JPH01110706A - Metallic magnetic powder - Google Patents

Metallic magnetic powder

Info

Publication number
JPH01110706A
JPH01110706A JP62250906A JP25090687A JPH01110706A JP H01110706 A JPH01110706 A JP H01110706A JP 62250906 A JP62250906 A JP 62250906A JP 25090687 A JP25090687 A JP 25090687A JP H01110706 A JPH01110706 A JP H01110706A
Authority
JP
Japan
Prior art keywords
magnetic powder
metal magnetic
amino
carboxylic acid
substituted benzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62250906A
Other languages
Japanese (ja)
Inventor
Kazuo Nakada
中田 和男
Masatake Maruo
丸尾 正剛
Toshihiko Kawamura
河村 俊彦
Haruki Ichinose
一ノ瀬 治紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP62250906A priority Critical patent/JPH01110706A/en
Publication of JPH01110706A publication Critical patent/JPH01110706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Powder Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the title metal magnetic powder having improved oxidational stability which is suitable for a high density magnetic recording medium by a method wherein the amino-substituted benzene carboxylic acid is carried on the surface of grains. CONSTITUTION:An amino-substituted benzene carboxylic acid compound is carried on the surface of grains. The various compounds shown by a general formula as shown in the diagram can be used as the amino-substituted benzene carboxylic acid compound. For example, the metal magnetic powder mainly composed of needle-like iron (obtained by heat-reducing the heat-dehydrated alpha-FeOOH using reducing gas, and it has the average length of axis of 0.3mum, coercive force (Hc) of 1302Oe, and saturated magnetization (sigma) of 127.8emu/g) is prepared. Said magnetic powder is dipped into an ethanol solution of 1000ml in which 1.5g of anthranilic acid (o-aminobenzene carboxylic acid) is dissolved, and after agitating for three hours at the room temperature while nitrogen gas is being fed, it is filtered, dried up in the air of the room temperature, and the metal magnetic powder having anthranilic acid on the surface of the grain can be obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、磁気記録用に好適な金属磁性粉末に係わり、
特に酸化安定性の改善された金属磁性粉末に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a metal magnetic powder suitable for magnetic recording,
In particular, it relates to a metal magnetic powder with improved oxidation stability.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

磁気記録媒体は、近年記録容量の高密度化による、小型
化、高性能化の指向が一段と強まってきている。これと
あいまって磁気記録用磁性粉末と−して、従来の酸化鉄
系磁性粉末に比し、飽和磁化が大きく、かつ高保磁力化
が容易な鉄または鉄系合金類の鉄系金属磁性粉末(以下
金属磁性粉末という)が注目されており、オーディオテ
ーフ゛や8m/mビデオテープなどへの適用が試みられ
ているほか、近時さらに高画質ビデオテープ、デジタル
オーディオチーブ、高記録密度ディスク用などへの高性
能記録媒体への適用が一層期待されつつある。
In recent years, there has been a growing trend toward smaller size and higher performance of magnetic recording media due to higher density recording capacity. In addition, as magnetic powder for magnetic recording, iron-based metal magnetic powder (iron-based metal magnetic powder of iron or iron-based alloys), which has a larger saturation magnetization and is easier to increase coercive force than conventional iron oxide-based magnetic powder ( Metal magnetic powder (hereinafter referred to as metal magnetic powder) is attracting attention, and its application to audio tapes, 8m/m video tapes, etc. has been attempted, and recently it has been applied to high-definition video tapes, digital audio chips, high-density disks, etc. There are increasing expectations for its application to high-performance recording media.

ところで、このような金属磁性粉末は、通常約1μ以下
さらには0.5μ以下の微粒子のものが望まれており、
このような微粒子は表面活性が強く、このために経時的
に酸化が進むとともにこれにともなって飽和磁化などの
磁気特性が低下しいわゆる酸化安定性の悪化が避けられ
なかったり、またさらに甚しい場合には前記酸化反応が
急激に進むと自然発火、燃焼に至るなど取扱操作、工程
管理上、種々のトラブルが避けられなかったりする。
By the way, such metal magnetic powder is usually desired to have fine particles of about 1 μm or less, or even 0.5 μm or less,
Such fine particles have strong surface activity, and as a result, oxidation progresses over time, and as a result, magnetic properties such as saturation magnetization deteriorate, resulting in an unavoidable deterioration of oxidation stability, or even worse. However, if the oxidation reaction proceeds rapidly, various troubles in handling operations and process control cannot be avoided, such as spontaneous ignition and combustion.

