JPH01109053A - Feeding speed control method - Google Patents

Feeding speed control method

Info

Publication number
JPH01109053A
JPH01109053A JP26322387A JP26322387A JPH01109053A JP H01109053 A JPH01109053 A JP H01109053A JP 26322387 A JP26322387 A JP 26322387A JP 26322387 A JP26322387 A JP 26322387A JP H01109053 A JPH01109053 A JP H01109053A
Authority
JP
Japan
Prior art keywords
radius
block
feeding speed
program
commanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26322387A
Other languages
Japanese (ja)
Inventor
Masakazu Kanemoto
鐘本 政和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP26322387A priority Critical patent/JPH01109053A/en
Publication of JPH01109053A publication Critical patent/JPH01109053A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce load of programmer by obtaining the radius of a circle passing through motion starting point and ending point of a block and an adjoining block, when a program block to be commanded is linear, then determining a tool feeding speed based on the obtained radius. CONSTITUTION:A maximum allowable feeding speed is provided to a part program 10 while an allowance and a time constant are provided to a parameter setting section 41. When an arch is commanded at N-th block of the program 10, feeding speed calculating section 431 in a program analyzing section 43 employs its radius as it is. When it is commanded by a line, radius of a circle passing through three points of N-1th and Nth motion starting points and Nth motion ending point and following three points is obtained, then a feeding speed for holding reduction of radius within a predetermined error is obtained based on a smaller radius and smaller one of thus obtained feeding speed or a maximum allowable feeding speed is set as a feeding speed. Consequently, programming time can be shortened considerably.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は数値制御工作機械の送り速度制御方法に係り特
に金型加工などにおける複雑な曲面を加工する上で曲面
の形状c曲率)に応じて送り速度を自動的に変化させる
事により加工面精度の向上に寄与する送り速度制御方法
に関する。
[Detailed Description of the Invention] (Technical Field of the Invention) The present invention relates to a feed rate control method for a numerically controlled machine tool, and is particularly useful in machining complex curved surfaces in mold machining, etc. This invention relates to a feed rate control method that contributes to improving machined surface accuracy by automatically changing the feed rate.

(従来技術と問題点) 第4図に数値制御加工の処理ブロック図を示す。(Conventional technology and problems) FIG. 4 shows a processing block diagram of numerically controlled machining.

同図でプログラマ−により作成される(工具移動舒路、
工具送り速度、等加工手順、加工条件が指定される)パ
ートプログラム1σは自動プログラミング処理20され
NC加工プログラム30が作成される。作成されたNC
加工プログラム30は数値制御装置40′のデータ入出
力制御部42″から入力されプログラム解析部42′で
解析されブロック毎にパルス分配部44で扱えるデータ
に変換される。パルス分配部44では前記データから各
軸例えばx、y、z軸方向のサンプリング周期当りの移
動量を計算し速度指令パルスを各軸毎のサーボ制御部に
与えてモータ50の速1度指令として出力している。従
来金型等における複雑な曲面例えば第5図に示すような
複雑な形状を加工する為のパートプログラムを作成する
場合プログラマ−は加工形状の曲率の小さなところは送
り速度を低くプログラムし曲率の大きなところ或いは直
線的に長い形状のところは送り速度を高くプログラムし
ている。これは曲率が小さなところを高速で加工すると
機械的な制約条件から機械が数値制御装置からの指令に
追従できなくなり加工精度が低下するのを防ぐ次めであ
る。パートプログラムでは通常送り速度はFコードを用
いて指定するがワークの加工形状に応じて適切なFコー
ドを選択して指定1ビする事は加工形状が複雑な場合極
めて手間のかかる仕事でありこれがプログラマ−にとっ
て大きな負担となっていた。
In the same figure, the programmer creates (tool movement route,
The part program 1σ (in which the tool feed speed, machining procedure, etc., machining conditions are specified) is subjected to automatic programming processing 20 to create an NC machining program 30. Created NC
The machining program 30 is inputted from the data input/output control section 42'' of the numerical control device 40', analyzed by the program analysis section 42', and converted into data that can be handled by the pulse distribution section 44 for each block. The amount of movement per sampling period for each axis, for example, the x, y, and z axes, is calculated from the servo controller for each axis, and a speed command pulse is given to the servo control unit for each axis, which is output as a speed command of the motor 50. When creating a part program for machining a complex curved surface in a mold, etc., for example, as shown in Figure 5, the programmer should program the feed rate to be low for areas with small curvature of the machined shape, and for areas with large curvature or The feed rate is programmed to be high for long straight shapes.This is because if a part with small curvature is machined at high speed, the machine will not be able to follow the commands from the numerical control device due to mechanical constraints, resulting in a decrease in machining accuracy. In a part program, the feed rate is usually specified using an F code, but it is recommended to select and specify an appropriate F code according to the machining shape of the workpiece when the machining shape is complex. This was an extremely time-consuming task, which placed a heavy burden on programmers.

