JPH01109609A - Superconductive transmission line - Google Patents

Superconductive transmission line

Info

Publication number
JPH01109609A
JPH01109609A JP62266306A JP26630687A JPH01109609A JP H01109609 A JPH01109609 A JP H01109609A JP 62266306 A JP62266306 A JP 62266306A JP 26630687 A JP26630687 A JP 26630687A JP H01109609 A JPH01109609 A JP H01109609A
Authority
JP
Japan
Prior art keywords
superconducting
insulating
conductor
transmission line
legs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62266306A
Other languages
Japanese (ja)
Inventor
Setsuyuki Matsuda
松田 節之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62266306A priority Critical patent/JPH01109609A/en
Publication of JPH01109609A publication Critical patent/JPH01109609A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a low loss transmission line by using flexible fine superconducting wires with few junction part as conductors, using insulating tubes, on whose surfaces are attached superconducting materials, and two-legs type insulating spacers at the supporting parts, and using superconducting material layers on the inner face of the sheath between the legs. CONSTITUTION:Conductors 10 consist of stranded fine wires using superconductor and scarcely generate heat because of few junction parts in principle. Insulating tubes 11 are used by, for example, around 10m because of limit in transportation and insulating spacers 13 supporting the insulating tubes are type of two- legs, the angle between which is near 180 deg., and are composed of epoxy resin with reinforcing material and others. Superconducting material layers 15 are used on the inner face of the sheath between the legs. Thereby, since eddy current caused by the variation of the magnetic field due to three phase current flowing in the conductors 10 flows in the superconducting material layers 15, heat is not generated and the magnetic field scarcely leaks outside of the sheath 14. A low loss transmission line can hence be made.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超電導体を用いた超電導送電路に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting power transmission line using a superconductor.

〔従来の技術〕[Conventional technology]

第4図は、例えばジョーン ウイリイ アンドソンズ(
John Willey & 8ons )社発行のビ
ー・エム・ライ−デイ(B、 M、 Weedy )著
1電力の地下伝送”(Underground tra
nsmission of rlsctric pow
erJ(1980)P、262に記載された従来の三相
−指形の超電導送電路であり、ニオブ合金の超電導材で
なる導体(1)に絶縁層(2)がテープ巻きしである。
Figure 4 shows, for example, Joan Wiley & Sons (
1 Underground Transmission of Electric Power, by B. M. Weedy, published by John Willey &
nsmission of rlstric pow
This is a conventional three-phase finger-shaped superconducting power transmission line described in erJ (1980) P, 262, in which an insulating layer (2) is wrapped with tape around a conductor (1) made of a superconducting material of niobium alloy.

鋼製のらせん管(3)は、ケーブルを収納するとともに
、(B)部と(A)部との間を往復路として液体ヘリウ
ムの通路となっている。支持枠(4)は三相のケーブル
を束ねて支持しており、これらは支持具(5)で支えら
れている。熱絶縁層(6)は(D)で示す真空部ととも
に外部からの入熱を防ぐ。これらは鋼製の外被(7)で
囲まれている。真空部(D)を通る液体窒素冷却管(8
)は、安価な液体窒素を流してこの部分を冷却し、外部
からの入熱を防いでいる。
The steel spiral tube (3) houses the cable and serves as a reciprocating path for liquid helium between parts (B) and (A). The support frame (4) supports three-phase cables in a bundle, and these are supported by supports (5). The heat insulating layer (6) together with the vacuum section shown in (D) prevents heat from entering from the outside. These are surrounded by a steel jacket (7). Liquid nitrogen cooling pipe (8) passing through the vacuum section (D)
) cools this area by flowing cheap liquid nitrogen to prevent heat from entering from outside.

