JPH01108795A - Circuit substrate - Google Patents
Circuit substrateInfo
- Publication number
- JPH01108795A JPH01108795A JP26578187A JP26578187A JPH01108795A JP H01108795 A JPH01108795 A JP H01108795A JP 26578187 A JP26578187 A JP 26578187A JP 26578187 A JP26578187 A JP 26578187A JP H01108795 A JPH01108795 A JP H01108795A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- ceramics
- conductor
- substrate
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 49
- 239000000919 ceramic Substances 0.000 claims abstract description 75
- 239000004020 conductor Substances 0.000 claims abstract description 59
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 43
- 239000010949 copper Substances 0.000 claims abstract description 42
- 229910052802 copper Inorganic materials 0.000 claims abstract description 41
- 239000002131 composite material Substances 0.000 claims abstract description 21
- 239000006185 dispersion Substances 0.000 claims abstract description 19
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract 2
- 239000000463 material Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 20
- 229910052574 oxide ceramic Inorganic materials 0.000 claims description 3
- 239000011224 oxide ceramic Substances 0.000 claims description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract description 6
- 239000000843 powder Substances 0.000 abstract description 6
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 4
- 239000011812 mixed powder Substances 0.000 abstract description 3
- 239000000395 magnesium oxide Substances 0.000 abstract description 2
- 239000000377 silicon dioxide Substances 0.000 abstract description 2
- 239000002270 dispersing agent Substances 0.000 abstract 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 238000005304 joining Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004021 metal welding Methods 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- ALKZAGKDWUSJED-UHFFFAOYSA-N dinuclear copper ion Chemical group [Cu].[Cu] ALKZAGKDWUSJED-UHFFFAOYSA-N 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- WHOPEPSOPUIRQQ-UHFFFAOYSA-N oxoaluminum Chemical compound O1[Al]O[Al]1 WHOPEPSOPUIRQQ-UHFFFAOYSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
本発明は銅からなる導体をセラミックス基板に接合して
なる回路基板に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to a circuit board formed by bonding a conductor made of copper to a ceramic substrate.
(従来の技術)
トランジスタモジュール用基板などに用いる回路基板に
おいては、セラミックスで形成した基板を使用し、この
セラミックス基板の表面に導体として銅板を配置した構
成のものがある。(Prior Art) Some circuit boards used for transistor module boards and the like use a board made of ceramics, and have a copper plate disposed as a conductor on the surface of the ceramics board.
最近、この構成の回路基板として、銅からなる導体とセ
ラミックス基板を接合するための結合材として酸素を使
用し、銅の融点(1083℃)以下、銅−酸素の共晶温
度(1065℃)以上の温度で加熱して両者を直接接合
したいわゆるDBG(銅直接接合法)により製作したも
のが開発されている。この制置接接合−には、銅からな
る導体を酸素で表面処理するか、あるいは導体に酸素を
含有させて、これをセラミックス基板に接触配置させて
不活性ガス中で加熱する方法、または酸素で表面処理さ
れていない、あるいは酸素を含有しない銅からなる導体
をセラミックス基板に接触配置して酸素を含む雰囲気ガ
ス中で加熱す為方法があり、銅からなる導体をセラミッ
クス基板に容易に接合できるために、銅直接接合法によ
り製作された回路基板が増加しつつある。Recently, circuit boards with this configuration have been developed using oxygen as a bonding material to bond a conductor made of copper and a ceramic substrate. A device manufactured using the so-called DBG (direct copper bonding method), in which the two are directly bonded by heating at a temperature of , has been developed. This forced bonding method involves surface-treating a conductor made of copper with oxygen, or adding oxygen to the conductor, placing it in contact with a ceramic substrate, and heating it in an inert gas. There is a method in which a copper conductor that has not been surface-treated or does not contain oxygen is placed in contact with a ceramic substrate and heated in an oxygen-containing atmosphere gas, making it easy to bond the copper conductor to the ceramic substrate. Therefore, the number of circuit boards manufactured using the copper direct bonding method is increasing.
(発明が解決しようとする問題点)
しかしながら、このようなセラミックス基板に銅からな
る導体を配置接合した構成の従来の回路基板には次の問
題がある。(Problems to be Solved by the Invention) However, the conventional circuit board having a configuration in which a conductor made of copper is arranged and bonded to such a ceramic substrate has the following problems.