(発明の目的) 本発明は上述の問題を解決するためになされ友ものであ
り、数値制御装置のプログラム解析部において工具径路
の曲率を自動的に判定し曲率に応じて送り速度を定める
事によりプログラマ−の負担を軽減するとともに加工面
精度の向上に寄与する送り速度制御方法を提供する事を
目的とする。
(Object of the Invention) The present invention has been made to solve the above-mentioned problems, and is made by automatically determining the curvature of the tool path in the program analysis section of the numerical control device and determining the feed rate according to the curvature. The purpose of this invention is to provide a feed rate control method that reduces the burden on the programmer and contributes to improving machined surface accuracy.

(発明の概要) 本発明の送り速度制御方法は直線と円弧で曲面を近似し
加工物を所定の形状に加工する為に作成されたNC加工
プログラムに基づいて加工工具を移動させるに際し、指
令−されるプログラムブロックが直線である場合、前記
ブロックと前記ブロックに隣接したブロックとの移動開
始点と移動終了点の3点を通る円の半径を求める(前記
ブロックで円弧が指令されている場合指令され友円の半
径を求める半径とする)第1ステップと、前記求めた円
の半径に基づいて工具の送り速度を定める第2ステップ
を有する事を特徴とする。
(Summary of the Invention) The feed rate control method of the present invention uses commands - If the program block to be processed is a straight line, find the radius of a circle that passes through the three points of the movement start point and movement end point of the block and the block adjacent to the block (if an arc is commanded in the block, The present invention is characterized by comprising a first step in which the radius of the circle is determined as the radius, and a second step in which the feed rate of the tool is determined based on the radius of the determined circle.

(発明の根拠) 通常サーボ系のブロック図は第6図のように示される。(Basis of invention) A block diagram of a normal servo system is shown in FIG.

このブロック図は簡略化すると、次のような一次遅れ系
で近似することができる。
This block diagram can be simplified and approximated by the following first-order lag system.

ここで R(S)は入力指令 X(S)は出力 Tはサーボ系の時定数 Sはラプラス変換演算子 である。here R(S) is input command X(S) is the output T is the time constant of the servo system S is Laplace transform operator It is.

このサーボ系に R(t) =R4Wl  で与えられる円弧指令人力が
与えられたとき 出力Xは− w’l’ << Iのときは で近似できるから、このときの出力Xの半径減少°量Δ
Rは ΔR=R−X(jW) で与えられる。
When this servo system is given an arc command human power given by R(t) = R4Wl, the output Δ
R is given by ΔR=R−X(jW).

送り速度(周速)tFとすると F = RWで与えられるから これから、半径減少量ΔRを一定の誤差を内に保持する
ためには すなわち と制御する事が必要となるO 自由曲面はパートプログラムにおいて直線又は円弧の連
続したもので近似される0円弧で近似される部分は半径
Rが与えられるので0式によってFを算出することは容
易であるO第6図に示すように曲線が直線で近似される
場合に0式により送り速度を定めるには直線ブロックの
データから円弧Rを算出することが必要となる。第7図
を使用して2次元x−y平面上の3点p1.P2.p、
を通ル円弧の半径Rを算出する方法を示す。
If the feed speed (circumferential speed) is tF, it is given by F = RW, so in order to keep the radius reduction amount ΔR within a certain error, it is necessary to control the free-form surface in the part program. It is approximated by a straight line or a series of circular arcs.Since the radius R is given for the part approximated by a circular arc, it is easy to calculate F using the formula.As shown in Figure 6, the curve is approximated by a straight line. In this case, in order to determine the feed rate using the formula 0, it is necessary to calculate the circular arc R from the data of the straight block. Using FIG. 7, three points p1 on the two-dimensional x-y plane. P2. p,
A method of calculating the radius R of an arc passing through is shown.

同図において p、 p、= tとおくと正弦定理よりとなる。In the same figure If we set p, p, = t, it follows from the law of sine.

これから α=αl−α2 式■、■を式■に代入して直線指令値(ΔX1+Δ)’
l)、(Δx2+Δyzlを用いて、曲線の近似的な曲
率1<を算出する事が出来る。
From now on, α=αl-α2 Substituting equations ■ and ■ into equation ■, linear command value (ΔX1+Δ)'
l), (Δx2+Δyzl), it is possible to calculate the approximate curvature 1< of the curve.

