JPH01108027A - Manufacture of rolled macromolecular material sheet - Google Patents

Manufacture of rolled macromolecular material sheet

Info

Publication number
JPH01108027A
JPH01108027A JP26541387A JP26541387A JPH01108027A JP H01108027 A JPH01108027 A JP H01108027A JP 26541387 A JP26541387 A JP 26541387A JP 26541387 A JP26541387 A JP 26541387A JP H01108027 A JPH01108027 A JP H01108027A
Authority
JP
Japan
Prior art keywords
rolling
tension
rolls
cut
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26541387A
Other languages
Japanese (ja)
Inventor
Kazuo Watanabe
和夫 渡辺
Yasuhiro Higashida
康宏 東田
Yasuhiro Wada
康裕 和田
Toshio Kikuma
敏夫 菊間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26541387A priority Critical patent/JPH01108027A/en
Publication of JPH01108027A publication Critical patent/JPH01108027A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To manufacture a macromolecular sheet product by rolling, by a method wherein the rolling of an initial direction is effected by forming a recess at the end of a material to apply a tension to the material and the subsequent rolling of the other direction is effected by applying the tension through a friction force generated by a pressing jig. CONSTITUTION:The middle part of a material is advanced to a gap between a couple of rolls, having a small diameter allowable practically, thereafter, the rolls 3 are pushed down and set so as to keep a predetermined gap, then, the fore end 4 and the rear end 5 of the material are clamped by tension applying devices 6, 7 under this condition, and the rolls are rotated from this condition to effect rolling. In order to clamp surely in a short period of time, recesses 12 are formed previously at the end of the material 2 and the end of the material is clamped by the jig 13, which can be engaged with the recesses well. When the thickness (t) of the recessed part is selected properly, the material will never be cut off by the tension. Subsequently, the material is cut lengthwisely to roll it into a direction orthogonal to the initial rolling direction. The material is preferably provided with a tension when the cut material is rolled. In this case, the material is pushed through a retaining plate and a frictional force is generated.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、高分子材料の圧延による板状製品の製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION This invention relates to a method for manufacturing plate-shaped products by rolling polymeric materials.

従来の技術 現在、高分子材料製品には、多くの種類のものがあり、
それぞれの種類によって製造法は異なっている。多くの
場合、ペレット状の原料を所定の温度で溶融押出しして
、様々な形状に加工される。一部のものは、更に加工さ
れて製品になる。
Conventional technology Currently, there are many types of polymer material products.
The manufacturing method differs depending on each type. In many cases, raw materials in the form of pellets are melt-extruded at a predetermined temperature and processed into various shapes. Some of them are further processed into products.

例えば写真フィルムは、板状に押出した後、連続的に圧
延され、その後幅方向に張力が加えられ延伸せしめられ
更に薄くされ、強度の向上したフィルムとなる。しかし
ながら、この方法は、本発明の目的とする、より肉厚の
大きい板状製品の製造においては、圧延設備が過大とな
ったり、また幅方向への大きな張力が必要となることか
ら、複雑な張力装置が必要となるなどの問題がある。
For example, a photographic film is extruded into a plate shape and then rolled continuously, and then tension is applied in the width direction to stretch the film and make it thinner, resulting in a film with improved strength. However, this method is complicated in manufacturing thicker plate products, which is the objective of the present invention, because the rolling equipment becomes too large and a large tension in the width direction is required. There are problems such as the need for a tension device.

厚肉板状の、高い強度を有する高分子材料を得るには、
材料の2つの方向に圧延でもって延伸させる方法が有用
である。高分子材料を、圧延によって2軸方向に延伸さ
せる技術としては、たとえば特願昭81−123435
号で提案された方法がある。しかし、この方法において
も生産性が低い、設備が過大である等の解決されるべき
問題があった。
To obtain a thick plate-like polymer material with high strength,
A method of stretching the material by rolling in two directions is useful. As a technique for biaxially stretching a polymer material by rolling, for example, Japanese Patent Application No. 81-123435
There is a method proposed in No. However, this method also has problems that need to be solved, such as low productivity and excessive equipment.

発明が解決しようとする問題点 高分子材料を、圧延によって延伸せしめようとする場合
、鉄鋼等における圧延技術を転用することが考えられる
けれども、発明者らは多くの試みの結果、金属と高分子
の諸性質は著しく異なり。
Problems to be Solved by the Invention When trying to stretch a polymeric material by rolling, it is conceivable to apply the rolling technology used in steel, etc. However, as a result of many attempts, the inventors have found that The properties of are significantly different.

