JPH01107832A - Control device for denitration agent injection - Google Patents

Control device for denitration agent injection

Info

Publication number
JPH01107832A
JPH01107832A JP62263926A JP26392687A JPH01107832A JP H01107832 A JPH01107832 A JP H01107832A JP 62263926 A JP62263926 A JP 62263926A JP 26392687 A JP26392687 A JP 26392687A JP H01107832 A JPH01107832 A JP H01107832A
Authority
JP
Japan
Prior art keywords
signal
flow rate
load
denitrification
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62263926A
Other languages
Japanese (ja)
Inventor
Toru Ogasawara
徹 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP62263926A priority Critical patent/JPH01107832A/en
Publication of JPH01107832A publication Critical patent/JPH01107832A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To properly control a precedent injection amount of denitration agent (NH3) without delay against changing operation rate of a combustion equipment, by combinably utilizing signals of operation program of the equipment, changing rate of air supply and fuel to it, and temp. of exhaust gas from it. CONSTITUTION:An inlet NOX signal 30 is calculated in an arithmetic unit 9 based on each signal 24, 21 detected by an inlet NOX concn. detector 4 and an air flow rate detector 3, and outputted to a multiplier 13. And, a set outlet NOX concn. signal 25 is changed into a mol ratio signal 28 through an arithmetic unit 10, and the deflection from the set outlet NOX concn. signal 25 is obtained from the signal 26 sent from an outlet concn. detector 6 to make it an outlet compensation mol ratio signal 27 and moreover a compensation mol ratio signal 29 is obtained at the multiplier 13. On the other hand, an precedent injection NH3 flow rate signal 34 is obtained from a load demand operation program signal 20 to output to an arithmetic unit 14, and at the same time a gas quantity compensation signal 33 is obtained from an air flow rate variation signal 21 (a fuel flow rate will also do) and a temp. signal 19. When the load is not changed, a switch 38 turns to change a signal 34 to a signal 33.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は脱硝剤の注入制御装置に係り、特にアンモニア
を用いる接触還元脱硝装置に於けるアンモニアの適正な
注入を行う装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a denitrification agent injection control device, and more particularly to a device for properly injecting ammonia in a catalytic reduction denitrification device using ammonia.

〔従来の技術〕[Conventional technology]

排煙脱硝法の一つあるアンモニアの接触還元法は、この
方法を実施する装置の構造、装置の性能、設備及び運転
経費等の多くの点に於いて長所を有しており、火力発電
所のボイラプラントにおいても多数利用されている。
The ammonia catalytic reduction method, which is one of the flue gas denitrification methods, has many advantages in terms of the structure of the equipment that implements this method, the performance of the equipment, equipment and operating costs, and it is suitable for thermal power plants. It is also used in many boiler plants.

従来、火力発電所は発電のベースロードとして出力10
0%の安定した運転を行っていたが、原子力発電が増加
するようになると、負荷変動運転を行い難い原子力発電
をベースロードとするようになるため、火力発電は中間
負荷運用を余儀無くされ、電力需要の変化する昼間と夜
間に対応して毎日負荷変動運転を行ったり(DSS)、
平日と、需要の低下する週末や休日とで負荷を変動する
よう週単位で負荷変動運転を行う(WSS)ことが多く
なっている。このような負荷変動運転を行うボイラは非
常に短時間のうちに大きな負荷変化を行うように制御さ
れているため、この負荷変化に伴って急激に変化する脱
硝装置の入口ガス条件、即ちガス温度、ガス中に含有す
る窒素酸化物濃度等に直ちに対応できる脱硝装置が必要
となっている。
Traditionally, thermal power plants have an output of 10% as the base load for power generation.
However, as nuclear power generation increases, nuclear power generation, which is difficult to operate with load fluctuations, becomes the base load, and thermal power generation is forced to operate under intermediate load. We perform daily load fluctuation operation (DSS) in response to changing power demand during the day and night.
Weekly load variable operation (WSS) is increasingly being performed to vary the load between weekdays and weekends and holidays when demand is low. Boilers that perform such variable load operation are controlled to make large load changes in a very short period of time, so the inlet gas conditions of the denitrification equipment, that is, the gas temperature, change rapidly with these load changes. There is a need for a denitrification device that can immediately respond to the concentration of nitrogen oxides contained in the gas.

第3図はアンモニア(NH3)注入量と、脱硝装置の出
口に於ける窒素酸化物(NOx)濃度との関係を示すが
、この図からも明らかなとおり、アンモニア注入の反応
が安定するまでに士数分から1時間程度の時間が掛かり
、急激な負荷変動を行うボイラに対する追従性が非常に
悪い。この為従来からこの低い負荷追従性を補うための
制御が実施されている。
Figure 3 shows the relationship between the amount of ammonia (NH3) injected and the concentration of nitrogen oxides (NOx) at the outlet of the denitration equipment. It takes several minutes to an hour, and the ability to follow boilers that undergo sudden load changes is very poor. For this reason, control has conventionally been implemented to compensate for this low load followability.