以−ヒの構成になる送電路は、液体ヘリウムに冷却され
る超電導導体(1)により、熱の発生の殆んどない状態
で大電流を送電することができる。
The power transmission line configured as described below can transmit a large current with almost no heat generation due to the superconducting conductor (1) cooled by liquid helium.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のような従来の超電導送電路では、テープ状の絶縁
物(2)を巻いて導体(1)を絶縁しているので、高電
圧の場合は大量の絶縁物を必要とする。また、らせん管
(3)はステンレスで作るとしても、うず電流損などで
発熱する。さらに、外被(7)における磁界は、三相の
導体(1)を流れる電流により、ある程度キャンセルさ
れて小さくなっているが、導体(1)に近い部分では、
磁界の変化はかなり大きく、うす電流で発熱し、内部へ
熱が侵入し易くなる。これらは、冷却装置の動力増とな
り、不経済であるなどの問題点があった。
In the conventional superconducting power transmission line as described above, the conductor (1) is insulated by wrapping a tape-shaped insulator (2), so a large amount of insulator is required in the case of high voltage. Furthermore, even if the spiral tube (3) is made of stainless steel, it generates heat due to eddy current loss. Furthermore, the magnetic field in the outer sheath (7) is canceled to some extent by the current flowing through the three-phase conductor (1) and becomes small, but in the part near the conductor (1),
Changes in the magnetic field are quite large, and the thin current generates heat, making it easier for heat to enter the interior. These have problems such as increasing the power of the cooling device and being uneconomical.

この発明は、以−Eのような問題点を解消するためにな
されたもので、少ない絶縁物で絶縁可能であり、通電時
の損失が少なく、冷却装置の必要動力を減少させ、経済
的な超電導送電路を得ることを目的とする。
This invention was made to solve the following problems, and it is possible to insulate with a small amount of insulating material, has little loss when electricity is applied, reduces the required power of the cooling device, and is economical. The aim is to obtain a superconducting power transmission line.

〔間哨点を解決するための手段〕[Means for resolving sentry points]

この発明に係る超電導送電路は、導体に長尺の細線より
なる撚り線またはテープを用い、これを表面に超電導層
を持つ絶縁筒の中に収め、従来の絶縁層(2)の代りに
、間隔を置いて支える絶縁スペーサを用い、冷却媒体も
絶縁媒体として利用することとした。また、従来用いら
れていたらせん管(3)は省き、さらに、外被内面で導
体の近傍には、二脚形絶縁スペーナの間を利用して超電
導材層が設けられている。
The superconducting power transmission line according to the present invention uses a stranded wire or tape made of long thin wires as a conductor, which is housed in an insulating cylinder having a superconducting layer on the surface, and instead of the conventional insulating layer (2), We decided to use insulating spacers to support the structure at intervals, and also use the cooling medium as an insulating medium. Furthermore, the conventionally used spiral tube (3) is omitted, and a superconducting material layer is provided near the conductor on the inner surface of the envelope using the space between the bipedal insulating spanners.

〔作 用〕[For production]

この発明においては、上記のように導体は絶縁スペーサ
1:より支持されたので、高電圧においても少ない固体
絶縁物で支持できることとなった。
In this invention, since the conductor is supported by the insulating spacer 1 as described above, it can be supported with a small amount of solid insulator even at high voltage.

