JPH01110217A - Displacement sensor - Google Patents

Displacement sensor

Info

Publication number
JPH01110217A
JPH01110217A JP62266425A JP26642587A JPH01110217A JP H01110217 A JPH01110217 A JP H01110217A JP 62266425 A JP62266425 A JP 62266425A JP 26642587 A JP26642587 A JP 26642587A JP H01110217 A JPH01110217 A JP H01110217A
Authority
JP
Japan
Prior art keywords
optical fiber
displacement
angle
rotation
plastic optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62266425A
Other languages
Japanese (ja)
Inventor
Takeyoshi Takuma
詫摩 勇悦
Yukio Shimazaki
島崎 行雄
Seikichi Tanno
丹野 清吉
Kuniyuki Eguchi
州志 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP62266425A priority Critical patent/JPH01110217A/en
Publication of JPH01110217A publication Critical patent/JPH01110217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To measure a displacement with a simple construction, by utilizing a change in transmission light generated when a displacement such as extension or reduction is applied to a curled or spiral resin optical fiber. CONSTITUTION:A resin optical fiber 1 is formed spiral by a cast molding, a condition under which an angle of rotation is set at 0 deg.. As a rotor 2 turns clockwise and counterclockwise, a distortion due to a displacement is applied to the optical fiber 1. As a result, a transmission power changes by a photoelastic effect according to an angle of rotation of the rotor 2 and the previous calibration of the transmission power and the angle of rotation enables the learning of an angle of rotation from the transmission power received with a light receiver 4 from a light source 3. With the return of the rotor 2 to 0 deg., the resin optical fiber 1 is back to the original state by its own resilience.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は変位センサに関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a displacement sensor.

〔従来の技術〕[Conventional technology]

光ファイバを用いた従来の変位計測装置は例えば文献光
を使ったプロセス量測定の将来(p225〜)電気書院
発行「電気計算」臨時増刊「わかる光フアイバ応用技術
)昭和57年6月25日発行に見られるように石英系の
シングルモードファイバを用い、干渉法により変位の計
測を行なっていた。
Conventional displacement measuring devices using optical fibers can be used, for example, in the following literature: Future of Process Quantity Measurement Using Light (p. 225~) Denki Shoin, ``Electrical Calculation'' Special Issue ``Understanding Optical Fiber Application Technology'', published June 25, 1982. As shown in , displacement was measured by interferometry using a quartz-based single-mode fiber.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では干渉法を利用するため次の問題があっ
た。
The above-mentioned conventional technology has the following problems because it uses interferometry.

1、装置全体が複雑となる。1. The entire device becomes complicated.

2、シングルモードファイバを用いるため光源との結合
に注意する必要がある。
2. Since a single mode fiber is used, care must be taken regarding coupling with the light source.

3、光を分波2合波する必要があるためハーフミラ−等
の光学部品が必要となる。
3. Since it is necessary to split and combine the light into two, optical components such as a half mirror are required.

本発明の目的は上記の問題を解決し低コストで精度の高
い変位センサを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide a low-cost, highly accurate displacement sensor.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は次の技術手段を採用することにより、達成さ
れる。
The above objective is achieved by adopting the following technical means.

1、干渉法を利用せずプラスチック光ファイバの透過電
力を直接測定する。
1. Directly measure the transmitted power of a plastic optical fiber without using interferometry.

2、光の伝送体であるプラスチック光ファイバは注型重
合によりカール状、あるいはうす巻き状にする。
2. Plastic optical fibers, which are light transmitters, are made into a curled or thinly wound shape by cast polymerization.

〔作用〕[Effect]

前記1の技術手段は装置全体を簡単かつ低コスト化する
働きを持つ。
The above-mentioned technical means 1 has the function of simplifying and reducing the cost of the entire device.

前記2の技術手段は、注型重合によりカール状あるいは
うず巻き状に作られたプラスチック光ファイバではその
作られた状態が伝送特性上最も安定である。この状態に
変位を加えると光弾性効果により、歪が加わっている部
分の屈折率が変わる。
According to the second technical means, when a plastic optical fiber is made into a curled or spiral shape by cast polymerization, the state in which it is made is the most stable in terms of transmission characteristics. When displacement is applied to this state, the refractive index of the strained portion changes due to the photoelastic effect.