従来の鉄分野の圧延技術をそのまま転用するのでは、充
分な解決方法にはならないことを見出した。
It was discovered that simply applying the conventional rolling technology used in the iron industry as it is would not be a sufficient solution.

即ち、高分子材料特有の性質のために、生産設備の大規
模化、能率、生産性の極度の低下が生じたりするので、
高分子材料1品を効率的に製造するには、そのための独
自の圧延技術を開発する必要がある。
In other words, due to the unique properties of polymer materials, the scale of production equipment may increase, and efficiency and productivity may be extremely reduced.
In order to efficiently manufacture a single polymer material, it is necessary to develop a unique rolling technology.

高分子材料を圧延するのに、鉄鋼における圧延技術が適
用できない主たる原因としては、高分子材料の低い摩擦
係数と大きな弾性復元現象がある。すなわち1通常の条
件では材料がロールに噛込み難く、また噛込んだ後も復
元量が大きく、実質的な延伸が生じ難い点である。即ち
まだ材料厚さの大きい段階での圧延においては、多くの
パス回数を必要とし、生産性が極度に低下する。高分子
材料を噛み込み易くするには、ロール径を大きくすれば
よいが、設備が巨大となり実際的でない、また張力を付
与することも考えられるが、材料長さの小さい圧延では
、やはり適用し難い点がある。
The main reason why steel rolling technology cannot be applied to rolling polymer materials is the low friction coefficient and large elastic recovery phenomenon of polymer materials. Namely, 1. Under normal conditions, the material is difficult to get caught in the rolls, and even after getting caught, the amount of recovery is large, making it difficult to cause substantial stretching. That is, in rolling when the material is still thick, a large number of passes are required, resulting in an extremely low productivity. In order to make it easier to bite the polymer material, it is possible to increase the diameter of the roll, but this would require huge equipment and would be impractical.Additionally, it may be necessary to apply tension, but this is not suitable for rolling with small material lengths. There are some difficult points.

本発明は、従来技術における、かかる問題点を解決し、
高分子板状製品を圧延によって製造する工業的なプロセ
スを提供することを目的とする。
The present invention solves such problems in the prior art,
The purpose of the present invention is to provide an industrial process for producing polymeric plate-shaped products by rolling.

問題点を解決するための手段 本発明は、高分子材料を圧延によって、2方向に順次延
伸せしめる際に、材料の先端、後端を拘束して、張力を
付加しなからり/も−ス圧延する方法において、最初の
方向の圧延は材料端部に凹部を形成せしめて張力を付加
し、次の他の方向の圧延においては治具による押え力に
よる摩擦力で張力を付加することを、特徴とする高分子
材料圧延板の製造方法である。
Means for Solving the Problems The present invention provides a method for sequentially stretching a polymeric material in two directions by restraining the leading and trailing ends of the material so that no tension is applied. In the rolling method, in the first direction rolling, a recess is formed at the edge of the material to add tension, and in the subsequent rolling in another direction, tension is added by frictional force due to the holding force of a jig. This is a method for manufacturing a rolled plate made of a polymeric material.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

一般に圧延におけるロール対への材料の噛込角αにはg
=tanαで示される限界がある。第1図に示すように
、圧延ロール対l、1間に材料2が噛み込まれ得るため
には、ロールと材料の接触弧における噛み込み角αが、
ロールlと材料2間の摩擦係数を濤とすると、α≦ja
n”” ILでなければならない。
Generally, in rolling, the bite angle α of the material into the roll pair is g
There is a limit indicated by =tanα. As shown in FIG. 1, in order for the material 2 to be bitten between the pair of rolling rolls l, 1, the biting angle α in the contact arc between the rolls and the material must be
If the coefficient of friction between roll l and material 2 is t, then α≦ja
Must be n””IL.

従って、高分子材料の圧延におけるように、摩擦係数用
が小さいはど噛込角αは小さくなる。所定の圧下量の下
で、噛込角αを小さくして圧延するためにロール径を太
きくすることが考えられるけれども、この場合、前述し
たように設備上、経済的であるとは言えない、また押し
込み装置で強制的に材料を押し込み、噛込角αを大きく
する方法も考えられるが、これはまた別の専用装置が必
要となる。いずれも噛込状況が不安定で理論最大噛込量
は多くの場合、達成出来ない。
Therefore, as in the rolling of polymeric materials, when the friction coefficient is small, the bite angle α becomes small. It is conceivable to increase the roll diameter in order to roll with a smaller bite angle α under a predetermined rolling reduction amount, but in this case, as mentioned above, it cannot be said to be economical in terms of equipment. Another possible method is to forcibly push the material in with a pushing device to increase the bite angle α, but this requires another dedicated device. In both cases, the biting situation is unstable and the theoretical maximum biting amount cannot be achieved in many cases.