また、らせん管を省き、この部分での発熱をなくし、さ
らに、外被の導体近傍に超電導材層を設けたので、外被
におけるうず電流による発熱を防ぐことができ、冷却装
置の負担を小さくすることかできた。
In addition, the spiral tube is omitted to eliminate heat generation in this part, and a superconducting material layer is provided near the conductor in the outer sheath, which prevents heat generation due to eddy currents in the outer sheath, reducing the burden on the cooling system. I was able to do something.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図、第2図について説
明する。図において、導体(10)は超電導体を用いた
撚り線からなっており、最近開発されだ液体窒素温度で
超電導を示す材料を用いる。導体(10)は絶縁筒(1
1)内に熱伸縮に対処できるだけのたわみをもたせて収
納されている。導体(10)は、可撓性があり、巻いた
状態で輸送できるので、可能な限り長いものを使用し、
接続部を少なくして発熱部を減少させるが、絶縁筒(1
1)は輸送限界があるので、例えば10m程度の長さの
ものを据付現場で接続する。この絶縁筒(1りの表面に
は、超電導体の薄い層(12)を設けて表面の凹凸を少
なくし、電界集中のないようにする。絶縁筒(11)を
支持する絶縁スペーサ(1S)は、脚の開き角が18o
0に近い二脚形のもので、補強材入りのエポキシ樹脂な
どからなっており、第2図のように、絶縁筒(11)は
絶縁スペーサ(13)の金具(急の中で熱伸縮分を考慮
したギャップを設けて接続するとよい。外被(14)は
アルミニウムなどの非磁性材で作られ、据付現場で、(
n)で示すように、溶接で気密に接続する。外被(14
)の内面で導体(10)1m近い部位で、二脚形絶縁ス
ペーサ(1S)の脚の間には、超電導材@ (15)を
設ける。また、第2図に示されたように、外被(14月
二ベローズ(p>を形成し、温度変化による伸縮に耐え
る。なお、この外被(14)内には液体窒素が充填され
ている。支持具(5)は支持枠(160=取付ケラれて
いる。外側外被(17)はアルミニウムなどで作られ、
要所には、ベローズ(ρが形成されていて、熱伸縮に耐
える。据付時、これらの外被(14) 、 (17)は
、絶縁筒(11)や絶縁スペーサ(13)を既設の送電
路に接続し、導体(10)を絶縁筒(11)内に引込ん
だ後、溶接により順次に気密に接続され延長される。こ
の外側外被(17jと外被(14)の間(D)は真空に
され、熱絶縁材(6)とともに、外部からの熱の侵入を
防ぐ。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In the figure, the conductor (10) is made of a stranded wire using a superconductor, and uses a recently developed material that exhibits superconductivity at liquid nitrogen temperatures. The conductor (10) is connected to the insulating tube (1
1) It is housed inside with enough flex to cope with thermal expansion and contraction. The conductor (10) is flexible and can be transported in a rolled state, so use one that is as long as possible.
Although the number of connecting parts is reduced to reduce the heat generating part, the insulating tube (1
1) Since there is a transportation limit, lengths of, for example, about 10 m are connected at the installation site. A thin layer (12) of superconductor is provided on the surface of this insulating cylinder (1) to reduce surface irregularities and prevent electric field concentration.Insulating spacer (1S) supporting the insulating cylinder (11) The leg opening angle is 18o.
It is bipod-shaped, and is made of epoxy resin with reinforcing material.As shown in Figure 2, the insulating cylinder (11) is made of the metal fittings of the insulating spacer (13) (which expands and contracts during heat expansion). It is recommended to connect with a gap that takes into account the
Connect hermetically by welding as shown in n). Outer cover (14
) A superconducting material @ (15) is provided between the legs of the bipedal insulating spacer (1S) at a portion close to 1 m from the conductor (10). In addition, as shown in Figure 2, the outer cover (14) forms a bellows (p>) and resists expansion and contraction due to temperature changes.The outer cover (14) is filled with liquid nitrogen. The support (5) is attached to the support frame (160 = mounting keratina).The outer sheath (17) is made of aluminum or the like,
Bellows (ρ) are formed at key points to withstand thermal expansion and contraction.During installation, these outer sheaths (14) and (17) are connected to the insulating tube (11) and insulating spacer (13) by connecting them to the existing feeder. After connecting to the electric circuit and drawing the conductor (10) into the insulating tube (11), the conductor (10) is successively connected and extended in an airtight manner by welding. ) is evacuated and, together with the thermal insulation material (6), prevents heat from entering from the outside.

なお、可撓性の導体(10)をたわみをもって設け、絶
縁筒(11)は熱伸縮のためのギャップを持ち、絶縁ス
ペーサ(13)は、絶縁筒(11)とは固定するが、外
被(14)との間は一つの絶縁筒(11)に固定された
絶縁スペーサ(13)のうち1個のみ固定し、他は軸方
向に移動可能としており、さらに外被(1りと外側外被
(17)(:は要所にベローズを設けているので、大き
な温度差においても熱伸縮による問題は生じない。
Note that the flexible conductor (10) is provided with flexure, the insulating tube (11) has a gap for thermal expansion and contraction, and the insulating spacer (13) is fixed to the insulating tube (11) but is not attached to the outer cover. (14), only one of the insulating spacers (13) fixed to one insulating cylinder (11) is fixed, the others are movable in the axial direction, and Since the cover (17) (: has bellows installed at key points, problems due to thermal expansion and contraction will not occur even in large temperature differences.

