JPH01111194A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH01111194A
JPH01111194A JP27103487A JP27103487A JPH01111194A JP H01111194 A JPH01111194 A JP H01111194A JP 27103487 A JP27103487 A JP 27103487A JP 27103487 A JP27103487 A JP 27103487A JP H01111194 A JPH01111194 A JP H01111194A
Authority
JP
Japan
Prior art keywords
fluid
flow passage
flow
flow path
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27103487A
Other languages
Japanese (ja)
Other versions
JPH0674958B2 (en
Inventor
Eiji Fukumoto
福元 英二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKAE SANGYO KK
Original Assignee
SAKAE SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKAE SANGYO KK filed Critical SAKAE SANGYO KK
Priority to JP62271034A priority Critical patent/JPH0674958B2/en
Publication of JPH01111194A publication Critical patent/JPH01111194A/en
Publication of JPH0674958B2 publication Critical patent/JPH0674958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To permit the adjustment of the area of the opening of a flow passage so as to be suitable for the supplying flow rate of fluid and restrain the deterioration of heat exchanging efficiency while maintaining the flow speed of the fluid constant substantially, by a method wherein the flow passage of the fluid is provided with a mechanism, which opens and closes the opening port of the flow passage to increase or decrease the number of effective flow passages, at the inlet port thereof. CONSTITUTION:The flow passage 2 of fluid A and the flow passage 3 of fluid B are provided alternately in parallel in the main body 1 of a heat exchanger through partitioning plates 4 and respective flow passages 2 of the fluid A are communicated with an inlet port 5 and an outlet port 6 while respective flow passages 3 of the fluid B are communicated with the inlet port 7 and the outlet port 8. A number of flow passage increasing and decreasing mechanism 9 for the flow passage of the fluid A is provided at the inlet port 5 of the fluid A at the upper end of the main body 1 of the heat exchanger while the same mechanism 10 for the flow passage of the fluid B is provided at the inlet port 7 of the fluid B. The number of flow passage increasing and decreasing mechanism 9 of the flow passage of the fluid A is constituted of a slide gate plate 13, opening and closing the opening 2a of the flow passage 2 of the fluid A, and a driving means 14 for the opening and closing of the slide gate plate 13 while the same mechanism 10 for the flow passage of the fluid B is constituted of the slide gate plate 31 for the opening 3a and the driving mechanism 14 for the gate plate 31. The effective number of flow passages is adjusted by said mechanisms 9, 10 whereby the flow resistance of the fluid in respective passages may be maintained at a predetermined set value.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、A流体流路とB流体流路とを区画プレートを
介して交互に並設した熱交換器、即ち一般にプレート型
熱交換器と呼称される熱交換器に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a heat exchanger in which A fluid passages and B fluid passages are alternately arranged in parallel via partition plates, that is, generally a plate type heat exchanger. It is related to a heat exchanger called.

(従来の技術及びその問題点) 従来の熱交換器は、熱交換面積が一定であったために、
負荷変動により一方の流体の流量及び交換熱量が変化に
応じて増加した場合には、流れ抵抗が増大して流体送入
能力が不足し、逆に減少した場合には、流速が過少とな
って熱交換効率が低下し、何れの場合に於いても熱交換
器の目標機能を実現出来ず、効率の低下を招くこととな
り、限られた範囲の最適条件に於いてのみ所期の機能を
発揮し得るものであった。
(Conventional technology and its problems) Conventional heat exchangers have a constant heat exchange area, so
If the flow rate and exchange heat amount of one fluid increases due to load fluctuations, the flow resistance increases and the fluid delivery capacity becomes insufficient, and if it decreases, the flow rate becomes too low. Heat exchange efficiency decreases, and in any case, the target function of the heat exchanger cannot be achieved, resulting in a decrease in efficiency, and the desired function is achieved only under a limited range of optimal conditions. It was possible.

従って、コジェネレーション(熱電併給)の場合の如く
供給熱の時間的、季節的変動が大きいシステム又は、燃
料電池のような負荷変動の大きいシステムに於いて、上
記のような従来の熱交換器を使用したのでは、熱交換効
率を最高に維持することが出来ず、システム全体の効率
も低下させることになる。このような問題点を解決する
方法として、小型の熱交換器を複数台並列に接続し、負
荷変動に応じて使用する熱交換器の台数を切り換えるこ
とが考えられるが、設備全体が大型になり、大幅なコス
トアンプは免れない。
Therefore, in systems where the supply heat fluctuates greatly over time or season, such as in the case of cogeneration (combined heat and power generation), or systems with large load fluctuations, such as fuel cells, the conventional heat exchanger as described above cannot be used. If used, the heat exchange efficiency cannot be maintained at the highest level, and the efficiency of the entire system will also decrease. One possible way to solve these problems is to connect multiple small heat exchangers in parallel and switch the number of heat exchangers used according to load fluctuations, but this would increase the overall size of the equipment. , a significant cost increase cannot be avoided.