(発明の実施例) 以下に本発明の一実施例について説明する。第1図に本
発明の送り速度制御方法が実施される数値制御加工の処
理ブロック図を示す。同図で従来の処理ブロックと同様
な処理が行なわれる部分は同じ参照番号を付している。
(Embodiment of the Invention) An embodiment of the present invention will be described below. FIG. 1 shows a processing block diagram of numerically controlled machining in which the feed rate control method of the present invention is implemented. In the figure, the same reference numerals are given to the parts in which the same processing as in the conventional processing block is performed.

パートプログラム10では送り速度のデータ入力として
許容最大送り速度FMが一度だけ指定される11゜数値
制御加工40のパラメータ設定部41では図示しないキ
ーボード等の入力装置により許容誤差εと時定数Tが入
力される。プログラム解析部43には送り速度計算部4
31があり各プログラムブロックに対応した送り速度を
計算する。第2図に第1図における送り速度計算部43
1の処理の詳細についてフローチャートで示す。同図で
ST 10ではN番目のブロックで直線が指令されてい
るか円弧が指令されているか判定し円弧が指令されてい
る場合N番目のブロックに対応した半径を指令された円
の半径R,とする5T21゜N番目のブロックで直線が
指令される時N番目のブロックに関しては第3図に示す
ようにN−1番目のブロックの移動開始点pN−1,F
とN番目のブロックの移動開始点PNP()’N−1.
A)とN番目のブロックの移動終了点PNA(PN+l
、Plの3点を通る円RNPと、N番目のブロックの移
動開始点PNy(PN−5^)、N番目のブロックの移
動終了点PNA (PN+1.F )  N + 1番
目のブロックの移動終了点の3点を通る円RNAがある
In the part program 10, the allowable maximum feed rate FM is specified only once as feed rate data input.11 In the parameter setting section 41 of the numerical control machining 40, the allowable error ε and the time constant T are input using an input device such as a keyboard (not shown). be done. The program analysis section 43 includes a feed rate calculation section 4.
31 to calculate the feed rate corresponding to each program block. Fig. 2 shows the feed rate calculation section 43 in Fig. 1.
The details of the process in step 1 are shown in a flowchart. In ST10 in the same figure, it is determined whether a straight line or a circular arc is commanded in the Nth block, and if a circular arc is commanded, the radius corresponding to the Nth block is set as the radius R of the commanded circle. 5T21° When a straight line is commanded in the Nth block, the movement start point pN-1,F of the N-1st block is shown in Figure 3 for the Nth block.
and the movement start point PNP()'N-1 of the Nth block.
A) and the movement end point PNA(PN+l) of the Nth block
, Pl, the movement start point PNy (PN-5^) of the Nth block, the movement end point PNA (PN+1.F) of the Nth block, N + the movement end of the 1st block. There is a circular RNA that passes through three points.

5T21,5T22では式■、■、■を使用して半径R
,とRNAを求める。5T3QでRNFとRNAの大小
全比較し小さい方を求める半径とする5T41〜5T4
3゜ 5T5Qでは式 によりFCヲ計算し、5T60ではFCと最大送り速度
)Mの大小を判別しpcがFMより小さい時N番目のブ
ロックに対応した送り速度p @ pcとし5T71゜
FCがFMより大きい時送り速度Fl許容最最大送速度
ppaとする8T70.−。
In 5T21 and 5T22, the radius R is calculated using formulas ■, ■, and ■.
, and find the RNA. Compare the size of RNF and RNA with 5T3Q and find the smaller one as the radius 5T41 to 5T4
3゜For 5T5Q, calculate FC by the formula, and for 5T60, determine the size of FC and maximum feed rate)M, and when pc is smaller than FM, set the feed speed p @ pc for the Nth block, and 5T71゜FC is greater than FM. When the feed rate Fl is large, the allowable maximum feed rate ppa is 8T70. −.

(発明の効果) 以上に述べたように本発明の送り速度制御方法によると
加工形状の曲率に応じて自動的に送−り速度が変化する
為プログラマ−がパートプログラム作成時に送り速度を
考慮する必要がないのでプログラム作成時間を大幅に短
縮する事が可能になる。
(Effects of the Invention) As described above, according to the feed rate control method of the present invention, the feed rate automatically changes according to the curvature of the machined shape, so the programmer takes the feed rate into consideration when creating a part program. Since this is not necessary, it is possible to significantly shorten the program creation time.