発明者らは、生産性の高い高分子材料圧延プロセスを実
現させるべく次の方法を見出した。
The inventors have discovered the following method in order to realize a highly productive polymer material rolling process.

発明者らは、多くの実験により、圧延に使用するロール
径が小さいほど、また圧下量が大きいほど弾性復元量は
小さくなり、またこのり弾性復元量は張力を加えること
によって小さくなる、という事実を見出した。
Through many experiments, the inventors found that the smaller the diameter of the rolls used for rolling and the larger the amount of reduction, the smaller the amount of elastic recovery, and the fact that the amount of elastic recovery is reduced by applying tension. I found out.

即ち、軽圧下で、多くのパス回数を繰り返しても延伸は
ほとんど生ぜず、張力を加えなからlパスで大きな圧下
を加えることが、大きな延伸を可俺とする。しかしなが
らロール径を小さくすることは、噛込を増々、困難にす
ることになる。
That is, even if a large number of passes are repeated under light rolling, hardly any stretching occurs, and applying a large rolling reduction in one pass without applying tension makes large stretching possible. However, reducing the roll diameter makes biting more and more difficult.

そこで発明者らは、圧延対象が高分子材料であることに
着目し、実際1許される小径のロールを用い、まず材料
の途中部を、開放したロール対の間まで前進させた後、
第2図に示すようにロール3を圧下して所定の間隙に設
定し、この状態で材料の先端4、後端5を張力付加装置
6.7で拘束したあと、この状態からロールを回転せし
め、圧延を行なうようにした。しかしながら、このとき
拘束方法によって、圧延の能率が大きく左右される。
Therefore, the inventors focused on the fact that the object to be rolled was a polymeric material, and using rolls with a small diameter that was actually allowed, first, the middle part of the material was advanced to between the open pair of rolls, and then,
As shown in Fig. 2, the roll 3 is rolled down to set a predetermined gap, and in this state, the front end 4 and rear end 5 of the material are restrained by the tension applying device 6.7, and then the roll is rotated from this state. , rolling was carried out. However, at this time, the rolling efficiency is greatly influenced by the restraining method.

拘束には各種の方法が考えられ、第3図に示すようにボ
ルト8でもって止め板9を介し、材料2を締結してもよ
いが、その装着に時間がかかり。
Various methods can be considered for the restraint, and as shown in FIG. 3, the material 2 may be fastened with a bolt 8 via a stop plate 9, but it takes time to attach the material 2.

生産性を重視するときには適当ではない。This is not appropriate when emphasis is placed on productivity.

確実に、且つ短時間に締結するには第4図に示すように
、材料2の端部に予め凹部12を形成し。
In order to securely and quickly fasten the material, a recess 12 is formed in advance at the end of the material 2, as shown in FIG.

これと嵌合するような治具13で締結すれば、即座に可
能となる。凹部の厚さtを適切に選択すれば、張力によ
って切断されることはない、また凹部の成形は機械加工
でもよく、またプレスによる成形でもよいし、複数個で
あってもよい。
This can be done immediately by using a jig 13 that fits this. If the thickness t of the recessed portion is appropriately selected, the recessed portion will not be cut due to tension, and the recessed portion may be formed by machining, press molding, or a plurality of recessed portions.

次に、このような方法〒もって所定の延伸が加えられた
後は、引き続き、これと例えば直角を成す方向に圧延す
るために長手方向に切断される。
After the predetermined stretching has been applied in this manner, it is subsequently cut in the longitudinal direction for rolling, for example in a direction perpendicular to this.

こめ切断された材料の圧延においても、前述の同じ理由
により、張力の付与が望ましい。
Tensioning is also desirable in rolling cut material for the same reasons discussed above.

しかしながら、先のような凹部を形成する締結法は、時
間的な余裕がない場合、肉厚が十分小さくなった条件で
は、嵌合によって、張力を持たせなくとも、第5図に示
すような構造で、例えば。
However, when there is no time to spare, the fastening method that forms a recess like the one described above can be used without tension, as shown in Figure 5, when the wall thickness is sufficiently small. In structure, for example.