(問題点を解決するための手段) 本発明は以上のような従来の問題点を解決し得る熱交換
器を提案するものであって、その特徴は、A流体流路と
B流体流路とを区画フッートを介して交互に並設した熱
交換器に於いて、少なくとも何れか一方の流体流路の入
口部に、流路の開口を開閉して有効流路数を増減する機
構を設けた点にある。
(Means for Solving the Problems) The present invention proposes a heat exchanger that can solve the above-mentioned conventional problems, and its features include a fluid flow path A and a fluid flow path B. In the heat exchangers, which are arranged alternately in parallel via partition feet, a mechanism is provided at the inlet of at least one of the fluid channels to open and close the opening of the channel to increase or decrease the number of effective channels. At the point.

(発明の作用) 前記A流体流路のみが前記流路数増減機構によって有効
流路数を増減し得るように構成したときは、熱交換媒体
によって加熱又は冷却されるべき主たる流体をA流体と
して前記A流体流路に送給し、熱交換媒体はB流体とし
てB流体流路に送給する。例えば、燃料電池の電極用ガ
スを大気で冷却する場合は、前記電極用ガスをA流体流
路に送給し、冷却媒体としての大気をB流体流路に送給
する。
(Operation of the Invention) When only the A fluid flow path is configured such that the number of effective flow paths can be increased or decreased by the flow path number increasing/reducing mechanism, the main fluid to be heated or cooled by the heat exchange medium is the A fluid. The heat exchange medium is fed to the A fluid flow path, and the heat exchange medium is fed as B fluid to the B fluid flow path. For example, when the electrode gas of a fuel cell is cooled by air, the electrode gas is fed to the A fluid flow path, and the air as a cooling medium is fed to the B fluid flow path.

然して、負荷変動により前記A流体の送給流量が減少し
て各流路中の流速が過少となるときは、前記流路数増減
機構により適当数の流路の開口を閉して実際にA流体が
流動する有効流路数を減し、有効流路を流れるA流体の
各流路中の流速を所期の設定流速に維持させることが出
来る。逆に前記A流体の送給流量が増加して各流路中の
流れ抵抗が増大するときは、前記流路数増減機構により
閉じられていた流路を開いて有効流路数を増加し、A流
体の各流路中の流れ抵抗を所期の設定値に維持させるこ
とが出来る。
However, when the flow rate of fluid A decreases due to load fluctuations and the flow velocity in each channel becomes too low, the channel number increase/decrease mechanism closes the openings of an appropriate number of channels to actually The number of effective channels through which the fluid flows can be reduced, and the flow velocity of fluid A flowing through each effective channel can be maintained at the desired set flow velocity. Conversely, when the flow resistance in each flow path increases due to an increase in the flow rate of the fluid A, the number of effective flow paths is increased by opening the closed flow paths by the flow path number increasing/reducing mechanism; The flow resistance in each flow path of the A fluid can be maintained at the desired set value.

A流体流路及びB流体流路の何れにも前記有効法路数増
減機構を設けるときは、前記のようにA流体の送給流量
の変動に応してA流体流路側の流路数増減機構を作動さ
せることによりA流体が実際に流れる有効流路数を増減
させたとき、他方のB流体流路側の流路数増減機構も同
期的に作動させて、B流体流路の有効流路数をA流体流
路の有効流路数に対応させて増減させる。勿論このとき
、A流体が流れている有効流路に隣接するB流体流路の
みにB流体が送給されるように、両流路数増減機構を制
御することは勿論である。
When the effective method number increase/decrease mechanism is provided in both the A fluid flow path and the B fluid flow path, the number of flow paths on the A fluid flow path side can be increased or decreased in response to fluctuations in the feeding flow rate of A fluid as described above. When the number of effective channels through which fluid A actually flows is increased or decreased by operating the mechanism, the number of channels increasing/reducing mechanism on the other B fluid channel side is also operated synchronously to increase or decrease the effective channel number of fluid B. The number is increased or decreased in accordance with the number of effective flow paths of the A fluid flow path. Of course, at this time, both flow path number increasing/decreasing mechanisms are of course controlled so that the B fluid is supplied only to the B fluid flow path adjacent to the effective flow path through which the A fluid is flowing.