従って光の導波形態が変わり、光の一部が放射されその
結果透過電力が変化(減少)する。すなわちカール状、
あるいはうす巻き状のプラスチック光フアイバ自身が変
位に対するセンサーの働きを持つ。
Therefore, the waveguide form of the light changes, and part of the light is emitted, resulting in a change (reduction) in the transmitted power. In other words, curly,
Alternatively, the thinly wound plastic optical fiber itself acts as a sensor for displacement.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第1
図では回転角を検出するため、プラスチック光ファイバ
を、回転角を検出したい回転体のまわりにうす巻き状に
設置されている。プラスチック光ファイバの一端には光
源、他端には光検出器が設けられている。回転体が右に
廻ればプラスチック光ファイバは巻かれ左に廻れば巻き
戻されるようになっている。
An embodiment of the present invention will be described below with reference to FIG. 1st
In the figure, in order to detect the rotation angle, a plastic optical fiber is installed in a thinly wound shape around the rotating body whose rotation angle is to be detected. A light source is provided at one end of the plastic optical fiber, and a photodetector is provided at the other end. When the rotating body turns to the right, the plastic optical fiber is wound, and when it turns to the left, it is unwound.

次に動作を説明する。プラスチック光ファイバはうす巻
き状に注型により作られている。この状態を回転角零度
にセットしておく。回転体が右及び左に廻った時、光フ
ァイバには変位による歪が加わることになる。従って回
転体の回転角度に応じて光弾性効果により透過電力が減
少することになる。予かしめ透過電力と回転角を校正し
ておけば透過電力より回転角がわかる。また回転体を零
度に戻せばプラスチック光ファイバは自身のバネの力で
もとにもどる。
Next, the operation will be explained. Plastic optical fiber is made by casting into a thinly wound shape. Set this state to zero rotation angle. When the rotating body rotates to the right and left, strain is applied to the optical fiber due to the displacement. Therefore, the transmitted power decreases due to the photoelastic effect depending on the rotation angle of the rotating body. If the transmission power and rotation angle are calibrated in advance, the rotation angle can be determined from the transmission power. Furthermore, when the rotating body is returned to zero, the plastic optical fiber returns to its original state with its own spring force.

本実施例特有の効果としては回転体の角度が簡単な光学
系とプラスチック光ファイバを用いて、迅速にかつ高精
度がわかることである。
A unique advantage of this embodiment is that it can be quickly and accurately determined by using an optical system with a simple rotating body angle and a plastic optical fiber.

第1図では回転角センサの実施例を示した。同様の原理
で伸びセンサに応用した場合を第2図に示す。可動部分
にカール状のプラスチック光ファイバが取りつけられて
おり、可動部分の伸びが直接カール状のプラスチック光
ファイバに印加される。プラスチック光ファイバが伸ば
されると伸び歪が印加され光弾性効果により屈折率が変
化し光ファイバを導波する光の一部が放射する。従って
予じめ伸びと透過電力を校正しておくことで可動部分の
伸びが測定できる。
FIG. 1 shows an embodiment of the rotation angle sensor. Figure 2 shows a case where the same principle is applied to a stretch sensor. A curled plastic optical fiber is attached to the movable part, and the elongation of the movable part is directly applied to the curled plastic optical fiber. When a plastic optical fiber is stretched, elongation strain is applied, the refractive index changes due to the photoelastic effect, and a portion of the light guided through the optical fiber is emitted. Therefore, by calibrating the elongation and transmitted power in advance, the elongation of the movable part can be measured.

〔発明の効果〕〔Effect of the invention〕

本発明により次の効果がある。 The present invention has the following effects.

1、システムの構成が簡単なため低コスト化になる。1. The system configuration is simple, resulting in lower costs.

2、太コア径のプラスチック光ファイバを用いるため光
源との結合は容易である。
2. Since a plastic optical fiber with a large core diameter is used, coupling with a light source is easy.

3、構成が簡単なため長期の信頼性が高い。3. High long-term reliability due to simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は回転角センサ、第2図は伸びセンサの模式図で
ある。 1・・パブラスチック光ファイバ、2・・・回転体、3
・・・光源、4・・・受光器、訃・・移動体。
FIG. 1 is a schematic diagram of a rotation angle sensor, and FIG. 2 is a schematic diagram of an elongation sensor. 1...Publastic optical fiber, 2...Rotating body, 3
...Light source, 4...Light receiver, Death...Moving object.

