JPH01110242A - Internal tube traveller - Google Patents

Internal tube traveller

Info

Publication number
JPH01110242A
JPH01110242A JP62266644A JP26664487A JPH01110242A JP H01110242 A JPH01110242 A JP H01110242A JP 62266644 A JP62266644 A JP 62266644A JP 26664487 A JP26664487 A JP 26664487A JP H01110242 A JPH01110242 A JP H01110242A
Authority
JP
Japan
Prior art keywords
elastic
pressurized fluid
pipe
locking member
pressure fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62266644A
Other languages
Japanese (ja)
Inventor
Koichi Negishi
公一 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP62266644A priority Critical patent/JPH01110242A/en
Priority to US07/133,464 priority patent/US4848168A/en
Priority to US07/341,181 priority patent/US4938081A/en
Publication of JPH01110242A publication Critical patent/JPH01110242A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02872Pressure

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To obtain an internal tube traveller which is light and highly resistant to effect of irregularities of an internal surface, by retaining a retaining member on a tube material with the supply of a pressure fluid to be driven by an elastic compression body of an air bag type. CONSTITUTION:A retaining member 14 is fed with a pressure fluid ahead in the direction of travelling and expanded to fix a front frame 1 retaining it on an inner surface of a tube material. Then, when the pressure fluid is applied to elastic compression bodies, each compression body is deformed in an expanded diameter and compressed along the axis line of the elastic compression body 4 so that a rear frame 1 is drawn forward. Then, the pressure fluid is supplied to a rear retaining member 14 to fix the rear frame 1 on the tube material retaining it on the inner surface thereof and then, the pressure fluid is discharged from the front retaining member 14 and the elastic compression body 4. In this manner, by an elastic return force of a compression spring 18, the front frame 1 is pushed forward in the direction of travelling. According to the same procedure, the apparatus can advance along the inner wall of the tube material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、加圧流体の供給により膨径変形し軸線方向に
収縮力を生起する弾性収縮体に、交互に加圧流体を給排
することにより前進又は後退運動を行う管内走行装置に
関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention alternately supplies and discharges pressurized fluid to and from an elastic contractile body that expands and deforms in diameter when supplied with pressurized fluid and generates a contractile force in the axial direction. The present invention relates to an in-pipe running device that performs forward or backward movement.

(従来の技術およびその問題点) 化学プラント、原子カプラント等は、化学反応又はエネ
ルギーの変換工程に合わせて有機的に連結された数多く
の管材が配置されており、それらプラントを安全かつ効
率良く運転するためには、配管を定期的に保守点検する
ことが肝要であり、場合によっては、配管内部を検査す
ることも必要である。
(Prior art and its problems) Chemical plants, atomic couplants, etc. have a large number of organically connected pipes arranged according to the chemical reaction or energy conversion process, and it is difficult to operate these plants safely and efficiently. In order to do this, it is important to regularly maintain and inspect the piping, and in some cases, it is also necessary to inspect the inside of the piping.

しかしながらこれら配管の内部を検査する作業は、管材
の口径又は配管内部及び外部の雰囲気等に起因して、作
業者が直接的に行うことができない場合がある。
However, there are cases where an operator cannot directly inspect the inside of these pipes due to the diameter of the pipe material or the atmosphere inside and outside the pipe.

このような場合に従来は、車輪又はつめを具備し電動モ
ータ又は油圧モータにより駆動される走行装置に、小型
テレビカメラ又はファイバースコープなどのモニター手
段を装着し、配管内を走行させて配管の損傷の有無また
は堆積物の有無並びにその程度を検査していた。
In such cases, conventionally, a traveling device equipped with wheels or pawls and driven by an electric motor or a hydraulic motor is equipped with a monitoring means such as a small television camera or a fiber scope, and is run inside the pipe to check for damage to the pipe. The presence or absence of deposits and their extent were inspected.

(発明が解決しようとする問題点) しかしながら従来の走行装置にあっては、その駆動源と
して電動モータ、又は油圧モータが用いられているので
、走行装置本体の重量並びに形状寸法が大きくなり、そ
の適用範囲が制限されると言う問題があった。具体的に
は、走行装置の適用管径が101′〜40”程度の大き
なものに限定され、また本体重量が駆動力に比べて大き
いので走行領域が配管の水平部分又は傾斜や彎曲の程度
の小さい部分に限定されていた。さらに駆動源として電
動モータ、油圧モータを用いた場合には、スパークを発
生し、また発熱する広れがあり、石油精製をはじめとす
る化学プラントのような引火性又は爆発性物質を扱うプ
ラントの配管部に対しては、使用できないと言う問題が
ある。
(Problems to be Solved by the Invention) However, in conventional traveling devices, an electric motor or a hydraulic motor is used as the drive source, which increases the weight and shape of the traveling device itself. There was a problem that the scope of application was limited. Specifically, the applicable pipe diameter of the traveling device is limited to large pipe diameters of about 101' to 40", and the weight of the main unit is large compared to the driving force, so the traveling area is limited to horizontal portions of pipes or those with a degree of inclination or curvature. In addition, when an electric motor or hydraulic motor is used as a drive source, it generates sparks and generates heat, and is flammable as in chemical plants such as oil refining. Another problem is that it cannot be used for piping in plants that handle explosive substances.

