JPH01108780A - Molecular element - Google Patents

Molecular element

Info

Publication number
JPH01108780A
JPH01108780A JP62266888A JP26688887A JPH01108780A JP H01108780 A JPH01108780 A JP H01108780A JP 62266888 A JP62266888 A JP 62266888A JP 26688887 A JP26688887 A JP 26688887A JP H01108780 A JPH01108780 A JP H01108780A
Authority
JP
Japan
Prior art keywords
magnetic field
film
effect transistor
field effect
polyacetylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62266888A
Other languages
Japanese (ja)
Inventor
Seiichi Iwamatsu
誠一 岩松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62266888A priority Critical patent/JPH01108780A/en
Publication of JPH01108780A publication Critical patent/JPH01108780A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/701Organic molecular electronic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • H10K85/143Polyacetylene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/761Biomolecules or bio-macromolecules, e.g. proteins, chlorophyl, lipids or enzymes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To enable manufacturing of a magnetic field effect transistor with molecular level size, by using organic polymeric material, such as (SN)x, polyacetylene, polyaniline, and metal complex compound, or helical type polymer, such as benzene ring and DNA, for a loop type conducting electrode gate of the magnetic field effect transistor. CONSTITUTION:On the surface of an insulating substrate 1, a film of polyacetilene 2 or the like is formed, on the surface of which a gate insulating film 3 of SiO2 or the like is formed. Thereon, a conducting polymeric film, such as benzene ring, DNA, (SN)x, polyacetylene, polyaniline and metal complex compound, is formed. By making up this film in a loop or herical shape, a loop type gate electrode 4 is formed. A current is made to flow in the loop type or helical type polymeric part, and magnetic field H is generated. A voltage is applied between source and drain electrodes wherein Na doping 6 is performed to the film of polyacetylene 2 subjected to iodine doping 5. Thus, electric conductivity control is performed by spin control of radical ion generating in the part of iodine doping 6, and magnetic field effect transistor action is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電極ゲートからの磁界によりスイッチ作用を
する分子素子の電極ゲートの材料構成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a material configuration of an electrode gate of a molecular device that performs a switching action by a magnetic field from an electrode gate.

〔従来の技術〕[Conventional technology]

従来、磁界センサーとしてはホール効果素子があったが
必ずしもトランジスタとしての作用をするものではなか
った。
Conventionally, Hall effect elements have been used as magnetic field sensors, but they do not necessarily function as transistors.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記従来技術によると、磁界効果トランジスタ
作用がないと言う問題があった0本発明は、かかる従来
技術の問題点をな(シ、磁界効果トランジスタを分子の
レベルの大きさで製作を可1除とする磁界効果トランジ
スタのゲート電極材料構成を提供する事を目的とする。
However, according to the above-mentioned prior art, there was a problem in that the magnetic field effect transistor did not function.The present invention solves the problem of the prior art. It is an object of the present invention to provide a gate electrode material configuration of a magnetic field effect transistor with a ratio of 1.

〔問題点を解決するための手段〕[Means for solving problems]

上紀問厘点を解決するために、本発明は、分子素子に関
し、磁界効果トランジスタのループ状導電電極ゲートに
は(SN)x1ポリアセチレン、ポリアニリン、金g4
諸化合物等の有機高分子材を用いるか、あるいはベンゼ
ン環あるいはDNAQの螺腺伏高分子を用いる手段をと
る。
In order to solve the above problems, the present invention relates to a molecular device, and the loop-shaped conductive electrode gate of the magnetic field effect transistor contains (SN)x1 polyacetylene, polyaniline, gold g4
Organic polymer materials such as various compounds are used, or a benzene ring or a spiral polymer such as DNAQ is used.