これらの問題点を改良するために種々の提案が既になさ
れている。例えば、還元により製造した直後の金属磁性
粉末を緩酸化して薄い酸化鉄被膜を形成させたり、ある
いはクロム、ケイ素、アルミニウムなどの無機物質や、
鉱物油、シランカップリング剤、有機リン酸エステル、
高級脂肪酸をはじめ種々の有機酸などを金属磁性粉末に
被着したりすることが試みられている。しかしながら、
これらの方法によっても、十分な酸化安定性がもたらさ
れなかったり、酸化安定性がもたらされる反面、分散性
や飽和磁化などの優れた磁気特性が損なわれ易すがった
りするなど未だ改善すべき多くの問題が残されている。
Various proposals have already been made to improve these problems. For example, metal magnetic powders immediately after being produced by reduction may be slowly oxidized to form a thin iron oxide film, or inorganic substances such as chromium, silicon, aluminum, etc.
Mineral oil, silane coupling agent, organic phosphate ester,
Attempts have been made to coat metal magnetic powder with various organic acids including higher fatty acids. however,
Even with these methods, there are still many problems that need to be improved, such as not providing sufficient oxidation stability, or while providing oxidation stability, excellent magnetic properties such as dispersibility and saturation magnetization are easily lost. The problem remains.

ことに、さらに高SZN比化、高出力化の要請とあいま
って金属磁性粉末のより微粒化が指向されており前記問
題の解決が強く希求されている。
In particular, in conjunction with the demand for higher SZN ratios and higher outputs, there is a trend toward finer grains of metal magnetic powders, and there is a strong desire for a solution to the above-mentioned problems.

〔発明の目的〕[Purpose of the invention]

本発明は、高密度磁気記録媒体に好適な酸化安定性の改
善された金属磁性粉末を提供することを目的とするもの
である。
An object of the present invention is to provide a metal magnetic powder with improved oxidation stability suitable for high-density magnetic recording media.

〔発明の概要〕[Summary of the invention]

本発明は、本発明者等がかねてより、金属磁性粉末本来
の特性を損なうことなく、前記問題点を解決すべく種々
検討を進めた結果、特定のベンゼンカルボン酸に、特定
の電子付与基で置換せしめた置換ベンゼンカルボン酸化
合物を粒子表面に担持せしめた金属磁性粉末が、磁気特
性の経時的劣化をきわめて効果的に阻止し得るなどの酸
化安定性の向上が図り得るとともに、分散性などにも優
れた特性を有し、また安全性でも良好なものとなり得る
ことの知見を得、本発明を完成したものである。すなわ
ち、本発明は、粒子表面に、アミノ置換ベンゼンカルボ
ン酸化合物を担持してなることを特徴とする金属磁性粉
末である。
The present invention was developed as a result of various studies carried out by the present inventors to solve the above-mentioned problems without impairing the inherent properties of metal magnetic powders. The metal magnetic powder, in which a substituted benzenecarboxylic acid compound is supported on the particle surface, can improve oxidation stability, such as extremely effectively preventing deterioration of magnetic properties over time, and improve dispersibility. The present invention has been completed based on the knowledge that the present invention has excellent properties and can also be safe. That is, the present invention is a metal magnetic powder characterized in that an amino-substituted benzenecarboxylic acid compound is supported on the particle surface.

本発明において、被処理物として使用する金属磁性粉末
(以下基体構成粒子という)は、種々の方法によって製
造される鉄または鉄を主体とする種々の鉄系合金類の鉄
系金属粉末であって、もっとも−船釣には針状晶の形状
のものであるが、さらに前記針状晶形状のもののほか、
例えば紡錘状、米粒状、球状、棒状、平板状、サイコロ
状など種々の形状のものを使用することができる。
In the present invention, the metal magnetic powder (hereinafter referred to as substrate constituent particles) used as the object to be treated is iron-based metal powder of iron or various iron-based alloys mainly composed of iron, produced by various methods. However, in addition to the above-mentioned needle-shaped crystals, there are
For example, various shapes such as a spindle shape, a rice grain shape, a spherical shape, a rod shape, a flat plate shape, and a dice shape can be used.