本発明は、このような問題に鑑みてなされたものであり
、小型・軽量で防爆性に優れた適用範囲の広い管内走行
装置を提供することをその目的とする。
The present invention has been made in view of these problems, and an object of the present invention is to provide a pipe traveling device that is small, lightweight, has excellent explosion-proof properties, and has a wide range of applications.

(問題点を解決するための手段) この目的を達成するため本発明の管内走行装置は、走行
すべき管材の内径より小さな外径を有し互いに対向して
その管材の延在方向に離間して配置された1対のフレー
ムと、これらフレームにそれぞれ一端部が取付けられ加
圧流体の供給により膨径変形し軸線方向に収縮力を生起
する少なくとも1個の弾性収縮体と、弾性収縮体の収縮
運動に対応して変形可能な弾性部材と、加圧流体の供給
により少なくともフレームの外方に膨満して管材の内面
に保合可能な係止部材とを具えてなる。
(Means for Solving the Problems) In order to achieve this object, the in-pipe running device of the present invention has an outer diameter smaller than the inner diameter of the pipes to be run, and the pipes are spaced apart from each other in the extending direction of the pipes. a pair of frames arranged in the same direction, at least one elastic contractile body whose one end is attached to each of the frames and expands and deforms in diameter when supplied with pressurized fluid to generate a contractile force in the axial direction; It comprises an elastic member that can be deformed in response to a contraction movement, and a locking member that can expand at least outwardly of the frame and be held against the inner surface of the tube by supplying pressurized fluid.

(作 用) 管内走行装置の進行方向前方に位置する係止部材に加圧
流体を供給して膨満させ、走行すべき管材の内面に押圧
することにより、その係止部材を管材に対して係止させ
る。なお、この際装置の進行方向後方に位置する他方の
係止部材には、加圧流体は供給しないものとしそれを膨
満させないこととする。
(Function) By supplying pressurized fluid to the locking member located at the front in the traveling direction of the pipe running device to inflate it and press it against the inner surface of the pipe to be run, the locking member is locked to the pipe material. make it stop At this time, pressurized fluid is not supplied to the other locking member located at the rear in the direction of movement of the device, so that it is not inflated.

次いで弾性収縮体に加圧流体を供給すると、弾−3= 性成縮体は膨径変形し、弾性手段に抗して軸線方向に収
縮運動を行なう。ところが、進行方向前方に位置する係
止部材が管材の内面に係止されているので弾性収縮体は
、その一端部が取付けられた後方のフレームを収縮運動
に伴なって進行方向前方に引き寄せることとなる。
Next, when a pressurized fluid is supplied to the elastic contracting body, the elastic contracting body expands in diameter and performs a contraction movement in the axial direction against the elastic means. However, since the locking member located at the front in the direction of travel is locked to the inner surface of the tube, the elastic contracting body cannot pull the rear frame to which one end is attached forward in the direction of travel as it contracts. becomes.

後方のフレームの前方への移動が完了したならば、進行
方向後方に位置する係止部材に加圧流体を供給して膨満
させ、管材の内面に押圧することにより係止させる。そ
して進行方向前方に位置する係止部材から加圧流体を排
出して管材内面との保合を解くとともに、弾性収縮体の
内部からも加圧流体を排出する。すると進行方向前方の
フレームは、弾性収縮体の収縮運動により弾性変形を受
けた弾性部材のエネルギの解放に伴なって、前方に押出
され、前進することになる。
When the forward movement of the rear frame is completed, pressurized fluid is supplied to the locking member located at the rear in the direction of movement to inflate the locking member, and the locking member is pressed against the inner surface of the tube member to lock the locking member. Then, the pressurized fluid is discharged from the locking member located forward in the traveling direction to release the engagement with the inner surface of the tube, and the pressurized fluid is also discharged from the inside of the elastic contractile body. Then, the frame at the front in the traveling direction is pushed forward and moves forward as the energy of the elastic member that has been elastically deformed by the contraction movement of the elastic contracting body is released.

次いで、加圧流体を前方の係止部材に供給して膨満させ
、再び係止部材を管材の内面に係止させ、上述した手順
に従って加圧流体を各係止部材及び弾性収縮体にそれぞ
れ給排することにより、装置は前進運動を行なう。
Next, pressurized fluid is supplied to the front locking member to inflate it, the locking member is locked to the inner surface of the tube material again, and pressurized fluid is supplied to each locking member and the elastic contraction body according to the above-mentioned procedure. By discharging, the device performs a forward movement.

また上述したところから明らかなように装置を後退させ
たい時には、各係止部材への加圧流体の給排順序を単に
変更すれば良い。
Furthermore, as is clear from the above, when it is desired to move the device backward, it is sufficient to simply change the order in which the pressurized fluid is supplied to and discharged from each locking member.