セラミックス基板に銅からなる導体を接合してなる回路
基板では、銅の方がセラミックスに比して熱膨張率が大
きく、周囲から熱的変化を受けた場合には、銅からなる
導体の方がセラミックス基板に比して熱による変形が大
きいので、この導体の変形によりセラミックス基板が力
を受ける。このため、回路基板の周囲の温度が上昇と降
下を繰返す場合には、この温度上昇と温度降下に応じて
銅からなる導体が熱による変形を繰返し、この導体の変
形の繰返しによりセラミックス基板が力を受ける。この
結果、セラミックス基板の導体を取付けた部分が亀裂を
生じて破損することが多い。In a circuit board made by bonding a conductor made of copper to a ceramic substrate, copper has a higher coefficient of thermal expansion than ceramics, and when subjected to thermal changes from the surroundings, the conductor made of copper has a higher coefficient of thermal expansion than ceramics. Since the deformation due to heat is greater than that of the ceramic substrate, the ceramic substrate receives force due to the deformation of the conductor. Therefore, when the temperature around the circuit board rises and falls repeatedly, the conductor made of copper is repeatedly deformed by heat in response to this temperature rise and fall, and this repeated deformation of the conductor causes stress on the ceramic board. receive. As a result, the portion of the ceramic substrate to which the conductor is attached often cracks and breaks.
すなわち、従来の回路基板は熱による疲労に弱いという
問題がある。That is, conventional circuit boards have a problem of being susceptible to fatigue due to heat.
特に温度変化の激しい場所で使用する回路基板において
は、銅からなる導体の熱変形によるセラミックス基板の
破損の度合いが高い。例えば、インバータ空調機におけ
る駆動回路では、パワートランジスタが温度上昇と温度
降下が激しく繰返されるために、この駆動回路に使用す
る回路基板はパワートランジスタの激しい温度変化の影
響を受けている。Particularly in circuit boards used in places with severe temperature changes, the degree of damage to ceramic boards due to thermal deformation of conductors made of copper is high. For example, in a drive circuit for an inverter air conditioner, the temperature of the power transistor increases and decreases repeatedly, so the circuit board used in this drive circuit is affected by the severe temperature changes of the power transistor.
本発明は前記問題を解決するもので、セラミックス基板
に銅から導体を接合した熱による疲労に強い回路基板を
提供することを目的とする。The present invention solves the above-mentioned problem, and aims to provide a circuit board that is resistant to fatigue caused by heat, in which a conductor made of copper is bonded to a ceramic board.
[発明の構成]
(問題点を解決するための手段と作用)本発明の発明者
はセラミックス基板に銅からなる導体を接合した回路基
板における熱疲労について種々研究を重ねてきた。この
なかで、まず第1に銅からなる導体の熱変形を小さくす
ることに着目して導体に使用する材料として銅合金を採
用して種々実験を行なったが、導体の変形の抑制には限
界があり、期待した効果が得られなかった。[Structure of the Invention] (Means and Effects for Solving Problems) The inventor of the present invention has conducted various studies on thermal fatigue in a circuit board in which a conductor made of copper is bonded to a ceramic substrate. Among these, we first focused on reducing the thermal deformation of conductors made of copper, and conducted various experiments using copper alloys as the material used for the conductors, but there was a limit to suppressing the deformation of the conductors. , and the expected effect was not obtained.
そこで、銅からなる導体の変形を押えるだけでなく、導
体に発生する力をそれ自身の内部で吸収することに1!
目した。しかも、このことを実現させるために導体を影
形成する材料として銅合金では困難であることを見出し
た。そして、この条件を実現させるための材料として、
銅とセラミックスの複合分散材が適していることを見出
した。すなわち、この材料は銅粉末とセラミックス粉末
とからなる焼結体で、銅と同じ導電率を有するが、銅に
比して熱膨張率が小さいことがわかった。しかも、この
材料で形成した導体はその熱変形によりセラミックス基
板に作用する力が小さいことがわかった。これは銅−セ
ラミックス複合分散材は内部に微細な空孔が分散して存
在し、この空孔が導体に発生する力を吸収して外部に作
用する力を減少できるためであると考えられる。従って
、この銅−セラミックス複合分散材からなる導体を使用
することにより、熱疲労に強い回路基板を得ることが出
来ることがわかった。Therefore, we decided to not only suppress the deformation of the conductor made of copper, but also absorb the force generated in the conductor within itself!