上記のような構造の送電路では、導体(10)を支える
絶縁筒(11)や外被(14) 、 (171などは、
現地で据付時に長尺化して行くが、導体(10)は、原
則として接続部のない長尺の撚り線を用いていルノテ、
接続部のための発熱はなく、超電導線からの発熱はない
。もし、どうしても接続部を要する場合でも接続箇所を
極小とし、発熱量を非常に少なくする。導体(10)を
支える絶縁筒(11)には外表面に薄い超電導体層(1
2)が設けられているので、自相の導体によるうず電流
は少なく、他相の導体の電流による磁界で生じるうず電
流も超電導体(12)を流れ、発熱を生じない。また、
外被(14)の導体(10)近くの内面には超電導材層
(15)が付設されているので、導体(10)を流れる
三相電流による磁界の変化に応じて生じるうず電流は、
超電導材層(15)中を流れるので、発熱はなく、外被
(14)の外へは磁界は殆んど漏れない。従って、外側
外被(17)での発熱はなく、その外部に、設けられる
鋼製架構などでの発熱もないので、鋼製構造物の中にも
自由に設置できる。
In the power transmission line with the above structure, the insulating tube (11), sheath (14), (171, etc.) supporting the conductor (10) are
Although the conductor (10) becomes longer during installation at the site, as a general rule, long stranded wire with no connections is used.
There is no heat generated by the connections, and there is no heat generated from the superconducting wire. Even if a connection part is absolutely required, the connection part is made extremely small and the amount of heat generated is extremely reduced. The insulating cylinder (11) supporting the conductor (10) has a thin superconductor layer (1
2), the eddy current caused by the conductor of the own phase is small, and the eddy current generated by the magnetic field caused by the current of the conductor of the other phase also flows through the superconductor (12) and does not generate heat. Also,
Since a superconducting material layer (15) is attached to the inner surface of the jacket (14) near the conductor (10), the eddy current generated in response to changes in the magnetic field due to the three-phase current flowing through the conductor (10) is
Since the magnetic field flows through the superconducting material layer (15), no heat is generated, and almost no magnetic field leaks outside the jacket (14). Therefore, there is no heat generation in the outer sheath (17), and there is no heat generation in the steel frame provided outside the outer sheath (17), so it can be freely installed inside a steel structure.

以上のことから、通電による損失がなく、冷却装置の能
力も低いもので足りるので経済的な送電路が作れる。
From the above, it is possible to create an economical power transmission line because there is no loss due to energization and a cooling device with low capacity is sufficient.

また、この発明では、絶縁スペーサ(13)と絶縁筒(
11)により導体(10)を支え、液体窒素も絶縁に用
いるので、導体全体を絶縁物で絶縁するよりも絶縁物が
少なくてすむ。
Further, in this invention, the insulating spacer (13) and the insulating cylinder (
11) supports the conductor (10), and liquid nitrogen is also used for insulation, so less insulation is required than if the entire conductor is insulated with insulation.

なお、上記の実施例では、導体(10)は、接続部のな
い超電導#I(銅管など安定化材の中に超電導体を封じ
込めたものなど)による撚υ線を用いたが、第3図のよ
うに可撓性のある絶縁物パイプ(20)を芯にして、こ
の上にテープ状の超電導体(21)、(22)を右巻き
と左巻きに巻き、保護テープ(23)を巻きつけた構造
の導体(1Oa)を用いてもよい。
In the above embodiment, the conductor (10) used was a twisted wire made of superconducting #I (such as a superconductor encapsulated in a stabilizing material such as a copper tube) without a connection part. As shown in the figure, a flexible insulating pipe (20) is used as a core, tape-shaped superconductors (21) and (22) are wound on it in a right-handed and left-handed manner, and a protective tape (23) is wrapped around it. A conductor (1Oa) having a structure in which the conductor is attached may also be used.