(実施例) 以下図面を参照して本発明装置について詳述する。(Example) The apparatus of the present invention will be described in detail below with reference to the drawings.

第1図(a)および(b)は、本発明管内走行装置の好
適な一実施例を示す正面図およびその一部を破断して示
す側面図である。軸線方向に相互に離間して配置される
1対のフレーム1は、仮想線Aで示す管材より小さな内
径を有するリング形状をしている。これら対をなすフレ
ーム間には、その軸線方向に平行に、以下に詳述する弾
性収縮体4が、本実施例ではフレームの周方向に等間隔
に4個配設される。
FIGS. 1(a) and 1(b) are a front view and a partially cutaway side view showing a preferred embodiment of the pipe running device of the present invention. A pair of frames 1 arranged apart from each other in the axial direction are ring-shaped and have a smaller inner diameter than the tube material indicated by the imaginary line A. In this embodiment, four elastic contracting bodies 4, which will be described in detail below, are arranged parallel to the axial direction between these pairs of frames at equal intervals in the circumferential direction of the frames.

弾性収縮体4は、第2図に示したようにゴム又はゴム状
弾性材料よりなる管状体5を好ましくは高張力繊維類よ
りなる編組補強構造体6にて被覆するとともに、それら
の両端開口を閉鎖部材7にて封止合着した、所謂エアー
バッグタイプのものであり、閉鎖部材7の少なくとも一
方には、管状体5の内部空洞8に連通ずる接続孔9が設
けられている。
As shown in FIG. 2, the elastic contractile body 4 covers a tubular body 5 made of rubber or a rubber-like elastic material with a braided reinforcement structure 6 preferably made of high-tensile fibers, and has openings at both ends thereof. It is of a so-called air bag type, which is sealed and joined by a closing member 7, and at least one side of the closing member 7 is provided with a connecting hole 9 that communicates with the internal cavity 8 of the tubular body 5.

この接続孔9に図示しない操作圧力源、たとえばエアー
コンプレッサを三方弁を含む管路を介して接続し、その
内部空洞8内に加圧流体、たとえば圧縮空気を供給する
と、弾性収縮体4は膨径変形し軸線方向に収縮する。ま
たその内部空洞から圧縮空気を排出すれば、管状体5の
弾性力により復元伸張する。なお、符号10aは接続孔
9と操作圧力源からの管路との接続を容易にするニップ
ルを螺着するめねし部であり、10bは弾性収縮体4の
一端を固定するのに用いる止め輪の一部を収容する環状
溝孔であり、10cは弾性収縮体4の他端を固定する際
に使用する固定ねじが螺合するめねじ部である。
When an operating pressure source (not shown), such as an air compressor, is connected to this connection hole 9 via a pipe line including a three-way valve, and pressurized fluid, such as compressed air, is supplied into the internal cavity 8, the elastic contractile body 4 expands. It undergoes radial deformation and contracts in the axial direction. Further, when compressed air is discharged from the internal cavity, the tubular body 5 is restored and expanded due to its elastic force. In addition, the reference numeral 10a is a female part into which a nipple is screwed to facilitate the connection between the connection hole 9 and the pipe line from the operating pressure source, and 10b is a retaining ring used to fix one end of the elastic contractile body 4. 10c is a female threaded portion into which a fixing screw used to fix the other end of the elastic contracting body 4 is screwed.

これら弾性収縮体の各端部に、第3図(a) +、 (
b)に断面を示した連結ブロックllaおよびllbを
それぞれ取付ける。連結ブロックIlaは、弾性収縮体
4の一方の閉鎖部材7を収容する軸線方向に設けた収容
孔12aを具え、ブロック端面から仮想線で示す止めね
じ13aを閉鎖部材のめねじ部10cにねじ込むことに
より弾性収縮体の一端に連結される。第3図(b)に示
した連結ブロックllbも同様に、弾性収縮体4の他方
の閉鎖部材9を収容する軸線方向に設けた収容孔12b
を具え、ブロック端面が外方に突出する閉鎖部材のその
環状溝孔10bに仮想線で示した止め輪13bを装着す
ることにより弾性収縮体の他端に一体的に連結される。
At each end of these elastic contracting bodies, a
Attach the connecting blocks lla and llb whose cross sections are shown in b), respectively. The connecting block Ila is provided with a housing hole 12a provided in the axial direction for accommodating one closing member 7 of the elastic contractile body 4, and a set screw 13a shown by a phantom line is screwed into the female threaded portion 10c of the closing member from the end face of the block. is connected to one end of the elastic contractile body. Similarly, the connecting block llb shown in FIG.
The end face of the block is integrally connected to the other end of the elastic contracting body by fitting a retaining ring 13b shown in phantom into the annular slot 10b of the closing member which projects outward.