油圧または機械的な圧力装置15でもって、ラム18を
可動し、止め板14を介して、材料を押えつけ、摩擦力
を発生させる。勿論、摩擦力を大きくするには、表面の
荒さを適切に選ぶ必要がある。このようにして、押え力
による摩擦力によって、十分張力に耐えることが出来る
A ram 18 is moved by a hydraulic or mechanical pressure device 15 to press down the material through the stop plate 14 and generate a frictional force. Of course, in order to increase the frictional force, it is necessary to appropriately select the roughness of the surface. In this way, the tension can be sufficiently withstood by the frictional force caused by the pressing force.

このように、厚さによって締結法を変える理由は次のよ
うに説明出来る。
The reason why the fastening method is changed depending on the thickness can be explained as follows.

摩擦力Q=押え力P×摩擦係数川 用押え圧力p×接触面@S×摩擦係数終必要な張力Tは
、そのときの板厚しに比例するから、厚みtが小さいほ
ど押えによる摩擦力は相対的に大きくなり、十分必要な
張力に到達する。
Frictional force Q = Presser force P x Friction coefficient Presser foot pressure p x Contact surface @ S x Friction coefficient The required tension T is proportional to the plate thickness at that time, so the smaller the thickness t, the greater the friction force due to the presser foot. becomes relatively large to reach the required tension.

逆に厚さの大きいときは大きな押え力で、大きな面積を
押えることが必要になるが、材料の面積は限定され、ま
た押え力も変形応力以下に押えられるため、実際上張力
付加は不可能となる。
Conversely, when the thickness is large, it is necessary to press a large area with a large pressing force, but since the area of the material is limited and the pressing force must be kept below the deformation stress, it is practically impossible to apply tension. Become.

発明者らは多くの実験の結果、高分子材料の場合、勿論
材料によっても異なるが、多くの場合、10層層以下の
場合は摩擦力で十分目的が達成可能となることを見出し
た。勿論、押え板の表面にローレットを加工すればその
適用範囲はより広くなる。
As a result of many experiments, the inventors have found that in the case of polymeric materials, although it varies depending on the material, in most cases, when the number of layers is 10 or less, frictional force is sufficient to achieve the purpose. Of course, if the surface of the presser plate is knurled, its applicability will be wider.

このようにすることによって、安定した圧延が可能で最
大の噛込角が達成出来る。
By doing so, stable rolling is possible and the maximum bite angle can be achieved.

張力の大きさはその圧延条件によっても左右されるが、
応力に換算して通常、変形抵抗の、最大30%以下であ
る。圧延の方向はどちらでもよい。
The magnitude of tension also depends on the rolling conditions, but
In terms of stress, it is usually 30% or less of the deformation resistance at most. The direction of rolling may be either.

このような方法は熱11R鋼のような場合には、材料温
度の低下、あるいはロールの破損などのために、実行し
難いが、高分子材料の場合は、材料が失熱し難いこと、
ロールも保温されていること等のために、容易に実行さ
れる。
This method is difficult to implement in cases such as thermal 11R steel because of the drop in material temperature or damage to the rolls, but in the case of polymeric materials, the material is difficult to lose heat,
It is easily carried out because the rolls are also kept warm.

なお、本発明の方法は最初の1パスだけでなく、引き続
くパスにおいて適用してもよい。
Note that the method of the present invention may be applied not only to the first pass but also to subsequent passes.

実施例 板厚:20■、板幅: 1000禦腸のポリエチレン材
料は、ロール径:200層層のロールでは圧下量5■膳
は+tB込不可俺であった。しかし末法を適用すること
によって、即ち、端部に深さ5腸層の凹部を形成して、
張力付加装置で拘束し、5■lの圧下の圧延が可能とな
り、5パスで10履層まで圧延した。ついで、これを長
さ1000m層に切断して次の圧延を行なうに際し、前
の幅に位置する場所を摩擦力で締結して5m麹まで3パ
スで圧延可俺となった。
In the example, a polyethylene material having a plate thickness of 20 mm and a plate width of 1000 mm had a roll diameter of 200 layers and a rolling reduction of 5 mm, including +tB. However, by applying the terminal method, i.e. by forming a recess with a depth of 5 intestinal layers at the end,
It was restrained with a tensioning device and rolled with a reduction of 5 liters, and it was rolled to 10 layers in 5 passes. Next, when cutting this into 1000 m long layers and performing the next rolling, the parts located at the previous width were fastened by frictional force, and it was possible to roll to 5 m koji in 3 passes.