本発明において、アミノ置換ベンゼンカルボン酸化合物
としては、下記の一般式 で示される種々の化合物を使用し得るが、望ましくはオ
ルト、メタまたはバラのアミノ置換ベンゼンモノカルボ
ン酸またはその塩もしくはエステルであり、例えば(1
)0−アミノ安息香酸、(2)m−アミノ安息香酸、(
3)p−アミノ安息香酸、(4)O−アミノ安息香酸ソ
ーダ塩、(5)m−アミノ安息香酸ソーダ塩、(6)p
−アミノ安息香酸ソーダ塩、(7) o −アミノ安息
香酸メチルエステル、(8)p−アミノ安息香酸メチル
エステル、(9)O−アミノ安息香酸エチルエステル、
α1lllp−アミノ安息香酸エチルエステル、αυp
−アミノ安息香酸n−プロピルエステル、(2)p−ア
ミノ安息香酸イソプロピルエステル、α30−アミノ安
息香酸n−ブチルエステル、αUp−アミノ安息香酸n
−ブチルエステル05ip−アミノ安息香酸イソブチル
エステルなどを挙げることができる。なおこれらの化合
物の処理剤は、それらを単独で用いても、あるいは2種
以上混用してもよい。
In the present invention, as the amino-substituted benzene carboxylic acid compound, various compounds represented by the general formulas below can be used, but ortho, meta or para-amino substituted benzene monocarboxylic acids or salts or esters thereof are preferable. , for example (1
) 0-aminobenzoic acid, (2) m-aminobenzoic acid, (
3) p-aminobenzoic acid, (4) O-aminobenzoic acid sodium salt, (5) m-aminobenzoic acid sodium salt, (6) p
-aminobenzoic acid sodium salt, (7) o-aminobenzoic acid methyl ester, (8) p-aminobenzoic acid methyl ester, (9) O-aminobenzoic acid ethyl ester,
α1lllp-aminobenzoic acid ethyl ester, αυp
-aminobenzoic acid n-propyl ester, (2) p-aminobenzoic acid isopropyl ester, α30-aminobenzoic acid n-butyl ester, αUp-aminobenzoic acid n
-Butyl ester 05ip-aminobenzoic acid isobutyl ester and the like can be mentioned. Note that the processing agents of these compounds may be used alone or in combination of two or more.

前記アミノ置換ベンゼンカルボン酸化合物の担持量は、
金属磁性粉末の重量基準に対して0.5〜10%、望ま
しくは1〜7%である。担持量が前記範囲より少なきに
すぎると所望の効果が得られず、また前記範囲より多き
にすぎると飽和磁化などの磁気特性が損なわれ易すがっ
たり、さらにはブリーデング現象を発生したりして磁性
塗膜の性能を低下させるなど好ましくない。
The amount of the amino-substituted benzenecarboxylic acid compound supported is:
The amount is 0.5 to 10%, preferably 1 to 7%, based on the weight of the metal magnetic powder. If the supported amount is too small than the above range, the desired effect cannot be obtained, and if the supported amount is too large, the magnetic properties such as saturation magnetization may be easily impaired, or even a bleeding phenomenon may occur. This is undesirable because it deteriorates the performance of the magnetic coating film.

前記のアミノ置換ベンゼンカルボン酸化合物を前記基体
構成粒子表面に担持処理するには、種々の方法によって
おこなうことができ、例えば処理剤を適当な溶媒に溶解
し、その溶液を用いて基体構成粒子を湿潤または浸漬し
、次いで溶媒を蒸散させることによっておこなうことが
できる。
The above-mentioned amino-substituted benzenecarboxylic acid compound can be supported on the surface of the base particles by various methods. For example, a treatment agent is dissolved in an appropriate solvent, and the solution is used to support the base particles. This can be done by wetting or soaking and then evaporating the solvent.