連結ブロックllaおよびllbは、また、加圧流体の
供給により膨満する係止部材14をその外周にそれぞれ
具える。これら係止部材は、本実施例では、それぞれ連
結ブロックIla、 llbの外周にゴム又はゴム状弾
性材料よりなる管状体15の一部を装着し、かしめリン
グ16aをかしめて管状体の一端部をブロックに固着し
、次いで管状体の残部を折り返して反転させその端部を
他のかしめリング16bをかしめてブロックに固着して
形成したものである。なお、係止部材のその内部への加
圧流体の供給は、各連結ブロックlla、 llbに形
成した給排路17a、 17bを介して行なう。本実施
例では、給排路を各連結ブロックに直径的に対抗さ廿て
2個形成し、比較的短い時間で係止部材I4に多量の加
圧流体を給排できるようにしたが、その数は必要に応じ
て増減することができる。また係止部材をゴム又はゴム
状弾性材料よりなる管状体にて形成したが、後述するよ
うに、係止部材は、内圧を受けた状態で管材内面に保合
するので耐摩耗性を有する補強層を設けた管状体を用い
ることが好ましい。または、膨径変形に影響を与えない
方向に、具体的には軸線方向に平行にコード層を埋設し
た管状体を使用しても良い。さらには、管材内面の比較
的鋭利な突起等により係止部材が損傷するのを防止する
ため、係止部材の膨満を損なうことなく変形できるよう
切欠き溝を設けたプラスチング又はゴム弾性材料等より
なる保護カバーを係止部材外面に設けても良い。
The connecting blocks lla and llb also each include a locking member 14 on its outer periphery, which is inflated by supply of pressurized fluid. In this embodiment, these locking members are provided by attaching a part of a tubular body 15 made of rubber or a rubber-like elastic material to the outer periphery of each of the connecting blocks Ila and Ilb, and caulking a caulking ring 16a to secure one end of the tubular body. It is formed by fixing it to a block, then folding the remaining part of the tubular body, inverting it, and crimping the other caulking ring 16b to the end thereof and fixing it to the block. The pressurized fluid is supplied to the interior of the locking member through supply and discharge passages 17a and 17b formed in each of the connecting blocks lla and llb. In this embodiment, two supply and discharge passages are formed diametrically opposed to each connection block so that a large amount of pressurized fluid can be supplied and discharged to and from the locking member I4 in a relatively short time. The number can be increased or decreased as needed. In addition, the locking member is formed of a tubular body made of rubber or a rubber-like elastic material, but as described later, the locking member is reinforced with abrasion resistance because it is held on the inner surface of the tube under internal pressure. Preferably, a tubular body provided with layers is used. Alternatively, a tubular body may be used in which a cord layer is embedded in a direction that does not affect expansion and diameter deformation, specifically, parallel to the axial direction. Furthermore, in order to prevent the locking member from being damaged by relatively sharp protrusions on the inner surface of the pipe material, plastics or rubber elastic materials with cutout grooves that can be deformed without damaging the expansion of the locking member are used. A protective cover made of the following may be provided on the outer surface of the locking member.

そして、弾性収縮体4のそれぞれの端部に連結された連
結ブロックlla、 llb間に、弾性部材18を配設
する。この弾性部材は、加圧流体の供給により軸線方向
に収縮する弾性収縮体4の運動に伴なって互いに接近す
る連結ブロックlla、 llbにより弾性変形し、一
方、弾性収縮体からの加圧流体の排出に伴なう弾性収縮
体の収縮力の減少に伴なって弾性復帰することにより両
連結ブロックを互いに離間させるべく機能するものであ
り、本実施例では圧縮ばねを用いた。なお、連結ブロッ
ク間における圧縮ばね18の配設を確実なものとするた
め、本実施例では連結ブロックの端部にリム30を設け
たが、弾性収縮体により両連結ブロックの離間が制限さ
れる構成であるので圧縮ばねの端部を単に連結ブロック
の外周に嵌着しだものあっても良い。
An elastic member 18 is disposed between the connecting blocks lla and llb connected to each end of the elastic contracting body 4. This elastic member is elastically deformed by the connecting blocks lla and llb, which approach each other as the elastic contracting body 4 contracts in the axial direction due to the supply of pressurized fluid. It functions to separate both connecting blocks from each other by elastically returning as the contractile force of the elastic contracting body decreases due to ejection, and a compression spring is used in this embodiment. In order to ensure the placement of the compression spring 18 between the connecting blocks, in this embodiment a rim 30 is provided at the end of the connecting block, but the elastic contraction body limits the separation between the two connecting blocks. Because of the structure, the end of the compression spring may simply be fitted onto the outer periphery of the connecting block.