〔実施例〕〔Example〕

下1図は本発明の一実施例を示す磁界効果トランジスタ
の断面図である。すなわち、ガラス、石英、サアイヤ等
から成る絶縁基板1の表面に、LD法(ラングシュア、
プロジェット法)によりポリアチレン2等の膜を形成す
るか、あるいはcVD(化学蒸着法)、PVD(物流蒸
c法)法等により半導体や超電導体膜を形成し、その表
面に、Lll法によるポリ・イミド等の高分子絶縁膜や
cvD ヤI) V D法によルS 10 * 、31
3 N a 、A I、0.笠のゲート絶縁膜3を形成
し、その上にLB法等によるベンゼン環をもつ高分子や
DNA。
Figure 1 below is a sectional view of a magnetic field effect transistor showing an embodiment of the present invention. That is, the LD method (Langsure,
A film of polyethylene 2 or the like is formed using a polyethylene 2 film (projet method), or a semiconductor or superconductor film is formed using a cVD (chemical vapor deposition method), a PVD (physical vapor deposition method), etc.・Polymer insulating film such as imide or CVD method
3 N a , A I , 0. A gate insulating film 3 of a cap is formed, and a polymer or DNA having a benzene ring is formed on it by LB method or the like.

あるいは(SN)xla;リアセチレン、ポリアニリン
、金属錯化合物等の導電性高分子膜を形成しそのままル
ープあるいは螺腺状態に保つかあるいは電子ビーム又は
イオービームによるオート・リゾグラフィー技術により
ループ状となし、ループ状ゲート・電極4を形成し、該
ループ状あるいは螺腺吠高分子に電流を流して磁界I!
を発生させる事により本図の場合はヨウ素ドー16を施
したポリアセチレン2の膜にNaドープ6を施したソー
ス及びドレイン電極間に電圧を印加し、ヨウ素ドープ5
の部に発生ずるラジカル・イオンのスピン制御による電
4度詞御を行ない、磁界効果トランジスタ作用を行なわ
せるものである。高感磁部分を絶縁基板1に対し本図の
如く横型ではな(縦型に形成し、その周辺にゲート絶縁
lI23を介してループ状にゲート電極を形成しても良
い事は言うまでもない。
Or (SN) A loop-shaped gate/electrode 4 is formed, and a current is passed through the loop-shaped or spiral polymer to generate a magnetic field I!
In the case of this figure, a voltage is applied between the source and drain electrodes, which are Na-doped 6, to the polyacetylene 2 film doped with iodine 16, and the iodine-doped 5
By controlling the spin of the radical ions generated in the area, electric quadrature control is performed, and a magnetic field effect transistor action is performed. It goes without saying that the highly magnetically sensitive portion may be formed vertically (rather than horizontally as shown in this figure) with respect to the insulating substrate 1, and the gate electrode may be formed in a loop shape around the portion through the gate insulator 123.

(発明の効果〕 本発明により磁界効果トランジスタが分子のレベルで製
作できる効果がある。
(Effects of the Invention) The present invention has the advantage that a magnetic field effect transistor can be manufactured at the molecular level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す磁界効果トランジスタ
の断面図である。 1・・・絶縁基板 2・・・ポリアセチレン 3・・・ゲート絶縁膜 4・・・ループ拭ゲート電極 5・・・ヨウ素ドープ 6・・・Naドープ 以  上 出願人 セイコーエプソン株式会社
FIG. 1 is a sectional view of a magnetic field effect transistor showing an embodiment of the present invention. 1...Insulating substrate 2...Polyacetylene 3...Gate insulating film 4...Loop wiping gate electrode 5...Iodine dope 6...Na dope and above Applicant Seiko Epson Corporation

Claims (1)

【特許請求の範囲】[Claims]  磁界効果トランジスタのループ状導電電極ゲートには
(SN)_x、ポリアセチレン、ポリアニリン金属錯化
合物等の有機高分子材を用いるか、あるいはベンゼン環
あるいはDNA(デオキシ・リボ核酸)等の螺線状高分
子を用いる事を特徴とする分子素子。
For the loop-shaped conductive electrode gate of a magnetic field effect transistor, an organic polymer material such as (SN)_x, polyacetylene, or polyaniline metal complex compound is used, or a spiral polymer material such as a benzene ring or DNA (deoxyribonucleic acid) is used. A molecular device characterized by using.
JP62266888A 1987-10-22 1987-10-22 Molecular element Pending JPH01108780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62266888A JPH01108780A (en) 1987-10-22 1987-10-22 Molecular element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62266888A JPH01108780A (en) 1987-10-22 1987-10-22 Molecular element