前記の適当な溶媒としては、基体構成粒子に対して不活
性であるとともに処理剤の少なくとも1部または全部を
溶解し得るものであればいづれでもよく、例えばメタノ
ール、エタノール、イソプロパツール、ジオキサンなど
を挙げることができる。しかして、前記の担持処理は、
例えば窒素ガスなどの非酸化性雰囲気中でなるべく酸化
を防ぐようにしておこなうのが望ましく、また担持処理
における湿潤または浸漬操作は、通常、常温下でおこな
うが、必要に応じ加熱下でおこなってもよく、また処理
時間は通常10〜300分程度である。前記のように湿
潤または浸漬をおこなった後、溶媒を待遇あるいは蒸散
させ、さらに加熱または減圧下で乾燥させるのが望まし
い。なお、前記の処理剤の担持処理において、例えばボ
ールミル、サンドミルなどを用いて基体構成粒子の凝集
塊を解砕分散させながらおこなうと一層望ましい。
The suitable solvent may be any solvent as long as it is inert to the base particles and can dissolve at least part or all of the processing agent, such as methanol, ethanol, isopropanol, dioxane, etc. can be mentioned. However, the above-mentioned supporting treatment is
For example, it is preferable to carry out the process in a non-oxidizing atmosphere such as nitrogen gas to prevent oxidation as much as possible, and the wetting or dipping operations in the supporting treatment are usually carried out at room temperature, but they can also be carried out under heating if necessary. The treatment time is generally about 10 to 300 minutes. After wetting or immersing as described above, it is desirable to treat or evaporate the solvent and further dry under heat or reduced pressure. In addition, it is more preferable to carry out the treatment for supporting the treatment agent while crushing and dispersing the aggregates of the particles constituting the substrate using, for example, a ball mill or a sand mill.

このようにしてアミノ置換ベンゼンカルボン酸化合物を
粒子表面に担持処理した金属磁性粉末は、前記のように
乾燥して本発明の金属磁性粉末とすることができるが、
さらに望ましくは、このものを特定温度で加熱処理する
ことによって、金属磁性粉末の飽和磁化や保磁力などの
磁気特性の経時安定性をより一層好ましいものとするこ
とができる。前記加熱処理温度は、200〜700℃望
ましくは250〜600℃である。加熱処理温度が前記
範囲より低きに過ぎると所望の効果がもたらされず、ま
た前記範囲より高きに過ぎると粒子焼結を惹起し易く、
保磁力や角形比の低下が避けられなかったりする。また
前記加熱処理時の雰囲気は、窒素のほかへリーウム、ア
ルゴンなどの種々の不活性ガス通気中でおこなうことが
望ましく、また所望により前記加熱処理中、または前記
加熱処理の前若しくは後で酸素または空気などの酸素含
有気体を一部混合し、粒子表面を部分酸化しながらおこ
なうこともできる。さらに前記不活性ガスに水素ガスな
どの非酸化性ガスを少量混合しながらおこなってもよい
The metal magnetic powder in which the amino-substituted benzene carboxylic acid compound is supported on the particle surface in this manner can be dried as described above to obtain the metal magnetic powder of the present invention.
More desirably, by heat-treating this material at a specific temperature, the stability over time of magnetic properties such as saturation magnetization and coercive force of the metal magnetic powder can be made even more preferable. The heat treatment temperature is 200 to 700°C, preferably 250 to 600°C. If the heat treatment temperature is too lower than the above range, the desired effect will not be brought about, and if it is too high than the above range, particle sintering will likely occur.
A decrease in coercive force and squareness ratio may be unavoidable. The atmosphere during the heat treatment is preferably one in which various inert gases such as helium, argon, etc. are used in addition to nitrogen, and if desired, oxygen or It is also possible to partially oxidize the particle surface by mixing a portion of an oxygen-containing gas such as air. Furthermore, the inert gas may be mixed with a small amount of non-oxidizing gas such as hydrogen gas.