このように、係止部材14および弾性部材18を設けた
弾性収縮体のそれぞれの端部を、記述したリング形状を
したフレームの外壁に固着するが、本実施例では、係止
部材を構成するかしめリング16bの形状に対応する凹
部を有する略U形状をした取付はブラケット19により
挟持するとともに、第1図(a)に示すように取付はブ
ラケッ1−19の脚部19aをフレームの外壁に固定ね
じを用いて固着する。また、取付はブラケット19とか
しめリング16bが設けられた連結ブロックとを確実に
固定するため、ブラケット19の凹部に、相互に離間し
てねし孔(図示せず)を設け、締付けねじをねじ込むこ
とにより相対運動を阻止する。
In this way, each end of the elastic contracting body provided with the locking member 14 and the elastic member 18 is fixed to the outer wall of the ring-shaped frame described above. The approximately U-shaped mounting having a concave portion corresponding to the shape of the caulking ring 16b is held by the bracket 19, and as shown in FIG. Secure using the fixing screw. In addition, in order to securely fix the bracket 19 and the connecting block provided with the caulking ring 16b, screw holes (not shown) are provided at a distance from each other in the recessed part of the bracket 19, and a tightening screw is screwed into the recessed part of the bracket 19. This prevents relative movement.

フレーム1の内壁には、第1図に示すように、それぞれ
の係止部材14に対応する位置で支持ブラケット20を
フレームの軸線方向外方に突出させて固着し、支持ブラ
ケット20に略U形状をした拘束板21を、その開口部
がリング形状をしたフレームの半径方向外方に向くよう
にして取付ける。このことにより、係止部材14を、そ
の膨満に際して少なくともフレーム外方にその膨満変形
を誘導し、走行すべき管材内面に確実に押圧して係合さ
せることができる。
As shown in FIG. 1, support brackets 20 are fixed to the inner wall of the frame 1 in a manner that protrudes outward in the axial direction of the frame at positions corresponding to the respective locking members 14. The restraining plate 21 is attached with its opening facing outward in the radial direction of the ring-shaped frame. Thereby, when the locking member 14 expands, it can be guided to expand and deform at least toward the outside of the frame, and can be reliably pressed and engaged with the inner surface of the pipe material to be run.

また、本実施例では、装置の前進又は後退を一層容易な
ものとするため、必ずしも必要であるわけではないが、
第1図(a)に示したようにフレームの外壁に転動体2
2を転勤自在に設けることができる。これら転動体を含
む装置の外径寸法は、加圧流体の供給により膨満した係
止部材14を含む装置外径又は走行すべき管材の内径よ
り小さくなるよう設定することが好ましく、その設置個
所および設置数は装置の使用状況に基づいて定めるもの
とする。
In addition, in this embodiment, in order to make it easier to move the device forward or backward, although it is not necessarily necessary,
As shown in Figure 1(a), rolling elements 2 are mounted on the outer wall of the frame.
2 can be provided so that they can be transferred freely. It is preferable that the outer diameter of the device including these rolling elements is set to be smaller than the outer diameter of the device including the locking member 14 expanded by the supply of pressurized fluid or the inner diameter of the pipe to be run. The number of installations shall be determined based on the usage status of the equipment.

つぎに第4図を参照して本発明装置の作動について説明
する。なお、一方の連結ブロックllaに設けた給排路
17aは、接続管23を介して互いに連通しており、他
方の連結ブロックllbには、加圧流体の給排を制御す
るたとえば三方弁を含み操作圧力源(図示せず)に接続
された給排管24が接続されている。そして連結ブロッ
クllaの一方の給排路17aに、弾性収縮体に平行に
離間して延在する接続管25の一端を接続し、その他端
を連結ブロックllbに設けた図示しない貫通孔に接続
する。
Next, the operation of the apparatus of the present invention will be explained with reference to FIG. The supply/discharge passages 17a provided in one of the connecting blocks lla communicate with each other via a connecting pipe 23, and the other connecting block llb includes, for example, a three-way valve for controlling the supply and discharge of pressurized fluid. A supply/discharge pipe 24 connected to an operating pressure source (not shown) is connected. Then, one end of a connecting pipe 25 extending parallel to and spaced apart from the elastic contracting body is connected to one supply/discharge path 17a of the connecting block lla, and the other end is connected to a through hole (not shown) provided in the connecting block llb. .

この貫通孔の他端にも、加圧流体の給排を制御する制御
弁を含む給排管26が接続されるものとする。
A supply/discharge pipe 26 including a control valve for controlling supply/discharge of pressurized fluid is also connected to the other end of this through hole.

第4図(a)は、走行すべき管材の内部に配置した走行
装置を示している。
FIG. 4(a) shows a running device arranged inside the pipe to be run.

矢印で示す方向に移動させる場合には、進行方向前方に
位置する係止部材14に加圧流体を供給して膨満させ、
仮想線Aで示す管材の内面に係合させることにより、進
行方向前方に位置するフレーム1をを管材に対して固定
する。
When moving in the direction indicated by the arrow, pressurized fluid is supplied to the locking member 14 located at the front in the direction of movement to inflate it;
By engaging with the inner surface of the tube material indicated by the imaginary line A, the frame 1 located forward in the direction of travel is fixed to the tube material.