さらに、上記実施例では、三相分の導体(10)が1つ
の外被(14)の中に収納された三相−話形の場合につ
いて述べたが、1つの外被の中に1つの導体のみの単相
形においても同様に適用できる。
Furthermore, in the above embodiment, a three-phase wire type case was described in which the conductors (10) for three phases were housed in one jacket (14), but one The same applies to a single-phase type with only a conductor.

なお、常温での使用の可能な超電導材が作り出されたと
きには、液体窒素冷却の部分を5IF6ガスなど絶縁性
能のよいガスで充満し、熱絶縁部分を省けば、そのまま
適用できる。
Note that when a superconducting material that can be used at room temperature is created, it can be applied as is by filling the liquid nitrogen cooling part with a gas with good insulation performance, such as 5IF6 gas, and omitting the thermal insulation part.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明C:よれば、導体には接。 As described above, according to this invention C:, the conductor is connected.

碗部の殆んどない可撓性超電導細線あるいはテープを用
い、その支持部には表面に超電導材を付設した絶縁筒と
二脚形絶縁スペーサを用い、その脚間の外被内面には超
電導材層を設けたので、損失の少ない、経済的な送電路
が得られる効果がある。
A flexible superconducting thin wire or tape with almost no bowl part is used, and its support part is an insulating cylinder with superconducting material attached to the surface and a bipedal insulating spacer, and the inner surface of the outer jacket between the legs is made of superconducting material. Since the material layer is provided, an economical power transmission path with low loss can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明の一実施例のそれぞれ横
断面図および縦断面図、第3図は別の実施例の一部斜視
図、第4図は従来の超電導送電路の横断面図である。 (5)・・支持具、(6)・・超電導層、(10) 、
(10a)・・導体、(11)・・絶縁筒、(12)・
・超電導層、(13)・・絶縁スペーサ、(14)・・
外被、(15)・・超電導材層、(16)・・取付枠、
(17)・・外側外被、(20)・・絶縁物パイプ、(
21) 、 (22)・・テープ状の超電導体、(25
)・・保■テープ。 なお、各図中、同一符号は同−又は相当部分を示す。 第 1 図 1c11 10:11体 11  絶瞠箇 、12超!=)[4 13゛紀縁スX−プ 14外祇 158電溝材層
1 and 2 are a cross-sectional view and a vertical cross-sectional view, respectively, of one embodiment of the present invention, FIG. 3 is a partial perspective view of another embodiment, and FIG. 4 is a cross-sectional view of a conventional superconducting power transmission line. It is a diagram. (5)...Support, (6)...Superconducting layer, (10),
(10a)...Conductor, (11)...Insulating tube, (12)...
・Superconducting layer, (13)... Insulating spacer, (14)...
Outer covering, (15)... superconducting material layer, (16)... mounting frame,
(17)...Outer jacket, (20)...Insulator pipe, (
21), (22)...Tape-shaped superconductor, (25
)...Tape. In each figure, the same reference numerals indicate the same or corresponding parts. 1st Figure 1c11 10:11 bodies 11 Zetsumarika, over 12! =) [4 13th period edge sp.