前記加熱処理によってもたらされる磁気特性の経時安定
性の耐蝕性の増大は、未だその作用機作を十分解明する
には至っていないが、粒子表面に吸着されたアミノ置換
ベンゼンカルボン酸化合物が前記加熱処理によって基体
粒子表面との結合を促し、その結果基体粒子表面におい
て均一安定な被膜をより強固に形成せしめることができ
、−段と酸化安定性を増大させることができるのではな
いかと推定されている。また前記のことから明らかなよ
うに、前記加熱処理によって粒子表面に形成される耐酸
化性被膜は、より強固なものとなり、前記磁気特性の経
時安定性の増大とあいまって、さらに磁性塗料中での分
散性を一層好ましいものとしたり、ま、た磁気記録媒体
でのブリードアウトを回避し得る上で有効なものである
The mechanism of action of the increase in the temporal stability and corrosion resistance of magnetic properties brought about by the heat treatment has not yet been fully elucidated, but the amino-substituted benzene carboxylic acid compound adsorbed on the particle surface is caused by the heat treatment. It is presumed that this will promote bonding with the surface of the substrate particles, and as a result, it will be possible to form a more uniform and stable film on the surface of the substrate particles, thereby increasing the oxidation stability by -0. . Furthermore, as is clear from the above, the oxidation-resistant film formed on the particle surface by the heat treatment becomes stronger, which, together with the increase in the stability of the magnetic properties over time, further increases the This is effective in making the dispersibility of the magnetic recording medium more favorable and in avoiding bleed-out in magnetic recording media.

以下に実施例および比較例を挙げて本発明をさらに説明
する。
The present invention will be further explained below by giving Examples and Comparative Examples.

〔本発明の実施例〕[Example of the present invention]

実施例1 針状の鉄を主成分とする金属磁性粉末(α−FeOOI
Iを加熱脱水したものを還元性ガスで加熱還元して得ら
れたもの:平均長軸長0.3μ、保磁力(llc)1.
3020e、飽和磁化(σs)127.8emu/g)
30gを用意し、これをアントラニル酸(0−アミノベ
ンゼンカルボン酸)1.5gを溶解したエタノール溶液
1 、000艷に浸漬し窒素ガスを通気しながら室温に
て3時間攪拌した後待遇、次いで室温にて風乾した。こ
のようにして得た本発明の金属磁性粉末を試料(A)と
する。
Example 1 Metal magnetic powder mainly composed of acicular iron (α-FeOOI)
A product obtained by heating and dehydrating I and reducing it with a reducing gas: average major axis length 0.3 μ, coercive force (llc) 1.
3020e, saturation magnetization (σs) 127.8emu/g)
Prepare 30 g of anthranilic acid (0-aminobenzenecarboxylic acid) and immerse it in an ethanol solution of 1,000 g in which 1.5 g of anthranilic acid (0-aminobenzenecarboxylic acid) has been dissolved. After stirring at room temperature for 3 hours while bubbling with nitrogen gas, treat it and then leave it at room temperature. It was air-dried. The metal magnetic powder of the present invention thus obtained is referred to as sample (A).

実施例2 実施例1においてエタノール溶液の代りにアントラニル
酸1.5gを溶解したジオキサン溶液を用い50℃で浸
漬攪拌したほかは実施例1と同様に処理し、本発明の金
属磁性粉末を得た。これを試料CB)とする。
Example 2 A metal magnetic powder of the present invention was obtained in the same manner as in Example 1, except that a dioxane solution in which 1.5 g of anthranilic acid was dissolved was used instead of the ethanol solution in Example 1, and the mixture was immersed and stirred at 50°C. . This is designated as sample CB).

実施例3 実施例1において、アントラニル酸に代えて、ドアミノ
ベンゼンカルボン酸を使用したことのはかは、実施例1
の場合と同様に処理し、本発明の金属磁性粉末を得た。
Example 3 The reason for using doaminobenzenecarboxylic acid in place of anthranilic acid in Example 1 is as follows.
The metal magnetic powder of the present invention was obtained by processing in the same manner as in the case of .

これを試料(C)とする。This is designated as sample (C).

実施例4 実施例1で用いた針状の鉄を主成分とする金属磁性粉末
に、同例の場合と同様にしてアントラニル酸を担持処理
した。得られた処理粉末は、77フル炉中で毎分1βの
窒素ガス気流下、300℃で2時間加熱処理した。これ
を試料(D)とする。
Example 4 The acicular magnetic metal powder mainly composed of iron used in Example 1 was treated to support anthranilic acid in the same manner as in the same example. The obtained treated powder was heat-treated at 300° C. for 2 hours in a 77-full furnace under a nitrogen gas flow of 1β/min. This is designated as sample (D).