そして同図(b)に示すように、それぞれの弾性収縮体
4に加圧流体を適用すると弾性収縮体4は膨径変形し軸
線方向に収縮し、進行方向後方に位置するフレーム1を
前方に引寄せる。そこで同図(c)に示すように、進行
方向後方に位置する他方の係止部材14に加圧流体を供
給して膨満させ、管材の内面に係合させて後方に位置す
るフレーム1も管材に対して固定する。
As shown in FIG. 4B, when pressurized fluid is applied to each elastic contractile body 4, the elastic contractile body 4 expands in diameter and contracts in the axial direction, causing the frame 1 located at the rear in the traveling direction to move forward. Attract. Therefore, as shown in FIG. 3(c), pressurized fluid is supplied to the other locking member 14 located at the rear in the direction of travel to inflate it so that it engages with the inner surface of the pipe material, so that the frame 1 located at the rear also becomes a pipe material. Fixed against.

次いで同図(d)に示したように進行方向前方に位置す
る係止部材から加圧流体を排出して、管材との係合を解
き、弾性収縮体4からも同様にして加圧流体を排出すれ
ば、圧縮ばね18の弾性復元力により、進行方向前方に
位置していたフレーム1が進行方向に向かって押し出さ
れることになる。
Next, as shown in FIG. 4(d), the pressurized fluid is discharged from the locking member located at the front in the traveling direction to release the engagement with the pipe material, and the pressurized fluid is discharged from the elastic contracting body 4 in the same manner. When it is ejected, the elastic restoring force of the compression spring 18 pushes out the frame 1, which was located forward in the direction of travel, in the direction of travel.

次いで進行方向前方に位置する係止部材に再び=13− 加圧流体を適用し、また後方に位置する係止部材から加
圧流体を排出し、上述した手順に従って弾性収縮体およ
びそれぞれの係止部材に加圧流体を適用することにより
、管材内壁に沿って前進させることができる。
Then, the pressurized fluid is again applied to the locking member located at the front in the direction of travel, and the pressurized fluid is discharged from the locking member located at the rear, and the elastic contractile body and each locking member are removed according to the above-mentioned procedure. Application of pressurized fluid to the member allows it to be advanced along the inner wall of the tubing.

また、上述したところから明らかなように、装置を後退
させる場合には、各係止手段への加圧流体の給排順序を
変更すればよい。
Further, as is clear from the above, when the device is to be moved backward, the order in which the pressurized fluid is supplied to and discharged from each of the locking means may be changed.

上述の説明では、装置の前方および後方のそれぞれの係
止部材への加圧流体の給排、ならびに各弾性収縮体への
加圧流体の給排を一定のサイクルで行なったが、各弾性
収縮体の加圧流体の給排タイミングを変化させることに
よりその進行方向を変化させることもできるので、第5
図に模式的に示したように曲がり管に対しても十分適用
することができる。これは、加圧流体を供給することに
より膨満する係止部材が管材方向に大きく突出して管材
と接触し、しかもその接触面積が大きいので、装置と管
材との隙間が一定でなくとも良く、さらには、弾性収縮
体および弾性部材の横方向の剛性が縦方向のそれに比べ
て相対的に小さいことに起因している。
In the above explanation, the pressurized fluid was supplied and discharged to each of the locking members at the front and rear of the device, and the pressurized fluid was supplied and discharged to each elastic contraction body in a fixed cycle. By changing the supply and discharge timing of pressurized fluid in the body, the direction of movement of the pressurized fluid can be changed.
As schematically shown in the figure, it can also be sufficiently applied to bent pipes. This is because the locking member, which expands when pressurized fluid is supplied, protrudes greatly in the direction of the pipe material and comes into contact with the pipe material, and the contact area is large, so the gap between the device and the pipe material does not need to be constant. This is due to the fact that the transverse stiffness of the elastic contractile body and the elastic member is relatively smaller than that in the longitudinal direction.

なお本発明は、上述した実施例に限定されるものではな
く、弾性収縮体、係止部材および弾性部材を別個にフレ
ームにそれぞれ直接的に固着する構成とし、または弾性
収縮体および係止部材を一体としてフレームに固着し弾
性部材はそれらと別個にフレーム間に配設する構成とし
ても良く、さらには検査装置等の重量物を搭載する場合
等の、係止力のみを増強したい場合には、係止部材の数
を増せば良く、また推進力のみを増強したい場合には、
弾性収縮体および弾性部材の数を増せば良く、係止部材
と弾性収縮体および弾性部材の数および、取りつけ位置
は必要に応じてフレーム上で適当に変更する。また、第
6図(a)およびそれぞれ (b)に示したようにフレ
ームの平面形状を変更することにより、様々な断面形状
をした管材さらには、壁の凹部に沿っても進退させるこ
ともでき、特許請求の範囲内で種々の変更が可能である
It should be noted that the present invention is not limited to the embodiments described above, and the elastic contracting body, the locking member, and the elastic member may be separately fixed directly to the frame, or the elastic contracting body and the locking member may be fixed directly to the frame. The elastic member may be fixed to the frame as one piece, and the elastic member may be separately placed between the frames.Furthermore, when it is desired to increase only the locking force, such as when mounting a heavy object such as an inspection device, If you only need to increase the number of locking members, or if you only want to increase the propulsive force,
The number of elastic contracting bodies and elastic members may be increased, and the number of locking members, elastic contracting bodies, and elastic members, and the mounting positions thereof may be appropriately changed on the frame as necessary. Furthermore, by changing the planar shape of the frame as shown in Figures 6(a) and 6(b), pipes with various cross-sectional shapes can be moved forward and backward along recesses in walls. , various modifications are possible within the scope of the claims.