(実施例) 以下に本発明の一実施例を添付の例示図に基づいて説明
する。
(Example) An example of the present invention will be described below based on the attached illustrative drawings.

第1図及び第2図に於いて、1は角筒状の熱交換器本体
であって、内部には、A流体流路2とB流体流路3とが
区画プレート4を介して交互に並設されており、各人流
体流路2は、本体1の長さ方向上端の入口部5と本体1
の長さ方向下端の出口部6とを連通させ、各B流体流路
3は、本体1の長さ方向下端−側面の入口部7と本体1
の長さ方向上端他側面の出口部8とを連通させる。この
熱交換器本体1の具体的構成は従来周知であるから、図
示及び説明は省略する。
In FIGS. 1 and 2, reference numeral 1 denotes a rectangular cylindrical heat exchanger main body, and inside thereof, an A fluid flow path 2 and a B fluid flow path 3 are arranged alternately through a partition plate 4. They are arranged in parallel, and each person's fluid flow path 2 is connected to the inlet part 5 at the upper end of the main body 1 in the longitudinal direction and the main body 1.
Each B fluid flow path 3 communicates with the inlet section 7 at the lower longitudinal end of the main body 1 and the side surface thereof.
The upper end in the length direction is communicated with the outlet section 8 on the other side surface. Since the specific configuration of this heat exchanger main body 1 is conventionally well known, illustration and description thereof will be omitted.

前記熱交換器本体1の上端のA流体入口部5にはへ流体
流路の流路数増減機構9が設けられている。10は前記
B流体入口部7に設けられたB流体流路の流路数増減機
構、11はA流体入口用ダクト、12はA流体出口用ダ
クトである。
At the A fluid inlet 5 at the upper end of the heat exchanger main body 1, a mechanism 9 for increasing and decreasing the number of fluid channels is provided. 10 is a mechanism for increasing and decreasing the number of B fluid channels provided in the B fluid inlet section 7, 11 is a duct for A fluid inlet, and 12 is a duct for A fluid outlet.

前記A流体流路の流路数増減機構9は、第3図〜第5図
に示すように前記A流体流路2の開口2aを開閉するス
ライドゲート板13とその開閉駆動手段14とから構成
されている。スライドゲート板13は、左右一対のガイ
ドレール15によって本体1の長さ方向に対し直交する
水平方向に摺動可能に支持され、両側辺にはラックギヤ
16a、16bが形成されている。前記駆動手段14は
、前記ランクギヤ16a、+6bに夫々咬合する左右一
対のピニオンギヤ17.18、一方のピニオンギヤ17
の軸17aを正逆任意の方向に回転駆動するサーボモー
ター19、他方のピニオンギヤ18の軸18aに一組の
ギヤ20a、20bを介して連動連結された中間軸21
と前記ピニオンギヤ17の軸17aとを歯輪22a、2
2bを介して連動連結させるチェノ23がら構成されて
いる。24は軸継手である。
As shown in FIGS. 3 to 5, the mechanism 9 for increasing and decreasing the number of channels in the A fluid channel is composed of a slide gate plate 13 that opens and closes the opening 2a of the A fluid channel 2, and an opening/closing drive means 14 for the slide gate plate 13. has been done. The slide gate plate 13 is supported by a pair of left and right guide rails 15 so as to be slidable in a horizontal direction perpendicular to the length direction of the main body 1, and rack gears 16a and 16b are formed on both sides. The driving means 14 includes a pair of left and right pinion gears 17 and 18 that mesh with the rank gears 16a and +6b, respectively, and one pinion gear 17.
A servo motor 19 rotates the shaft 17a of the pinion gear 18 in any forward or reverse direction, and an intermediate shaft 21 is interlocked and connected to the shaft 18a of the other pinion gear 18 via a pair of gears 20a and 20b.
and the shaft 17a of the pinion gear 17 are connected to the gear wheels 22a, 2
It is composed of a chino 23 which is interlocked and connected via 2b. 24 is a shaft joint.