実施例5 実施例4において、加熱処理を500℃で2時間にした
ことのほかは、同例の場合と同様に処理した。これを試
料(E)とする。
Example 5 The same procedure as in Example 4 was carried out except that the heat treatment was performed at 500° C. for 2 hours. This is designated as sample (E).

比較例 実施例に用いたアントラニル酸を処理する前の金属磁性
粉末を比較試料(F)とする。
Comparative Example The metal magnetic powder used in the example before being treated with anthranilic acid is referred to as a comparative sample (F).

前記実施例及び比較例の試料(A)〜(F)につき試料
振動型磁力計(VSM)にて保磁力(Hc : Oe)
および飽和磁化(σg : emu/ g )を測定し
た。さらに酸化安定性、耐食性を評価するため温度60
℃、相対湿度80%の環境下で2週間放置して促進経時
させた後再び試料振動型磁力計(VSM)でtic及び
σ、を測定し前述の促進経時による飽和磁化の劣化率Δ
σS(%)を下記の式によって求めた。
The coercive force (Hc: Oe) of the samples (A) to (F) of the above examples and comparative examples was measured using a vibrating sample magnetometer (VSM).
and saturation magnetization (σg: emu/g) were measured. Furthermore, the temperature was 60℃ to evaluate oxidation stability and corrosion resistance.
℃ and relative humidity of 80% for two weeks to accelerate aging, and then measure tic and σ again using a sample vibrating magnetometer (VSM) to determine the deterioration rate Δ of saturation magnetization due to accelerated aging as described above.
σS (%) was determined by the following formula.

これらの結果を表−1に示す。These results are shown in Table-1.

(式中、σ、。は経時前のび、であり、 σ、′は経時
後のσ、である。) 表−1の結果から明らかなように本発明のアントラニル
酸を処理した試料は飽和磁化の劣化率Δσ、(%)が著
しく小さくなり、本発明の金属磁性粉末は酸化安定性、
耐食性が著しく改善されたものであることが判る。
(In the formula, σ, is the elongation before aging, and σ,′ is σ after aging.) As is clear from the results in Table 1, the sample treated with anthranilic acid of the present invention has a saturation magnetization. The deterioration rate Δσ, (%) of
It can be seen that the corrosion resistance has been significantly improved.

なお、前記の実施例および比較例の各試料を、塩ビー酢
ビ共重合体樹脂を主体とするバインダーに分散させ磁性
塗料を調製し、常法によりポリエステルフィルム上に塗
布、配向させて磁気記録媒体を作成し緒特性をみたとこ
ろ、本発明のものは酸化安定性に優れたものであるとと
もに、磁気記録媒体への分散性も良好なものであった。
A magnetic coating material was prepared by dispersing each sample of the above-mentioned Examples and Comparative Examples in a binder mainly composed of vinyl chloride-vinyl acetate copolymer resin, and the magnetic coating material was coated and oriented on a polyester film using a conventional method to perform magnetic recording. When the media were prepared and their properties were examined, it was found that the media of the present invention had excellent oxidation stability and also had good dispersibility into magnetic recording media.

〔発明の効果〕〔Effect of the invention〕

本発明によって得られるアミノ置換ベンゼンカルボン酸
化合物を担持した金属磁性粉末は、酸化安定性が著しく
改善されたものであり、したがって優れた磁気特性を長
期間保持し得るとともに、それ自体貯蔵安定性に優れ取
扱い操作上、工程管理上甚だ好ましいものであること、
さらに媒体への分散性も良好なものであって高出力の高
記録密度磁気記録媒体を製造する上で極めて好適なもの
である。
The metal magnetic powder supporting the amino-substituted benzenecarboxylic acid compound obtained by the present invention has significantly improved oxidation stability, and therefore can maintain excellent magnetic properties for a long period of time, and has excellent storage stability. It must be extremely favorable in terms of excellent handling and process control;
Furthermore, it has good dispersibility in the medium and is extremely suitable for manufacturing high-output, high-density magnetic recording media.