(発明の効果) 以上詳述したように本発明によれば、加圧流体の供給に
まり係止部材を膨満させて内方よりその係止部材を管材
に係止させ、他のアクチュエータに比べて極めて軽量な
エアーバッグタイプの弾性収縮体により駆動する構成と
したので、装置重量が軽く、管材の内面の凹凸の影響を
受けにくく、起爆性雰囲気内であっても使用できる管内
走行装置を得ることができる他、他のアクチュエータに
比べて形状寸法を容易に小形化することのできるエアー
バックタイプのアクチュエータを用いれば2B程度の口
径の小さな配管に適用することができる。また従来の装
置ではほとんど不可能であった鉛直方向に配設された配
管内を昇降させることもできる。
(Effects of the Invention) As detailed above, according to the present invention, the locking member is inflated by the supply of pressurized fluid, and the locking member is locked to the pipe material from inside, compared to other actuators. Since the structure is such that the device is driven by an extremely lightweight air bag type elastic contracting body, the weight of the device is light, it is less susceptible to the effects of unevenness on the inner surface of the tube material, and it can be used even in an explosive atmosphere. In addition, if an air bag type actuator is used, which can be easily made smaller in size than other actuators, it can be applied to piping with a small diameter of about 2B. It is also possible to move up and down vertically arranged pipes, which was almost impossible with conventional devices.

さらには、車輪又はつめなどを用いる従来装置と異なり
、加圧流体を供給することにより膨満する係止手段を配
管内壁に押圧して走行装置を固定保持する構成としたの
で、接触面積が大きくなり、滑りにくく、しかも内壁に
作用する圧力が小さくなり、配管内壁を傷つけることが
ない。加えて、装置フレームと管材との隙間の影響が少
なく、横方向に彎曲させることが比較的容易であるので
、彎曲した管材、さらには可撓性の大きな部材であって
もそれに沿って走行させることができる。しかも、フレ
ーム形状を変更することにより、様々の断面形状をした
管材にも使用できるので極めて適用範囲が広〈産業上有
用な管内走行装置である。
Furthermore, unlike conventional devices that use wheels or pawls, the locking means, which expands when pressurized fluid is supplied, is pressed against the inner wall of the pipe to hold the traveling device fixed, so the contact area is large. , it is hard to slip, and the pressure acting on the inner wall is reduced, so it does not damage the inner wall of the piping. In addition, the influence of the gap between the equipment frame and the pipe material is small, and it is relatively easy to curve the pipe material in the lateral direction, so even curved pipe materials and even highly flexible members can be run along them. be able to. Moreover, by changing the frame shape, it can be used for pipes with various cross-sectional shapes, so it has an extremely wide range of applications.It is an industrially useful pipe running device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は、本発明の一実施例を示す正面図、第1
図(b)は、第1図(a)に示す装置の一部を断面にし
て示す図、 第2図は本発明装置に使用して好適な弾性収縮体の一部
破断面図、 第3図(a)および(b)は、第1図(b)の一部をそ
れぞれ拡大して示す断面図、 第4図(a)乃至(e)は、本発明装置の作動を示す説
明図、 第5図は、本発明装置の曲がり管における走行状態を示
す説明図、そして、 一17= =16− 第6図は、本発明の他の実施例を示す正面図である。 1・・・フレーム     4・・・弾性収縮体5・・
・管状体      6・・・編組補強構造体7・・・
閉鎖部材     8・・・内部空洞9・・・接続孔 11a、 flb・・・連結ブロック 14・・・係止部材     15・・・管状体16a
、 16b・・・かしめリング 18・・・弾性部材     19・・・取付はブラケ
ット20・・・支持ブラケット21・・・拘束板22・
・・転動体      24.26・・・給排管第3図 第2図 0c 第5図 第6図
FIG. 1(a) is a front view showing one embodiment of the present invention;
Figure (b) is a cross-sectional view of a part of the device shown in Figure 1 (a); Figure 2 is a partially cutaway cross-sectional view of an elastic contractile body suitable for use in the device of the present invention; Figures (a) and (b) are sectional views each showing an enlarged part of Figure 1 (b); Figures 4 (a) to (e) are explanatory diagrams showing the operation of the device of the present invention; FIG. 5 is an explanatory view showing the traveling state of the device of the present invention in a bent pipe, and FIG. 6 is a front view showing another embodiment of the present invention. 1...Frame 4...Elastic contraction body 5...
- Tubular body 6... Braided reinforcement structure 7...
Closing member 8... Internal cavity 9... Connection hole 11a, flb... Connection block 14... Locking member 15... Tubular body 16a
, 16b... Caulking ring 18... Elastic member 19... Mounted on bracket 20... Support bracket 21... Restriction plate 22.
...Rolling element 24.26...Supply/discharge pipe Figure 3 Figure 2 0c Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1、走行すべき管材の内径より小さな外径を有し互いに
対向してその管材の延在方向に離間して配置された1対
のフレームと、これらフレームにそれぞれ一端部が取付
けられ加圧流体の供給により膨径変形し軸線方向に収縮
力を生起する少なくとも1個の弾性収縮体と、弾性収縮
体の収縮運動に対応して変形可能な弾性部材と、加圧流
体の供給により少なくともフレームの外方に膨満して管
材の内面に係合可能な係止部材とを具え、各係止部材へ
の加圧流体の交互の給排に合わせた弾性収縮体への加圧
流体の給排により前進又は後退運動を行なうことを特徴
とする管内走行装置。
1. A pair of frames that have an outer diameter smaller than the inner diameter of the pipe to be run and are arranged facing each other and spaced apart in the extending direction of the pipe, and one end of each frame is attached to a pressurized fluid. at least one elastic member that expands in diameter and generates a contractile force in the axial direction when supplied with pressurized fluid; an elastic member that is deformable in response to the contraction movement of the elastic member; and a locking member that can expand outward and engage with the inner surface of the pipe material, and by supplying and discharging pressurized fluid to the elastic contracting body in accordance with the alternate supply and discharge of pressurized fluid to each of the locking members. An in-pipe traveling device characterized by performing forward or backward movement.
JP62266644A 1987-04-13 1987-10-23 Internal tube traveller Pending JPH01110242A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62266644A JPH01110242A (en) 1987-10-23 1987-10-23 Internal tube traveller
US07/133,464 US4848168A (en) 1987-04-13 1987-12-15 Traveling device moving along elongated member
US07/341,181 US4938081A (en) 1987-04-13 1989-04-21 Traveling device moving along elongated member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62266644A JPH01110242A (en) 1987-10-23 1987-10-23 Internal tube traveller