I saw it. Moreover, in order to realize this, it was found that it is difficult to use a copper alloy as a material for forming a shadow on the conductor. And as a material to realize this condition,
We found that a composite dispersion material of copper and ceramics is suitable. That is, it was found that this material is a sintered body made of copper powder and ceramic powder, and has the same electrical conductivity as copper, but a lower coefficient of thermal expansion than copper. Moreover, it was found that the conductor made of this material has a small force acting on the ceramic substrate due to its thermal deformation. This is thought to be because the copper-ceramic composite dispersion material has fine pores dispersed inside it, and these pores can absorb the force generated in the conductor and reduce the force acting on the outside. Therefore, it has been found that by using a conductor made of this copper-ceramic composite dispersion material, a circuit board that is resistant to thermal fatigue can be obtained.
本゛発明はこの知見に基づいてなされたものである。The present invention was made based on this knowledge.
本発明の回路基板は、セラミックスからなる基板と、銅
とセラミックスとの複合分散材からなり且つ前記基板の
表面に接合された導体とからなることを特徴とするもの
である。The circuit board of the present invention is characterized by comprising a substrate made of ceramics and a conductor made of a composite dispersion material of copper and ceramics and bonded to the surface of the substrate.
本発明の回路基板は、基板としてセラミックス焼結体か
らなる基板を使用する。このセラミックス基板を形成す
るセラミックスとしては、アルミ大、マグネシスア、シ
リカ7、ジルコニア、窒化けい素、窒化アルミニウム、
炭化けい素などの各種のセラミックスtツクスを採用出
来るが、なかでも導体を形成する銅−セラミックス複合
分散材に使用するセラミックスと同じものであることが
好ましい。The circuit board of the present invention uses a substrate made of a ceramic sintered body. Ceramics that form this ceramic substrate include aluminum, magnesia, silica 7, zirconia, silicon nitride, aluminum nitride,
Although various ceramic materials such as silicon carbide can be used, it is particularly preferable to use the same ceramic materials as those used in the copper-ceramic composite dispersion material that forms the conductor.
セラミックス基板に接合する導体は銅−セラミックス複
合分散材で形成する。この銅−セラミックス複合分散材
において銅に添加するセラミックスは、導体をセラミッ
クス基板に接合する方法に対応して最適な種類のものを
選択する。銅に対しセラミックスを添加する割合は、重
量比で0.1〜10%の範囲とする。これは添加割合が
0.1%未満であると添加の効果が無く、10%を越え
ると銅の導電性、熱伝導性および放熱性が低下するから
である。好ましくは0.5〜3%である。The conductor bonded to the ceramic substrate is made of a copper-ceramic composite dispersion material. The ceramic added to copper in this copper-ceramic composite dispersion material is selected from an optimal type depending on the method of joining the conductor to the ceramic substrate. The proportion of ceramic added to copper is in the range of 0.1 to 10% by weight. This is because if the addition ratio is less than 0.1%, the addition has no effect, and if it exceeds 10%, the electrical conductivity, thermal conductivity, and heat dissipation properties of copper decrease. Preferably it is 0.5 to 3%.
銅−セラミックス複合分散材からなる導体は、銅粉末と
セラミックス粉末とを混合し、この混合粉末をラバープ
レスなどの方法で加圧して成形体を成形し、成形体を焼
結して形成する。そして、焼結体をセラミックス基板の
表面に接合して導体を形成する。この場合、焼結体を導
体パターンに形成してセラミックス基板に接合する、ま
たは面状の焼結体を形成してセラミックス基板に接合し
、その後で面状の焼結体をエツチング処理を施して導体
パターンに形成するか、いずれかの方法を採用する。A conductor made of a copper-ceramic composite dispersion material is formed by mixing copper powder and ceramic powder, pressing the mixed powder using a method such as a rubber press to form a compact, and sintering the compact. Then, the sintered body is bonded to the surface of the ceramic substrate to form a conductor. In this case, the sintered body is formed into a conductive pattern and bonded to a ceramic substrate, or a planar sintered body is formed and bonded to a ceramic substrate, and then the planar sintered body is subjected to an etching process. Either form it into a conductive pattern or adopt one of the following methods.