Claims (2)

【特許請求の範囲】[Claims] (1) 粒子表面に、アミノ置換ベンゼンカルボン酸化
合物を担持してなることを特徴とする金属磁性粉末。
(1) A metal magnetic powder characterized by carrying an amino-substituted benzenecarboxylic acid compound on the particle surface.
(2) 金属磁性粉末が、粒子表面にアミノ置換ベンゼ
ンカルボン酸化合物を担持し、かつ加熱処理により得ら
れたことを特徴とする特許請求の範囲第(1)項記載の
金属磁性粉末。
(2) The metal magnetic powder according to claim (1), wherein the metal magnetic powder supports an amino-substituted benzenecarboxylic acid compound on the particle surface and is obtained by heat treatment.
JP62250906A 1987-02-06 1987-10-05 Metallic magnetic powder Pending JPH01110706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62250906A JPH01110706A (en) 1987-02-06 1987-10-05 Metallic magnetic powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2606487 1987-02-06
JP62-26064 1987-02-06
JP62250906A JPH01110706A (en) 1987-02-06 1987-10-05 Metallic magnetic powder

Publications (1)

Publication Number Publication Date
JPH01110706A true JPH01110706A (en) 1989-04-27

Family

ID=26363801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62250906A Pending JPH01110706A (en) 1987-02-06 1987-10-05 Metallic magnetic powder

Country Status (1)

Country Link
JP (1) JPH01110706A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105188991A (en) * 2013-03-28 2015-12-23 巴斯夫欧洲公司 Non-corrosive soft-magnetic powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197277A (en) * 1982-05-08 1983-11-16 Mitsubishi Gas Chem Co Inc Treating liquid for dissolving metal chemically
JPS60114509A (en) * 1983-11-25 1985-06-21 Mitsubishi Chem Ind Ltd Manufacture of magnetic powder
JPS61288001A (en) * 1985-06-12 1986-12-18 Toda Kogyo Corp Production of metallic iron particle powder or magnetic alloy particle powder essentially consisting of iron

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197277A (en) * 1982-05-08 1983-11-16 Mitsubishi Gas Chem Co Inc Treating liquid for dissolving metal chemically
JPS60114509A (en) * 1983-11-25 1985-06-21 Mitsubishi Chem Ind Ltd Manufacture of magnetic powder
JPS61288001A (en) * 1985-06-12 1986-12-18 Toda Kogyo Corp Production of metallic iron particle powder or magnetic alloy particle powder essentially consisting of iron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105188991A (en) * 2013-03-28 2015-12-23 巴斯夫欧洲公司 Non-corrosive soft-magnetic powder

Similar Documents

Publication Publication Date Title
JPH0313647B2 (en)
JPH0544162B2 (en)
JPH01110706A (en) Metallic magnetic powder
JP2904225B2 (en) Method for producing acicular iron alloy magnetic particles for magnetic recording
JPH0623402B2 (en) Method for producing metallic iron particle powder or alloy magnetic particle powder mainly composed of iron
JPH03142905A (en) Metal magnetic powder
JP3041880B2 (en) Ferromagnetic metal particles for magnetic recording
JPH0643601B2 (en) Method for producing metallic iron particle powder or alloy magnetic particle powder mainly composed of iron
JPS5919964B2 (en) Method for producing ferromagnetic metal powder
JP2003263720A (en) Ferromagnetic iron alloy powder for magnetic recording medium and method for manufacturing the same
JPS63213905A (en) Manufacture of metal magnetic powder
JPH01274402A (en) Magnetic metal powder
JPH0834145B2 (en) Method for producing metal magnetic powder for magnetic recording
JPH03194905A (en) Manufacture of magnetic metal powder for magnetic recording
JPH01220408A (en) Metal magnetic powder, manufacture thereof and use thereof
JPH05250661A (en) Ferromagnetic metal fine particle for magnetic recording medium and magnetic recording using this particle
JPS5916901A (en) Processing method of ferromagnetic metal powder
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JP4625983B2 (en) Ferromagnetic iron alloy powder for magnetic recording media
JPS6318978B2 (en)
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPH0312027A (en) Magnetic recording medium
JPH04343402A (en) Magnetic metal powder
JPH04290404A (en) Ferromagnetic metallic powder for magnetic record medium
JPS5916903A (en) Processing method of ferromagnetic metal powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Effective date: 20041122

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20050111

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

A131 Notification of reasons for refusal

Effective date: 20060221

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130901