前記左右一対のガイドレール15は、前記スライドゲー
ト板13の往復移動経路全体を覆うケース25の内側に
支持され、前記ピニオンギヤ軸17a、10a は前記
ケース25を上下に貫通ずるように支承され、サーボモ
ーター19はケース25に取り付けられたブラケット2
6に支持されている。又、中間軸21はケース25の下
側に支承され、ギヤ20a、20b、歯輪22a、22
b及びチェノ23はケース25の下側に配置されており
、必要に応してカバーで覆うことが出来る。
The pair of left and right guide rails 15 are supported inside a case 25 that covers the entire reciprocating path of the slide gate plate 13, and the pinion gear shafts 17a, 10a are supported so as to vertically pass through the case 25, and the servo The motor 19 is attached to the bracket 2 attached to the case 25.
6 is supported. Further, the intermediate shaft 21 is supported on the lower side of the case 25, and has gears 20a, 20b, gears 22a, 22
b and chino 23 are arranged under the case 25, and can be covered with a cover if necessary.

前記ケース25には、A流体入口部5とA液体入ロ用ダ
クト11との間の中継流路27を構成する隔壁28が設
けられ、この隔壁28を前記スライドゲート板13が貫
通摺動する。29は前記隔壁28に設けられたシール用
バッキングでアリ、30は、各人流体流路2をスライド
ゲート板13の摺動経路まで延長させるために前記ケー
ス25内に等間隔おきに並設した流路隔壁である。
The case 25 is provided with a partition wall 28 that constitutes a relay flow path 27 between the A fluid inlet portion 5 and the A liquid inlet duct 11, and the slide gate plate 13 slides through this partition wall 28. . 29 is a sealing backing provided on the partition wall 28, and 30 is a sealing backing provided in the case 25 at equal intervals in order to extend each fluid flow path 2 to the sliding path of the slide gate plate 13. It is a flow path partition wall.

尚、B流体流路の流路数増減機構10は上記のA流体流
路の流路数増減機構9と実質的に同一構造であり、第1
図に示すようにB流体流路3の開口3aを開閉するスラ
イドゲート板31とその開閉駆動手段を備えている。
Note that the passage number increasing/reducing mechanism 10 for the B fluid passage has substantially the same structure as the passage number increasing/reducing mechanism 9 for the A fluid passage, and the first
As shown in the figure, a slide gate plate 31 for opening and closing the opening 3a of the B fluid flow path 3 and its opening/closing driving means are provided.

以上の構成によれば、A液体入ロ用ダクト11から送給
されるA流体は、流路数増減機構9内の中継流路27を
経由して熱交換器本体1のA流体入口部5からA流体流
路2に分配され、各A流体流路2内を流動して出口部6
よりA流体出口用ダクト12から送出される。一方、B
流体は流路数増減機構10内の中継流路を経由して熱交
換器本体1のB流体入口部7からB流体流路3に分配さ
れ、各B流体流路3内を前記A流体とは逆向きに流動し
て出口部8より送出される。このようにA流体とB流体
とが熱交換器本体1内の各流路2゜3内を互いに逆向き
に流動する間に、区画プレート4を介して互いに熱交換
することになる。
According to the above configuration, the A fluid fed from the A fluid inlet duct 11 passes through the relay flow path 27 in the flow path number increase/decrease mechanism 9 to the A fluid inlet portion 5 of the heat exchanger body 1. from the A fluid flow path 2, and flows through each A fluid flow path 2 to reach the outlet section 6.
The A fluid is sent out from the A fluid outlet duct 12. On the other hand, B
The fluid is distributed from the B fluid inlet 7 of the heat exchanger main body 1 to the B fluid flow paths 3 via the relay flow path in the flow path number increase/decrease mechanism 10, and the inside of each B fluid flow path 3 is connected to the A fluid. flows in the opposite direction and is sent out from the outlet section 8. In this way, fluid A and fluid B exchange heat with each other via the partition plate 4 while flowing in opposite directions within each flow path 2.degree. 3 in the heat exchanger body 1.

然して、この熱交換器に送給されるA流体の流量が最大
の場合には、第2図〜第4閏に示すようにA流体流路2
の流路数増減機構9に於けるスライドゲート板13は全
開位置(後退限位置)にあって、全てのA流体流路2の
開口2aが開かれており、全てのA流体流路2中をA流
体が所定の流速で流動する。負荷変動により送給される
A流体の流量が減少すれば、前記流路数増減機構9の開
閉駆動手段14を作動させてスライドゲート板13を所
定位置まで閉動させる。
However, when the flow rate of the A fluid sent to this heat exchanger is the maximum, the A fluid flow path 2 as shown in FIGS.
The slide gate plate 13 in the flow path number increase/decrease mechanism 9 is at the fully open position (retraction limit position), and the openings 2a of all the A fluid flow paths 2 are open. Fluid A flows at a predetermined flow rate. When the flow rate of fluid A to be fed decreases due to load fluctuation, the opening/closing driving means 14 of the flow path number increasing/decreasing mechanism 9 is operated to close the slide gate plate 13 to a predetermined position.