焼結体すなわち導体をセラミックス基板の表面に接合す
るためには、導体を銅属接法により直接接合する方法、
導体とセラミックス基板との間にチタン、ジルコニウム
などの活性金属を介在させて加熱することにより直接拡
散接合する方法、またセラミックス基板の表面にメタラ
イズ処理を施してろう付けにより導体を接合する方法が
ある。In order to bond the sintered body, that is, the conductor, to the surface of the ceramic substrate, there are two methods: direct bonding of the conductor by copper metal welding;
There is a method of direct diffusion bonding by interposing active metals such as titanium or zirconium between the conductor and the ceramic substrate and heating, and a method of applying metallization treatment to the surface of the ceramic substrate and joining the conductor by brazing. .
なかでも銅属接接合法による接合が好ましい。Among these, bonding by copper metal welding is preferred.
銅属接接合法には、銅からなる導体を酸素で表面処理す
るか、あるいは導体に酸素を含有させて、これをセラミ
ックス基板に接触配置させて不活性ガス中で加熱する方
法、または酸素で表面処理されていない、あるいは酸素
を含有しない銅からなる導体をセラミックス基板に接触
配置して酸素を含む雰囲気ガス中で加熱する方法がある
。なかでも導体の表面すなわち銅−セラミックス複合分
散材の表面を酸素で表面処理して、不活性ガス中で加熱
する方法が好ましい。銅属接接合法により導体を接合す
る場合は、導体を形成する銅−セラミックス複合分散材
にはAβ203 、MQO。Copper metal bonding methods include surface-treating a conductor made of copper with oxygen, or adding oxygen to the conductor, placing it in contact with a ceramic substrate, and heating it in an inert gas. There is a method in which a conductor made of copper without surface treatment or containing no oxygen is placed in contact with a ceramic substrate and heated in an atmospheric gas containing oxygen. Among these, preferred is a method in which the surface of the conductor, ie, the surface of the copper-ceramic composite dispersion material, is treated with oxygen and then heated in an inert gas. When joining conductors by the copper metal joining method, Aβ203 and MQO are used as the copper-ceramic composite dispersion material forming the conductor.
Cab、S io2、ZrO2などの酸化物セラミック
スを使用する。なかでもAl2O2が適している。この
酸化物セラミックスは結合剤として使用する酸素が銅−
セラミックス複合分散材に吸収されないようにするため
に使用する。なお、窒化物は使用しない。Oxide ceramics such as Cab, Sio2, ZrO2 are used. Among them, Al2O2 is suitable. This oxide ceramic has oxygen used as a binder that is copper-copper.
Used to prevent absorption by ceramic composite dispersion material. Note that nitride is not used.
また、活性金属法およびメタライズ+ろう付け沫により
接合する場合は、銅−セラミックス複合分散材には、酸
化物、窒化物、はう化物、炭化物の各セラミックスを使
用することが可能である。Further, in the case of joining by the active metal method and metallization + brazing droplet, it is possible to use oxide, nitride, ferride, and carbide ceramics as the copper-ceramic composite dispersion material.
しかして、このように構成された回路基板においては、
銅−セラミックス複合分散材で形成された導体は、銅お
よびその合金に比して熱膨張率が小さく、外部の熱によ
る熱変形が銅で形成された導体に比して小さい。このた
め、導体の熱変形に・よりセラミックス基板に作用する
力が小さくなる。However, in a circuit board configured in this way,
A conductor made of a copper-ceramic composite dispersion material has a lower coefficient of thermal expansion than copper and its alloy, and thermal deformation due to external heat is smaller than a conductor made of copper. Therefore, the force acting on the ceramic substrate due to thermal deformation of the conductor is reduced.
また、銅−セラミックス複合分散材で形成された導体は
、外部の熱により変形した場合に発生する力の一部を内
部に分散して存在している微細な空孔により吸収して、
外部に作用する力の強さを弱めることができる。すなわ
ち、導体は熱変形により発生してセラミックス基板に作
用しようとする力をそれ自身の内部で吸収し、セラミッ
クス基板に作用する力を弱めている。これらことがら導
体が周囲の温度の変化により変形を繰返す場合にセラミ
ックス基板に与える力は大変小さいものとなる。In addition, a conductor made of a copper-ceramic composite dispersion material absorbs a portion of the force generated when it is deformed by external heat through the fine pores that are dispersed inside.