Claims (1)

【特許請求の範囲】 1、注型重合により作られたカール状あるいはうず巻き
状のプラスチック光ファイバにおいて、これに伸縮等の
変位を印加した時に生ずる透過光の変化を利用した変位
センサ。 2、前記においてプラスチック光ファイバは架橋アクリ
ル系樹脂をコア、フッ素系樹脂をクラッドとする熱硬化
型樹脂から成ることを特徴とする特許請求の範囲第1項
記載の変位センサ。 3、前記においてプラスチック光ファイバに光弾性係数
0.1trnm/kg以上の材料を用いたことを特徴と
する特許請求の範囲第1項記載の変位センサ。
[Claims] 1. A displacement sensor that utilizes changes in transmitted light that occur when a displacement such as expansion or contraction is applied to a curled or spiral-shaped plastic optical fiber made by cast polymerization. 2. The displacement sensor according to claim 1, wherein the plastic optical fiber is made of a thermosetting resin having a core made of a crosslinked acrylic resin and a cladding made of a fluorine resin. 3. The displacement sensor according to claim 1, wherein a material having a photoelastic coefficient of 0.1 trnm/kg or more is used for the plastic optical fiber.
JP62266425A 1987-10-23 1987-10-23 Displacement sensor Pending JPH01110217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62266425A JPH01110217A (en) 1987-10-23 1987-10-23 Displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62266425A JPH01110217A (en) 1987-10-23 1987-10-23 Displacement sensor

Publications (1)

Publication Number Publication Date
JPH01110217A true JPH01110217A (en) 1989-04-26

Family

ID=17430758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62266425A Pending JPH01110217A (en) 1987-10-23 1987-10-23 Displacement sensor

Country Status (1)

Country Link
JP (1) JPH01110217A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024527A (en) * 2005-07-12 2007-02-01 Fiberlabs Inc Optical fiber sensor and sensor system
WO2019212048A1 (en) 2018-05-04 2019-11-07 株式会社シミウス Open/close detection sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024527A (en) * 2005-07-12 2007-02-01 Fiberlabs Inc Optical fiber sensor and sensor system
WO2019212048A1 (en) 2018-05-04 2019-11-07 株式会社シミウス Open/close detection sensor
US10830944B2 (en) 2018-05-04 2020-11-10 Cmiws Co., Ltd. Opening and closing detection sensor

Similar Documents

Publication Publication Date Title
Kong et al. Pure directional bending measurement with a fiber Bragg grating at the connection joint of eccentric-core and single-mode fibers
EP0144509B1 (en) Fiber optic interferometer transducer
US6056436A (en) Simultaneous measurement of temperature and strain using optical sensors
Starodumov et al. Fiber Sagnac interferometer temperature sensor
EP0023345B1 (en) Optical sensing system
Kong et al. Two-axis bending sensor based on cascaded eccentric core fiber Bragg gratings
Ouyang et al. An in-fiber dual air-cavity Fabry–Perot interferometer for simultaneous measurement of strain and directional bend
US5201015A (en) Conformal fiber optic strain sensor
Dass et al. Micrometer wire assisted inline Mach–Zehnder interferometric curvature sensor
Tian et al. Directional bending sensor based on a dual side-hole fiber Mach–Zehnder interferometer
CN101650235B (en) Minitype optical fiber internal integrated optical fiber interference type temperature sensor and manufacturing method thereof
CN108180866B (en) Fiber grating vector bending recognizer
Wang et al. Two-dimensional bending vector sensor based on the multimode-3-core-multimode fiber structure
JPH0311644B2 (en)
Azmi et al. Dynamic bending and rotation sensing based on high coherence interferometry in multicore fiber
Yang et al. Dual-FBG and FP cavity compound optical fiber sensor for simultaneous measurement of bending, temperature and strain
US5054922A (en) Differential polarimetric fiber optic sensor
CN212721825U (en) Optical fiber temperature sensor based on temperature sensitive material modulation FP cavity
CN101368978B (en) Double-core optical fiber integration type accelerometer and measuring method
JPH01110217A (en) Displacement sensor
US5239362A (en) Fiber-optic rotation sensor
Ghaffar et al. Multiplexing sensors technique for angle and temperature measurement using polymer optical fiber
JPS57168126A (en) Device for detecting physical change
Huang et al. Simultaneous bending-curvature and temperature measurements based on a fiber Bragg grating and a Mach–Zehnder interferometer
WO1991013329A1 (en) Pressure sensor