即ち、サーボモーター19により一方のピニオンギヤ1
7を正転駆動すると、その回転が歯輪22a、チェノ2
3、歯輪22b、中間軸21、及ヒキャ20b、20a
を介して他方のピニオンギヤ18に伝達され、このピニ
オンギヤ18が逆転するので、両ピニオンギヤ17.1
8に咬合するラックギヤ16a、16bを介してスライ
ドゲート板13が閉動方向へ前進移動し、並列するA流
体流路2の開口2aを一端から順番に閉塞することにな
る。従って、A流体が実際に送給されるA流体流路2の
数(有効流路数)を減少変動後のA流体流量に対応する
数に前記スライドゲート板13で減少させることが出来
、この結果、A流体が実際に送給される有効なA流体流
路2内でのA流体の流速は、送給流量が最大であったと
きと略同−に維持することが出来る。
That is, one pinion gear 1 is driven by the servo motor 19.
7 is driven in the forward direction, the rotation causes the gear 22a and the chain 2
3. Gear wheel 22b, intermediate shaft 21, and gears 20b, 20a
is transmitted to the other pinion gear 18 via
The slide gate plate 13 moves forward in the closing direction via the rack gears 16a and 16b that mesh with the slide gates 8, and sequentially closes the openings 2a of the parallel A fluid flow paths 2 from one end. Therefore, the number of A-fluid channels 2 to which A-fluid is actually fed (effective number of channels) can be reduced by the slide gate plate 13 to a number corresponding to the A-fluid flow rate after the reduction fluctuation. As a result, the flow rate of the A fluid in the effective A fluid channel 2 to which the A fluid is actually fed can be maintained at approximately the same rate as when the feeding flow rate was at the maximum.

又、減少したA流体の送給流量が再び増加したときは、
前記サーボモーター19によりピニオンギヤ17を逆転
駆動することにより、両ピニオンギヤ17.18とラッ
クギヤ16a、16bとを介してスライドゲート板13
が後退移動し、当該スライドゲート板13によって閉じ
られていたA流体流路2の開口が閉じられたときとは逆
の順番で順次開かれることになる。従って、A流体が実
際に送給されるA流体流路2の数(有効流路数)を増加
変動後のA流体流量に対応する数にスライドゲート板1
3の後退移動により増加させ、A流体が実際に送給され
る有効なA流体流路2内でのA流体の流速を常に略一定
に維持させることが出来る。
Also, when the decreased flow rate of fluid A increases again,
By driving the pinion gear 17 in reverse by the servo motor 19, the slide gate plate 13 is moved through the pinion gears 17 and 18 and the rack gears 16a and 16b.
moves backward, and the openings of the A fluid flow path 2 that were closed by the slide gate plate 13 are sequentially opened in the reverse order from when they were closed. Therefore, the number of A-fluid channels 2 to which A-fluid is actually fed (effective number of channels) is increased to the number corresponding to the A-fluid flow rate after fluctuation of the slide gate plate 1.
3, the flow velocity of fluid A in the effective fluid flow path 2 to which fluid A is actually fed can be maintained substantially constant.

上記のようにA流体流路2の有効流路数を流路数増減機
構9により調節した場合、この調節動作に同期させてB
流体流路3の有効流路数を増減する流路数増減機構10
を作動させ、前記流路数増減機構9のスライドゲート板
13で閉しられたA流体流路数と同一数のB流体流路3
をスライドゲート板31により閉しることにより、A流
体が流動するA流体流路2に隣接するB流体流路3にの
みB流体を流動させ、スライドゲート板13で閉じられ
た流体流路2に隣接するB流体流路3にまでB流体を送
給させることなく、両流体間の熱交換作用を行わせるこ
とが出来る。この場合、この熱交換器に送給するB流体
の送給流量を、前記のように調節された有効流路数に対
応させて調節することも出来る。
When the effective number of channels of the A fluid channel 2 is adjusted by the channel number increase/decrease mechanism 9 as described above, the B
Flow path number increase/decrease mechanism 10 for increasing/decreasing the number of effective flow paths of the fluid flow path 3
The number of B fluid channels 3, which is the same as the number of A fluid channels closed by the slide gate plate 13 of the channel number increasing/reducing mechanism 9, is activated.
By closing with the slide gate plate 31, the B fluid is allowed to flow only into the B fluid passage 3 adjacent to the A fluid passage 2 through which the A fluid flows, and the fluid passage 2 is closed with the slide gate plate 13. It is possible to perform heat exchange between the two fluids without feeding the B fluid to the B fluid flow path 3 adjacent to the fluid B. In this case, the flow rate of fluid B to be fed to this heat exchanger can also be adjusted in accordance with the number of effective channels adjusted as described above.