It can weaken the strength of external forces. That is, the conductor absorbs within itself the force generated by thermal deformation that tends to act on the ceramic substrate, thereby weakening the force acting on the ceramic substrate. For these reasons, when the conductor repeatedly deforms due to changes in ambient temperature, the force exerted on the ceramic substrate becomes very small.
従って、本発明の回路基板は周囲温度が上昇および温度
下降を繰返した場合でも、その熱変化による影響でセラ
ミックス基板が亀裂を生じて破損することがない。本発
明の回路基板は温度変化の激しい場所で使用する用途に
最適である。Therefore, in the circuit board of the present invention, even if the ambient temperature repeatedly rises and falls, the ceramic board will not crack and be damaged due to the influence of thermal changes. The circuit board of the present invention is most suitable for use in places where temperature changes are severe.
(実施例) 本発明の一部1例について説明する。(Example) One example of a part of the present invention will be explained.
まず、Aλ203粉末を加圧、焼結して厚さ1111m
の基板を成形した。First, Aλ203 powder was pressed and sintered to a thickness of 1111 m.
A substrate was molded.
また、Cu粉末に重量比で3%のAfi20g粉末を混
合してなる混合粉末を成形圧50トン/dでラバープレ
スして成形体を得、この成形体を温度、800℃、10
時間で焼結して所定のパターンを持つ厚さ0.3〜0.
5uiの導体を形成した。この導体を銅属接接合法によ
り基板の表面に接合した。この接合法の条件は次の通り
である。Further, a mixed powder obtained by mixing Cu powder with 20 g of Afi powder with a weight ratio of 3% was rubber pressed at a molding pressure of 50 tons/d to obtain a molded body, and this molded body was heated at a temperature of 800°C for 10 minutes.
Thickness 0.3 to 0.3 to 0.0 mm with a predetermined pattern after being sintered over time.
A 5ui conductor was formed. This conductor was bonded to the surface of the substrate by a copper metal bonding method. The conditions for this joining method are as follows.
まず導体に大気雰囲気で温度400℃で5分加熱する処
理を行ない、接合面に厚ざ11II!Lの酸化膜を形成
した。次に導体を基板の表面に接触配置して窒素ガスの
中で温度1070℃、30分加熱し、導体を基板の表面
に接合した。このように製作した回路基板を試験炉に置
き一40’CX30分がら125℃×30分に温度条件
を変化させて回路基板の熱疲労を調べる実験を行なった
。この結果、200サイクル繰返してもセラミックス基
板にクラックが生じなかった。First, the conductor was heated in an air atmosphere at a temperature of 400°C for 5 minutes, and the bonded surface had a thickness of 11II! An oxide film of L was formed. Next, the conductor was placed in contact with the surface of the substrate and heated in nitrogen gas at a temperature of 1070° C. for 30 minutes to bond the conductor to the surface of the substrate. The circuit board thus manufactured was placed in a test furnace, and an experiment was conducted to examine the thermal fatigue of the circuit board by changing the temperature conditions from 140° C. for 30 minutes to 125° C. for 30 minutes. As a result, no cracks occurred in the ceramic substrate even after 200 cycles.
次に比較例として、Al22031板の表面に純度99
.5%の銅からなる所定のパターンを持った厚さ50e
−の板を、本発明例の場合と同じ条件でr!4直接接合
法により接合した回路基板を製作した。この回路基板に
対し本発明例の場合と同じ条件で熱疲労測定実験を行な
った。その結果、前記と同じ条件において60サイクル
でセラミックスにクラックが発生した。Next, as a comparative example, the surface of the Al22031 plate has a purity of 99%.
.. Thickness 50e with predetermined pattern made of 5% copper
− plate under the same conditions as in the example of the present invention. 4. A circuit board bonded using the direct bonding method was manufactured. A thermal fatigue measurement experiment was conducted on this circuit board under the same conditions as in the example of the present invention. As a result, cracks occurred in the ceramic after 60 cycles under the same conditions as above.