さらに曲率に応じて微少な速度調整ができるので高精度
の加工面精度を実現出来る。
Furthermore, since minute speed adjustments can be made according to the curvature, highly accurate machined surface accuracy can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の送り速度制御方法が実施される数値制
御加工の処理プロプ゛り図。第2図は送り速度算出処理
の詳細なフローチャート。第3図は指令ブロックと曲率
半径の関係を説明するための図。第4図は従来の処理ブ
ロック図。第6図はサーボ系のブロック図。第7図は曲
線を直線で近似する例を示す図。第S図は曲率半径を求
める計算式を説明する為の図である。
FIG. 1 is a process diagram of numerical control machining in which the feed rate control method of the present invention is implemented. FIG. 2 is a detailed flowchart of the feed rate calculation process. FIG. 3 is a diagram for explaining the relationship between the command block and the radius of curvature. FIG. 4 is a conventional processing block diagram. Figure 6 is a block diagram of the servo system. FIG. 7 is a diagram showing an example of approximating a curved line with a straight line. FIG. S is a diagram for explaining a calculation formula for determining the radius of curvature.

Claims (1)

【特許請求の範囲】[Claims] 直線と円弧で曲面を近似し加工物を所定の形状に加工す
る為に作成されたNC加工プログラムに基づいて加工工
具を移動させるに際し、指令されるプログラムブロック
が直線である場合前記ブロックと前記ブロックに隣接し
たブロックの移動開始点と移動終了点の3点を通る円の
半径を求める(前記ブロックで円弧が指令されている場
合指令された円の半径を求める半径とする)第1ステッ
プと、前記求めた円の半径に基づいて工具の送り速度を
定める第2ステップを有する事を特徴とする送り速度制
御方法。
When moving a machining tool based on an NC machining program created to approximate a curved surface with a straight line and a circular arc and process a workpiece into a predetermined shape, if the commanded program block is a straight line, the above block and the above block A first step in which the radius of a circle passing through the three points of the movement start point and movement end point of the block adjacent to is found (if an arc is commanded in the block, the radius of the commanded circle is the radius to be found); A feed rate control method comprising a second step of determining the feed rate of the tool based on the radius of the circle determined above.
JP26322387A 1987-10-19 1987-10-19 Feeding speed control method Pending JPH01109053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26322387A JPH01109053A (en) 1987-10-19 1987-10-19 Feeding speed control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26322387A JPH01109053A (en) 1987-10-19 1987-10-19 Feeding speed control method

Publications (1)

Publication Number Publication Date
JPH01109053A true JPH01109053A (en) 1989-04-26

Family

ID=17386491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26322387A Pending JPH01109053A (en) 1987-10-19 1987-10-19 Feeding speed control method

Country Status (1)

Country Link
JP (1) JPH01109053A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004058190A (en) * 2002-07-26 2004-02-26 Okuma Corp Machining time estimation method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004058190A (en) * 2002-07-26 2004-02-26 Okuma Corp Machining time estimation method and device

Similar Documents

Publication Publication Date Title
US4963805A (en) Numerical control apparatus for machining non-circular workpieces
KR950008800B1 (en) Numerically controlled machine tool
EP0093955B1 (en) Control apparatus for a grinding machine
CA2231308C (en) Adaptive feedrates from geometry modeling for nc machining
US4757457A (en) Numerical control method and apparatus with feedrate difference
US4570386A (en) Regulating wheel dressing system in centerless grinder
CN106886197B (en) Method for controlling machine to implement machining, device and application thereof
US20050215176A1 (en) Numeric controller
JP2005301440A (en) Machining time calculating device
JP4796936B2 (en) Processing control device
JPH0236047A (en) Numerical value control device for working non-cylindrical work
Shirase et al. Machine tool automation
CN106886195B (en) Machining control method, device and application thereof
JPH01255903A (en) Numerical controller for processing non-complete circular workpiece
JP2012164200A (en) Numerical controller making in-position check on rotating shaft
JPH01109053A (en) Feeding speed control method
CN105278463A (en) Numerical controller executing operation by table-format data
JPH0750407B2 (en) Numerical control system
JPH04171109A (en) Uniform load cutting method for cam shaft
JPS6147652B2 (en)
JP2669641B2 (en) Numerical controller for machining non-round workpieces
Wilson et al. Adaptive control for a CNC lathe
US20230350375A1 (en) Numerical control device and control method
Perez et al. Feedrate optimization by polynomial interpolation for CNC machinesbased on a reconfigurable FPGA controller
JPH0230468A (en) Control method for chopping