勿論、この熱交換器に送給されるB流体の流量が負荷変
動により減少又は増加する場合には、B流体流路3の入
口部7に設けられている前記流路数増減機構10の開閉
駆動手段を作動させてスライドゲート板31 (第1図
)を、前記流路数増減機構9に於いて説明したと同様に
閉動方向又は閉動方向にスライドさせ、実際にB流体が
流れるB流体流路3の数を、この熱交換器に送給される
B流体の流量に応じて増減調節し、有効なり流体流路3
内でのB流体の流速を常に略一定に維持させることが出
来る。この場合も前記のようにB流体流路3の有効流路
数の増減調節に応じて、他方のA流体流路2の有効流路
数を流路数増減機構9により追従調節すれば良い。
Of course, if the flow rate of B fluid supplied to this heat exchanger decreases or increases due to load fluctuation, the number of channels increasing/reducing mechanism 10 provided at the inlet portion 7 of the B fluid channel 3 may be opened or closed. The driving means is operated to slide the slide gate plate 31 (FIG. 1) in the closing direction or in the closing direction in the same manner as explained for the passage number increasing/decreasing mechanism 9, and the B fluid actually flows. The number of fluid channels 3 is adjusted to increase or decrease depending on the flow rate of fluid B fed to this heat exchanger, and the number of fluid channels 3 is adjusted to be effective.
The flow velocity of the B fluid inside can be maintained substantially constant at all times. In this case as well, the number of effective channels of the other A fluid channel 2 may be adjusted by the channel number increase/decrease mechanism 9 in accordance with the increase/decrease adjustment of the effective channel number of the B fluid channel 3 as described above.

しかし、例えばB流体を冷却用媒体としての空気とし、
A流体を前記B流体(空気)で冷却される処理ガスとし
てこの熱交換器を使用している場合には、前記のように
負荷変動により処理ガス(A流体)の送給流量が変化し
、これに対応して熱交換器に於けるAi!i!体流路2
の有効流路数を流路数増減機構9により調節しても、冷
却媒体としての空気(B流体)が流動するB流体流路3
の流路数増減調節は行わず、空気(B流体)は常に全て
のB流体流路3に送給しても良い。この場合は、B流体
流路3の有効流路数の増減機構10は省くことが出来る
However, for example, if fluid B is air as a cooling medium,
When this heat exchanger is used as a processing gas for fluid A to be cooled by fluid B (air), the flow rate of the processing gas (fluid A) to be supplied changes due to load fluctuations as described above. In response to this, Ai! in the heat exchanger! i! body flow path 2
Even if the number of effective channels is adjusted by the channel number increase/decrease mechanism 9, the B fluid channel 3 in which air as a cooling medium (B fluid) flows
Air (B fluid) may be constantly supplied to all B fluid channels 3 without adjusting the number of channels 3. In this case, the mechanism 10 for increasing and decreasing the number of effective channels of the B fluid channel 3 can be omitted.

尚、第1図に示すように流路数増Ha構9,10よりも
上手側のA流体送給路及びB流体送給路内に設置したセ
ンサー32.33によりA流体及びB流体の送給状況(
流量、温度、圧力等)を自動的に検出させ、この検出結
果から流路数増減量をマイクロコンピュータ−等により
自動的に演算させ、この演算結果に基づいて上記の流路
数増減機構9.10を自動運転させて所期の目的を達成
することが出来る。
As shown in FIG. 1, the flow of fluid A and fluid B is controlled by sensors 32 and 33 installed in the A fluid feeding path and the B fluid feeding path on the upper side of the flow path number increasing Ha structures 9 and 10. Salary status (
Flow rate, temperature, pressure, etc.) are automatically detected, and based on the detection results, an increase/decrease in the number of channels is automatically calculated by a microcomputer, etc., and based on the calculation results, the above-mentioned channel number increase/decrease mechanism 9. 10 can be operated automatically to achieve the desired purpose.