Publications (1)

Publication Number Publication Date
JPH01110242A true JPH01110242A (en) 1989-04-26

Family

ID=17433691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62266644A Pending JPH01110242A (en) 1987-04-13 1987-10-23 Internal tube traveller

Country Status (1)

Country Link
JP (1) JPH01110242A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214739A (en) * 1988-02-23 1989-08-29 Olympus Optical Co Ltd Self-advancing device for inspecting inside of pipe
JPH01216238A (en) * 1988-02-25 1989-08-30 Olympus Optical Co Ltd In-tube self-traveling type inspection instrument
JPH01217242A (en) * 1988-02-26 1989-08-30 Olympus Optical Co Ltd Self-travelling type tube interior inspecting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214739A (en) * 1988-02-23 1989-08-29 Olympus Optical Co Ltd Self-advancing device for inspecting inside of pipe
JPH01216238A (en) * 1988-02-25 1989-08-30 Olympus Optical Co Ltd In-tube self-traveling type inspection instrument
JPH01217242A (en) * 1988-02-26 1989-08-30 Olympus Optical Co Ltd Self-travelling type tube interior inspecting device

Similar Documents

Publication Publication Date Title
US4848168A (en) Traveling device moving along elongated member
US5080020A (en) Traveling device having elastic contractible body moving along elongated member
US6427602B1 (en) Pipe crawler apparatus
US4372161A (en) Pneumatically operated pipe crawler
US4938081A (en) Traveling device moving along elongated member
KR20010033724A (en) Surface-traversing vehicle
KR20070027430A (en) Micro robot for the in side pipe inspection
US6959734B2 (en) Flow-through inflatable plug
KR20150074994A (en) Apparatus for cleaning foreign material in pipe
KR20090073405A (en) Robot for pipeline work having improved running and centering capability
JPH01110242A (en) Internal tube traveller
US3910098A (en) Mandrel for shaping pipes
JPH0345464A (en) In-and-out tube running device using elastic shrinkage body
JPH01110241A (en) Internal tube traveller
JPS63255168A (en) Pipe-outside running gear
CN116717658A (en) Patrol and repair integrated pipeline robot
CN111928987B (en) Pipe fitting inner wall stress detection device
JPH02141657A (en) Self-propelling apparatus in pipe
JPH01186462A (en) Conduit travel device
JPH0386679A (en) Inside-pipe traveling device using elastic contraction body
JPS6391555A (en) Running apparatus in pipe interior
JPH01267216A (en) Device for travelling inside/outside of pipe
JP2019173887A (en) Hose turnover device, horse turnover method and hose used in them
JPH01267217A (en) Device for travelling inside/outside of pipe
JP6518507B2 (en) Adsorption mechanism