発明の効果 本発明によれば、ポリプロピレン、ポリエチレン、ナイ
ロン等の高分子材料を小さなロール径の圧延機で安定し
て、効率良く圧延することができる。
Effects of the Invention According to the present invention, polymeric materials such as polypropylene, polyethylene, nylon, etc. can be stably and efficiently rolled using a rolling mill with a small roll diameter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、噛込角の説明図、第2図は、本発明の手順の
模式図、第3図は、ボルトによる締結法の断面図、第4
〜5図は本発明の締結法を示す断面図である。 lΦ・φロール、2##身材料、3#−・ロール、4.
5・・・材料の両端、6.7・・・張力付加装置、8・
・・ボルト、9・・・押え板、 12・・−凹部、!3
11Φ・押え工具、14φ・・押え板、15−・・押え
力発生装置、IB・・・ラム。
Fig. 1 is an explanatory diagram of the engagement angle, Fig. 2 is a schematic diagram of the procedure of the present invention, Fig. 3 is a sectional view of the fastening method using bolts, and Fig. 4 is a schematic diagram of the procedure of the present invention.
5 are cross-sectional views showing the fastening method of the present invention. lΦ・φ roll, 2## body material, 3#-・roll, 4.
5...Both ends of the material, 6.7...Tension applying device, 8.
... Bolt, 9... Holding plate, 12... - recess,! 3
11Φ・Press tool, 14φ・Press plate, 15-・Press force generator, IB...Ram.

Claims (1)

【特許請求の範囲】[Claims]  高分子材料を圧延によって、2方向に順次延伸せしめ
る際に、材料の先端、後端を拘束して、張力を付加しな
がらリバース圧延する方法において、最初の方向の圧延
は材料端部に凹部を形成せしめて張力を付加し、次の他
の方向の圧延においては治具による押え力による摩擦力
で張力を付加することを、特徴とする高分子材料圧延板
の製造方法。
When a polymeric material is sequentially stretched in two directions by rolling, the leading and trailing ends of the material are restrained and tension is applied while reverse rolling is performed. 1. A method for producing a rolled sheet of a polymeric material, comprising: forming the rolled sheet, applying tension, and applying tension during subsequent rolling in another direction using frictional force caused by a holding force by a jig.
JP26541387A 1987-10-22 1987-10-22 Manufacture of rolled macromolecular material sheet Pending JPH01108027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26541387A JPH01108027A (en) 1987-10-22 1987-10-22 Manufacture of rolled macromolecular material sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26541387A JPH01108027A (en) 1987-10-22 1987-10-22 Manufacture of rolled macromolecular material sheet

Publications (1)

Publication Number Publication Date
JPH01108027A true JPH01108027A (en) 1989-04-25

Family

ID=17416817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26541387A Pending JPH01108027A (en) 1987-10-22 1987-10-22 Manufacture of rolled macromolecular material sheet

Country Status (1)

Country Link
JP (1) JPH01108027A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695698A (en) * 1996-01-30 1997-12-09 Ajji; Abdellah Production of oriented plastics by roll-drawing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695698A (en) * 1996-01-30 1997-12-09 Ajji; Abdellah Production of oriented plastics by roll-drawing

Similar Documents

Publication Publication Date Title
JPS59131434A (en) Method of forming orientation strand by stretching plastic substance with hole or mesh hole
US3917787A (en) Method of making a slide-fastener coupling element
JPH01108027A (en) Manufacture of rolled macromolecular material sheet
US2957205A (en) Process of forming screw threads on a cold rod of rigid thermoplastic material
JPH01108021A (en) Manufacture of rolled macromolecular material sheet
DE102005012802B4 (en) Method and device for producing stretched plastic strips
JP2004050231A (en) Manufacturing method for sheet made of magnesium or magnesium alloy
JPH03133620A (en) Rolling method for high-molecular material
US3253448A (en) Gripping jaws for gripping sheet metal
JPH01108022A (en) Manufacture of rolled macromolecular material sheet
JPH01108023A (en) Manufacture of rolled macromolecular material sheet
JPH01108029A (en) Manufacture of high molecular weight platelike product
JP2688016B2 (en) Coining processing method
JP4047450B2 (en) Method for producing polymer film having craze
JP2531573B2 (en) Metal wire rod, manufacturing method thereof, and manufacturing apparatus
JP2700418B2 (en) Endless belt and its manufacturing method
JPS6347555B2 (en)
JPS6150064B2 (en)
JPS60248818A (en) Manufacture of h-beam having thin web
JPH02270533A (en) Manufacture of rolled polymeric material sheet
JPH01190430A (en) Manufacture of high molecular material rolling plate
JPS5950920A (en) Bead forming method
JPH06126365A (en) Flat die for bevel lead rolling
JPH0250820A (en) Drawing method for high polymer
JPH0386331A (en) Method for joining difference kinds of metallic material