又、流路数増減機構は上記実施例のスライドゲート板を
使用するものに限定されず、供給される流体の種類、圧
力、温度、その他の使用条件に適したものであれば、如
何なる構造のものであっても良い。例えば、各流体流路
の開口を個々に開閉するバルブを利用した流路数増減機
構であっても良い。
Furthermore, the mechanism for increasing and decreasing the number of channels is not limited to the one using the slide gate plate of the above embodiment, but may have any structure as long as it is suitable for the type of fluid to be supplied, pressure, temperature, and other usage conditions. It may be something. For example, a mechanism for increasing and decreasing the number of fluid channels using valves that individually open and close the openings of each fluid channel may be used.

(発明の効果) 以上のように本発明の熱交換器によれば、冷却又は加熱
される主たる流体の送給流量が負荷変動等によって増減
変化しても、この送給流量の変動に対応して当該流体が
送給される流路数を増減調節して、この熱交換器に於け
る有効熱交換面積を前記流体の送給流量に適合した面積
に増減調節することが出来、常にこの熱交換面上での前
記流体の流速を略一定に維持して熱交換効率の低下を抑
制することが出来る。
(Effects of the Invention) As described above, according to the heat exchanger of the present invention, even if the feed flow rate of the main fluid to be cooled or heated increases or decreases due to load fluctuations, it is possible to cope with the fluctuation in the feed flow rate. By increasing or decreasing the number of channels through which the fluid is fed, the effective heat exchange area of the heat exchanger can be adjusted to an area that matches the flow rate of the fluid being fed. The flow rate of the fluid on the exchange surface can be maintained substantially constant, thereby suppressing a decrease in heat exchange efficiency.

しかも並列接続された複数台の熱交換器を選択的に使用
する場合と比較して、装置全体を小型軽量に構成するこ
とが出来、所期の目的を経済的に達成し得る。
Furthermore, compared to the case where a plurality of heat exchangers connected in parallel are selectively used, the entire apparatus can be made smaller and lighter, and the intended purpose can be achieved economically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は全体の正面図、第2図は熱交換器本体と流路数
増減用スライドゲート板とを示す概略斜視図、第3図は
流路数増減機構の構成を示す一部縦断正面図、第4図は
同横断平面図、第5図は同機構の伝動系を説明する側面
図である。 1・・・熱交換器本体、2・・・A流体流路、3・・・
B流体流路、4・・・区画プレート、5・・・A流体入
口部、6・・・A流体出口部、7・・・B流体入口部、
8・・・B流体出口部、9,10・・・流路数増減機構
、13,31・・・スライドゲート板、14・・・開閉
駆動手段、15・・・ガイドレール、16a、16b・
・・ラックギヤ、17.18・・・ピニオンギヤ、19
・・・サーボモーター、28・・・隔壁、30・・・流
路隔壁。
Fig. 1 is an overall front view, Fig. 2 is a schematic perspective view showing the heat exchanger body and a slide gate plate for increasing/reducing the number of channels, and Fig. 3 is a partially longitudinal front view showing the configuration of the mechanism for increasing/reducing the number of channels. FIG. 4 is a cross-sectional plan view of the same, and FIG. 5 is a side view illustrating the transmission system of the mechanism. 1... Heat exchanger main body, 2... A fluid flow path, 3...
B fluid flow path, 4... partition plate, 5... A fluid inlet section, 6... A fluid outlet section, 7... B fluid inlet section,
8... B fluid outlet section, 9, 10... Channel number increase/decrease mechanism, 13, 31... Slide gate plate, 14... Opening/closing drive means, 15... Guide rail, 16a, 16b.
... Rack gear, 17.18 ... Pinion gear, 19
... Servo motor, 28 ... Partition wall, 30 ... Channel partition wall.

Claims (2)

【特許請求の範囲】[Claims] (1)A流体流路とB流体流路とを区画プレートを介し
て交互に並設した熱交換器に於いて、少なくとも何れか
一方の流体流路の入口部に、流路の開口を開閉して有効
流路数を増減する機構を設けて成る熱交換器。
(1) In a heat exchanger in which A fluid flow path and B fluid flow path are arranged side by side alternately via partition plates, the opening of the flow path is opened and closed at the inlet of at least one of the fluid flow paths. A heat exchanger equipped with a mechanism that increases or decreases the number of effective flow paths.
(2)前記流路数増減機構が、流路並列方向に出退移動
自在なスライドゲート板と、このスライドゲート板を出
退駆動する駆動手段とから構成してなる特許請求の範囲
第(1)項に記載の熱交換器。
(2) The mechanism for increasing and decreasing the number of channels comprises a slide gate plate that is movable in and out in the parallel direction of the channels, and a drive means that drives the slide gate plate in and out. Heat exchanger described in section ).
JP62271034A 1987-10-26 1987-10-26 Control method for plate heat exchanger Expired - Fee Related JPH0674958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62271034A JPH0674958B2 (en) 1987-10-26 1987-10-26 Control method for plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62271034A JPH0674958B2 (en) 1987-10-26 1987-10-26 Control method for plate heat exchanger