従って、本発明の回路基板は比較例に対して熱疲労に対
して大変価れていることがわかる。Therefore, it can be seen that the circuit board of the present invention is much more resistant to thermal fatigue than the comparative example.
[発明の効果]
以上説明したように本発明によれば、熱疲労に対して強
く信頼性と耐久性に優れた回路基板を得ることができる
。[Effects of the Invention] As explained above, according to the present invention, it is possible to obtain a circuit board that is resistant to thermal fatigue and has excellent reliability and durability.
出願人代理人 弁理士 鈴江武彦Applicant's agent: Patent attorney Takehiko Suzue
Claims (3)
との複合分散材からなり且つ前記基板の表面に接合され
た導体とからなる回路基板。(1) A circuit board comprising a substrate made of ceramics and a conductor made of a composite dispersion material of copper and ceramics and bonded to the surface of the substrate.
ミックスは酸化物であり、この複合分散材は基板の表面
に銅直接接合法により接合されてなる特許請求の範囲第
1項記載の回路基板。(2) The circuit board according to claim 1, wherein the ceramic used in the composite dispersion material of copper and ceramics is an oxide, and the composite dispersion material is bonded to the surface of the substrate by a copper direct bonding method. .
範囲第2項記載の回路基板。(3) The circuit board according to claim 2, wherein the oxide ceramic is alumina.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26578187A JPH01108795A (en) | 1987-10-21 | 1987-10-21 | Circuit substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26578187A JPH01108795A (en) | 1987-10-21 | 1987-10-21 | Circuit substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01108795A true JPH01108795A (en) | 1989-04-26 |
Family
ID=17421948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26578187A Pending JPH01108795A (en) | 1987-10-21 | 1987-10-21 | Circuit substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01108795A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5140109A (en) * | 1989-08-25 | 1992-08-18 | Kyocera Corporation | Container package for semiconductor element |
US5168126A (en) * | 1989-08-25 | 1992-12-01 | Kyocera Corporation | Container package for semiconductor element |
-
1987
- 1987-10-21 JP JP26578187A patent/JPH01108795A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5140109A (en) * | 1989-08-25 | 1992-08-18 | Kyocera Corporation | Container package for semiconductor element |
US5168126A (en) * | 1989-08-25 | 1992-12-01 | Kyocera Corporation | Container package for semiconductor element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100353385B1 (en) | Aluminum Nitride Sintered Body and Method of Preparing the Same | |
JPS5896757A (en) | Semiconductor device | |
JP6319643B2 (en) | Ceramics-copper bonded body and method for manufacturing the same | |
US5155665A (en) | Bonded ceramic-metal composite substrate, circuit board constructed therewith and methods for production thereof | |
US6291804B1 (en) | Joined structure of ceramic heater and electrode terminal, and joining method therefor | |
Blank et al. | Copper thick-film substrates for power electronic applications | |
JP3890539B2 (en) | Ceramic-metal composite circuit board | |
EP3605601A1 (en) | Method for producing insulated circuit board with heat sink | |
JP2642574B2 (en) | Manufacturing method of ceramic electronic circuit board | |
JP2001085808A (en) | Circuit board | |
JPH01108795A (en) | Circuit substrate | |
JP2001335859A (en) | Aluminum-silicon carbide composite material and its production method | |
JP3794454B2 (en) | Nitride ceramic substrate | |
JP4476428B2 (en) | Aluminum nitride circuit board and manufacturing method thereof | |
JP3329548B2 (en) | Ceramic circuit board with heat sink | |
JPH06329480A (en) | Joined body of ceramics and metal and its production | |
JP2000128655A (en) | Joined structure of ceramic member to metal member, joining of ceramic member to metal member, and ceramic heater using the same | |
JP4049487B2 (en) | Circuit board manufacturing method | |
JPH0748180A (en) | Ceramic-metal conjugate | |
JP3710690B2 (en) | SiC heater | |
JP2516981B2 (en) | Ceramic package and method of manufacturing the same | |
JPH05201777A (en) | Ceramic-metal joined body | |
JP4357380B2 (en) | Method for producing aluminum alloy-silicon carbide composite | |
JPH01249669A (en) | Ceramic circuit board | |
JP4461513B2 (en) | Aluminum-silicon carbide based composite material and method for producing the same |