Claims (2)

【特許請求の範囲】[Claims] (1)外表面を超電導材で覆つた絶縁物でなる短尺の絶
縁筒と、複数個接続延長された前記絶縁筒に挿通され超
電導材細線および超電導材テープのいずれかでなる可撓
性の長尺の導体と、前記絶縁筒を筒状の外被内に支えて
いる開脚した二脚形の絶縁スペーサと、この絶縁スペー
サの脚間で前記導体に近い前記外被の内面部位に設けら
れた超電導材層とを備えてなる超電導送電路。
(1) A short insulating tube made of an insulator whose outer surface is covered with a superconducting material, and a flexible length made of either a superconducting fine wire or a superconducting tape inserted through the insulating tube, which is extended by connecting multiple pieces. a two-legged insulating spacer supporting the insulating tube within a cylindrical jacket; A superconducting power transmission line comprising a superconducting material layer.
(2)可撓性のある絶縁物パイプでなる芯にテープ状の
2つの超電導体を互いに逆巻きに巻き、その外周に保護
テープを巻いてなる導体を備えた特許請求の範囲第1項
記載の超電導送電路。
(2) A conductor according to claim 1, comprising a conductor formed by winding two tape-shaped superconductors in opposite directions around a core made of a flexible insulating pipe, and wrapping a protective tape around the outer periphery of the conductor. Superconducting power transmission line.
JP62266306A 1987-10-23 1987-10-23 Superconductive transmission line Pending JPH01109609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62266306A JPH01109609A (en) 1987-10-23 1987-10-23 Superconductive transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62266306A JPH01109609A (en) 1987-10-23 1987-10-23 Superconductive transmission line

Publications (1)

Publication Number Publication Date
JPH01109609A true JPH01109609A (en) 1989-04-26

Family

ID=17429099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62266306A Pending JPH01109609A (en) 1987-10-23 1987-10-23 Superconductive transmission line

Country Status (1)

Country Link
JP (1) JPH01109609A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003001638A1 (en) * 2001-06-22 2003-01-03 Sumitomo Electric Industries, Ltd. Phase separator jig for superconductive cables and phase separator structure for superconductive cables
JP2005210834A (en) * 2004-01-22 2005-08-04 Sumitomo Electric Ind Ltd Connection structure of polyphase superconductive cable

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003001638A1 (en) * 2001-06-22 2003-01-03 Sumitomo Electric Industries, Ltd. Phase separator jig for superconductive cables and phase separator structure for superconductive cables
US7211723B2 (en) 2001-06-22 2007-05-01 Sumitomo Electric Industries, Ltd. Phase separation jig for superconductive cables and phase separation structure of superconductive cables
JP2005210834A (en) * 2004-01-22 2005-08-04 Sumitomo Electric Ind Ltd Connection structure of polyphase superconductive cable
JP4593933B2 (en) * 2004-01-22 2010-12-08 住友電気工業株式会社 Connection structure of multiphase superconducting cable

Similar Documents

Publication Publication Date Title
US3603715A (en) Arrangement for supporting one or several superconductors in the interior of a cryogenic cable
US3749811A (en) Superconducting cable
US3529071A (en) Superconducting cable for transmitting high electrical currents
EP0786783B1 (en) Method for transmitting a predetermined current by a high power superconducting cable
US3725565A (en) Expansion member for superconducting cable
JP4689984B2 (en) DC superconducting power transmission cable and power transmission system
KR100847952B1 (en) Terminal structure of superconducting cable and superconducting cable line
TW200532711A (en) Terminals of multiphase superconducting cable
US3728463A (en) Expansion and contraction compensation arrangement for superconducting cables
US20070169957A1 (en) Splice structure of superconducting cable
US4176238A (en) Cooled multiphase ac cable
GB1184939A (en) Improvements in or relating to Cryogenic Polyphase Cable Structures
JP5804320B2 (en) Superconducting cable terminal structure
JPH08190819A (en) Superconductor transmission line
JPH01109609A (en) Superconductive transmission line
US3736365A (en) Cryogenic cable
JP2000090998A (en) Superconducting cable joint
JPH0864041A (en) Superconducting cable
Sutton et al. Design of flexible coaxial cores for ac superconducting cables
MXPA02004830A (en) High temperature superconducting rotor power leads.
JP5252323B2 (en) Room-temperature insulated superconducting cable and manufacturing method thereof
JPS59132179A (en) Superconductive device
JP2003187651A (en) High-temperature superconducting cable
JPH0226215A (en) Superconducting cryogenic temperature power cable line
JP5742006B2 (en) End structure of room temperature insulated superconducting cable