Publications (2)

Publication Number Publication Date
JPH01111194A true JPH01111194A (en) 1989-04-27
JPH0674958B2 JPH0674958B2 (en) 1994-09-21

Family

ID=17494480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62271034A Expired - Fee Related JPH0674958B2 (en) 1987-10-26 1987-10-26 Control method for plate heat exchanger

Country Status (1)

Country Link
JP (1) JPH0674958B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346763U (en) * 1989-08-31 1991-04-30
JP2006038343A (en) * 2004-07-27 2006-02-09 Kankyo Setsubi Keikaku:Kk Temperature control method for air conditioning device
JP2013108711A (en) * 2011-11-24 2013-06-06 Miura Co Ltd Heat medium boiler
JP2013545060A (en) * 2010-09-23 2013-12-19 テノヴァ ソシエタ ペル アチオニ Heat exchanger for rapid cooling of combustion gas in a steel plant, apparatus for treatment of combustion gas in a steel plant including such a heat exchanger and related processing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5610152B2 (en) * 2010-12-28 2014-10-22 トヨタ自動車株式会社 Heater device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582320U (en) * 1981-06-30 1983-01-08 いすゞ自動車株式会社 radiator shutter
JPS5849519U (en) * 1981-09-29 1983-04-04 古河電気工業株式会社 conduit aerial cable

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582320U (en) * 1981-06-30 1983-01-08 いすゞ自動車株式会社 radiator shutter
JPS5849519U (en) * 1981-09-29 1983-04-04 古河電気工業株式会社 conduit aerial cable

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346763U (en) * 1989-08-31 1991-04-30
JP2006038343A (en) * 2004-07-27 2006-02-09 Kankyo Setsubi Keikaku:Kk Temperature control method for air conditioning device
JP4642402B2 (en) * 2004-07-27 2011-03-02 株式会社環境設備計画 Temperature control system for air conditioning equipment
JP2013545060A (en) * 2010-09-23 2013-12-19 テノヴァ ソシエタ ペル アチオニ Heat exchanger for rapid cooling of combustion gas in a steel plant, apparatus for treatment of combustion gas in a steel plant including such a heat exchanger and related processing method
JP2013108711A (en) * 2011-11-24 2013-06-06 Miura Co Ltd Heat medium boiler

Also Published As

Publication number Publication date
JPH0674958B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
EP0491466B1 (en) Air distribution apparatus for an automotive vehicle
DE102008045407B4 (en) Temperature control device for a built-in battery pack
JP3976326B2 (en) Heat exchanger
CN101634535B (en) Double flow circuit heat exchange device for periodic positive and reverse directional pumping
US4244422A (en) Method and device for defrosting heat exchanger without impairment of its heat exchange efficiency
EP0877909B1 (en) Regenerative heat recovery unit comprising heat accumulators titable to have a valve function
JPH01111194A (en) Heat exchanger
FI67446B (en) REGENERATING MATERIAL EXPLORATION
CA2505233A1 (en) Variable volumetric flow heat exchanger for an air-to-air heat recovery system
US4516628A (en) Heat recovery system and method
CN105546160A (en) Nuclear power plant air handling unit and linkage windward bypass valve thereof
CH623915A5 (en) Hot-water circulating heating system
DE3443020C2 (en) Device for extracting heat in a regenerative furnace
EP0907871B1 (en) Air-conditioner
US4317290A (en) Heat treatment apparatus
DE69403260T2 (en) Industrial furnace with rotating regenerative burner
CN201615718U (en) Double-flow circuit heat exchange device for periodic positive and reverse directional pumping
DE2909860C2 (en)
RU2229392C1 (en) Vehicle heating-and-ventilation system device
US1770936A (en) Recuperator
US3196941A (en) Temperature-controlled mixing machine
CN211085710U (en) Thermal performance detection device of spiral baffle heat exchanger
FI92431B (en) Device for air conditioning units
DE3815730A1 (en) Cooling or heating apparatus
JPH0330680Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees