲について説明
する。
Based on the results shown in Table 2, the range of the appropriate amount of A1 to be added will be explained.

A 1 : 0.5〜7 % No、30〜32は本発明の実施例であり、第1表No
、5に比較して0.2%耐力及び引張強さのいずれも低
下しているが、比較例であるNo、33及び34はAt
の添加効果がほとんどみられず、又No、35では強度
上昇及び延性低下が激しかった。即ちAlの添加効果は
、0.5%の添加量で十分発揮されるが、添加量が7%
を超えると、焼入れにおいてマルテンサイト変態が顕著
になり強度低下をはかることができなかった(No、3
3と35参照)。
A1: 0.5-7% No. 30-32 are examples of the present invention, and Table 1 No.
Both the yield strength and tensile strength are lower by 0.2% compared to At.
Almost no effect of addition was observed, and in No. 35, the strength increased and the ductility decreased significantly. In other words, the effect of adding Al is sufficiently exhibited at an addition amount of 0.5%, but when the addition amount is 7%.
When the temperature exceeded 3, the martensitic transformation became noticeable during quenching, and it was not possible to reduce the strength (No. 3).
3 and 35).

尚本発明に係る合金に対して400℃、45゜’c、s
oo℃及び550℃で8時間の時効処理を施した後、ビ
ッカース硬度を測定した結果、Ti−6Al−4V合金
と同等以上の高強度(300にgf/mm2以上)が、
いずれかの時効処理を選択することにより得られること
が確認された。即ち本発明に係るTi合金は、時効処理
を行なえば従来のTi合金と同等の強度特性を得ること
ができるものである。
For the alloy according to the present invention, 400°C, 45°c, s
After aging for 8 hours at oo℃ and 550℃, the Vickers hardness was measured, and the results showed that it had a high strength (more than 300 gf/mm2) equal to or higher than that of Ti-6Al-4V alloy.
It was confirmed that this can be obtained by selecting either of the aging treatments. That is, the Ti alloy according to the present invention can obtain strength characteristics equivalent to those of conventional Ti alloys if subjected to aging treatment.

[発明の効果] 本発明は上記の様に構成されているので冷間加工、特に
冷間鍛造等を行なう上で極めて有利な低強度・高延性T
i合金が得られることとなり、その結果優れた特性を有
するTi合金が航空・宇宙産業分野に限定されることな
く、広く一般民生品の用途にまで容易に利用できること
となった。
[Effects of the Invention] Since the present invention is configured as described above, it has low strength and high ductility T which is extremely advantageous in performing cold working, especially cold forging, etc.
As a result, a Ti alloy with excellent properties can now be easily used not only in the aerospace industry but also in a wide range of consumer products.

Claims (2)

【特許請求の範囲】[Claims] (1)Vを10〜20%(重量%の意味、以下同じ)、
Sn及びZrをそれぞれ0.5〜9.5%且つ総和で1
〜10%含有し、残部Ti及び不可避不純物からなるこ
とを特徴とする冷間加工用低強度・高延性Ti合金。
(1) 10 to 20% V (meaning of weight %, same below),
0.5 to 9.5% of Sn and Zr each and 1 in total
A low-strength, high-ductility Ti alloy for cold working, characterized by containing ~10% Ti and the remainder consisting of Ti and unavoidable impurities.
(2)Vを10〜20%、Sn及びZrをそれぞれ0.
5〜9.5%且つ総和で1〜10%、Alを0.5〜7
%含有し、残部Ti及び不可避不純物からなることを特
徴とする冷間加工用低強度・高延性Ti合金。
(2) V: 10-20%, Sn and Zr: 0.
5-9.5% and total 1-10%, Al 0.5-7
%, with the remainder consisting of Ti and unavoidable impurities.
JP26878987A 1987-10-23 1987-10-23 Low strength and high ductile ti alloy for cold working Pending JPH01111834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26878987A JPH01111834A (en) 1987-10-23 1987-10-23 Low strength and high ductile ti alloy for cold working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26878987A JPH01111834A (en) 1987-10-23 1987-10-23 Low strength and high ductile ti alloy for cold working

Publications (1)

Publication Number Publication Date
JPH01111834A true JPH01111834A (en) 1989-04-28

Family

ID=17463298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26878987A Pending JPH01111834A (en) 1987-10-23 1987-10-23 Low strength and high ductile ti alloy for cold working

Country Status (1)

Country Link
JP (1) JPH01111834A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229058A (en) * 1998-02-13 1999-08-24 Sumitomo Metal Ind Ltd Titanium alloy excellent in oxidation resistance and cold workability
JP2007308016A (en) * 2006-05-18 2007-11-29 Kurashiki Kako Co Ltd Vibration proofing link mounting structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229058A (en) * 1998-02-13 1999-08-24 Sumitomo Metal Ind Ltd Titanium alloy excellent in oxidation resistance and cold workability
JP2007308016A (en) * 2006-05-18 2007-11-29 Kurashiki Kako Co Ltd Vibration proofing link mounting structure

Similar Documents

Publication Publication Date Title
CA2861163C (en) Titanium alloy with improved properties
JP6104164B2 (en) High strength and ductile alpha / beta titanium alloy
US11920231B2 (en) Creep resistant titanium alloys
JPS63286557A (en) Production of article from al base alloy
RU2346070C2 (en) High-strength titanium alloy
US11708630B2 (en) Titanium alloy with moderate strength and high ductility
US2240940A (en) Aluminum alloy
US2575962A (en) Titanium alloy
JP2005076098A (en) HIGH-STRENGTH alpha-beta TITANIUM ALLOY
JPH01111835A (en) Low strength and high ductile ti alloy for cold working
EP3196321A2 (en) Economically alloyed titanium alloy with predictable properties
JPH01111834A (en) Low strength and high ductile ti alloy for cold working
US2864697A (en) Titanium-vanadium-aluminum alloys
JPH01129941A (en) Low strength and high ductile ti alloy for cold working
US10982304B2 (en) Heat-resistant alloy for hearth metal member
US3061427A (en) Alloy of titanium
JP2608689B2 (en) High strength and high ductility Ti alloy
US3370945A (en) Magnesium-base alloy
JPS624849A (en) Die for hot working al and al alloy
US2388563A (en) Thermal treatment for aluminum base alloys
RU2772153C1 (en) Creep-resistant titanium alloys
JPS589962A (en) High-strength stainless steel with superior intergranular corrosion cracking resistance and workability
US2687350A (en) Titanium base alloys containing chromium and carbon
JP2936754B2 (en) Ti alloy excellent in cold forgeability
JPS627826A (en) Aluminum alloy for cold forging having work-softening characteristic