Publications (1)

Publication Number Publication Date
JPH01108780A true JPH01108780A (en) 1989-04-26

Family

ID=17437049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62266888A Pending JPH01108780A (en) 1987-10-22 1987-10-22 Molecular element

Country Status (1)

Country Link
JP (1) JPH01108780A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2684677A1 (en) * 1991-12-06 1993-06-11 Alsthom Cge Alcatel COPOLYMERES WITH MAGNETIC PROPERTIES COMPRISING AMINO AROMATIC GROUPS AND METHOD OF PREPARATION AND APPLICATIONS THEREOF
US7176482B1 (en) 2000-11-28 2007-02-13 Ramot At Tel-Aviv University DNA-based electronics
JP2008034577A (en) * 2006-07-28 2008-02-14 Sony Corp Semiconductor thin film, its forming method, and semiconductor device
WO2008047586A1 (en) * 2006-09-26 2008-04-24 Canon Kabushiki Kaisha Device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2684677A1 (en) * 1991-12-06 1993-06-11 Alsthom Cge Alcatel COPOLYMERES WITH MAGNETIC PROPERTIES COMPRISING AMINO AROMATIC GROUPS AND METHOD OF PREPARATION AND APPLICATIONS THEREOF
US5408034A (en) * 1991-12-06 1995-04-18 Alcatel Alsthom Compagnie Generale D'electricite Copolymers having magnetic properties
US7176482B1 (en) 2000-11-28 2007-02-13 Ramot At Tel-Aviv University DNA-based electronics
JP2008034577A (en) * 2006-07-28 2008-02-14 Sony Corp Semiconductor thin film, its forming method, and semiconductor device
WO2008047586A1 (en) * 2006-09-26 2008-04-24 Canon Kabushiki Kaisha Device
US8450724B2 (en) 2006-09-26 2013-05-28 Canon Kabushiki Kaisha Electrical device containing helical substituted polyacetylene

Similar Documents

Publication Publication Date Title
KR100781829B1 (en) Organic thin-film transistor and manufacturing method thereof
EP1051754B1 (en) A field-effect transistor
JP4919811B2 (en) Transistor comprising a deposited channel region having a doped portion
US7186380B2 (en) Transistor and sensors made from molecular materials with electric dipoles
JP4124787B2 (en) Field effect transistor and display device using the same
US7067840B2 (en) Method and device for reducing the contact resistance in organic field-effect transistors by embedding nanoparticles to produce field boosting
US6806124B2 (en) Method for reducing the contact resistance in organic field-effect transistors by applying a reactive intermediate layer which dopes the organic semiconductor layer region-selectively in the contact region
US9318596B2 (en) Ferroelectric field-effect transistor
Reo et al. Molecular Doping Enabling Mobility Boosting of 2D Sn2+‐Based Perovskites
US20030092214A1 (en) Method and configuration for reducing the electrical contact resistance in organic field-effect transistors by embedding nanoparticles to produce field boosting at the interface between the contact material and the organic semiconductor material
JP4661065B2 (en) Complementary organic semiconductor device
JPH01108780A (en) Molecular element
JPS63308384A (en) Thin film transistor
JP3030285B2 (en) Nanoscale Mott transition molecular field effect transistor
EP0298628A2 (en) Field effect transistors
WO2023285936A1 (en) Thin film semiconductor switching device
JP2611751B2 (en) Field-effect transistor
Pettenpaul et al. GaAs Hall devices produced by local ion implantation
US7649217B2 (en) Thin film field effect transistors having Schottky gate-channel junctions
WO2007064334A1 (en) Polymer-based transistor devices, methods, and systems
Oh et al. Relation Between Temperature Dependence of Gate Insulator and Magnetic Energy Effect of Thin Film Transistor Without Channel Layer
US11258023B1 (en) Resistive change elements using passivating interface gaps and methods for making same
KR100244400B1 (en) Method of forming dielectric film
JPH04225567A (en) Electric element
KR101940305B1 (en) Vertical-type, field effect transistor based on ionic dielectric