第4図において、単にボイラ負荷に対応して脱硝装置の
制御を行うと、その低い負荷追従性のために符号Aで示
すように脱硝装置入口の窒素酸化物濃度が一時的に規制
値を越える事態が生じた。
In Figure 4, if the denitrification equipment is simply controlled in response to the boiler load, the nitrogen oxide concentration at the inlet of the denitrification equipment will temporarily exceed the regulation value, as shown by symbol A, due to its low load followability. A situation arose.

このため、従来から下記(1)式に基づいて、決定され
る必要アンモニア量に対し、負荷上昇時には過剰なアン
モニアB1を注入し、また負荷減少時には過少なアンモ
ニアB2を注入して先行制御することにより出口窒素酸
化物濃度の上昇や付加減少時の余剰アンモニアの発生を
防止し、これにより脱硝装置の負荷追随性の低さを補う
ように制御している。
For this reason, conventionally, advance control has been carried out by injecting excess ammonia B1 when the load increases and injecting too little ammonia B2 when the load decreases with respect to the required amount of ammonia determined based on the following formula (1). This prevents an increase in the outlet nitrogen oxide concentration and the generation of surplus ammonia when the addition decreases, thereby compensating for the poor load followability of the denitrification equipment.

AQ=GQXDNXM・−・ (1) ここで、AQはアンモニアの必要注入量、GQは処理排
ガス量、DNは脱硝装置入口窒素酸化物濃度、Mはモル
比を各々示す。
AQ = GQ

第2図はこの制御を具体的に示し、ボイラの負荷デマン
ド2による負荷デマンド信号20、微分器16、関数発
生器17.18から成る先行制御回路50から出力され
た先行制御信号、つまり一次微分先行注入信号36及び
、二次微分先行制御信号35として加算器14に出力さ
れ、アンモニア注入信号32として注入量制御弁(図示
せず)等の制御端に出力される。このアンモニア注入の
過剰若しくは過少量を先行注入する制御に加えて、予め
設定した脱硝装置出口窒素酸化物濃度(希望濃度)と、
実測した出口窒素酸化物濃度との偏差によりアンモニア
注入量を調節するフィードバック制御が併用されている
FIG. 2 specifically shows this control, and shows the advance control signal outputted from the advance control circuit 50 consisting of the load demand signal 20 based on the boiler load demand 2, the differentiator 16, and the function generators 17 and 18, that is, the first-order differential The signal is output to the adder 14 as an advance injection signal 36 and a quadratic differential advance control signal 35, and is output as an ammonia injection signal 32 to a control terminal such as an injection amount control valve (not shown). In addition to this control to pre-inject excessive or insufficient ammonia, the nitrogen oxide concentration (desired concentration) at the outlet of the denitrification equipment set in advance,
Feedback control is also used to adjust the ammonia injection amount based on the deviation from the actually measured outlet nitrogen oxide concentration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のように従来の技術においても、脱硝装置の負荷追
従性の低さを補うための手段が考えられ且つ実施されて
いるが、充分なものではない。
As described above, in the prior art, measures have been devised and implemented to compensate for the poor load followability of the denitrification equipment, but these are not sufficient.

即ち、ボイラの燃料流量やこれに対応する空気流量は脱
硝装置で処理すべき排ガス量を間接的に意味するが、第
5図に示すようにこれら燃料流量や空気流量はボイラ炉
内温度調節のため変化するものであり、負荷デマンドと
は直接関係はない。
In other words, the fuel flow rate and the corresponding air flow rate of the boiler indirectly mean the amount of exhaust gas to be treated by the denitration equipment, but as shown in Figure 5, these fuel flow rates and air flow rates are dependent on the temperature control inside the boiler furnace. Therefore, it changes and has no direct relationship with load demand.

この場合空気流量や燃料流量はオーバーシュートO8や
アンダーシュー1−USするが、従来の装置における先
行注入制御方式のようにボイラ負荷デマンドのみでアン
モニア先行注入制御を行うのみではこのようなオーバー
シュートやアンダーシュートに対しては対応することが
できず、出口窒素酸化物濃度の制御が不可能な領域UA
IやUA2を生じる。このため−時的な窒素酸化物濃度
の増加を完全に防止することはできていない。
In this case, the air flow rate and fuel flow rate will have an overshoot O8 or an undershoe 1-US, but if the ammonia advance injection control is performed only based on the boiler load demand, as in the advance injection control method in conventional equipment, such overshoots and Area UA where it is impossible to deal with undershoot and control the outlet nitrogen oxide concentration
Generates I and UA2. For this reason, it is not possible to completely prevent the temporal increase in nitrogen oxide concentration.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述の問題点に鑑み構成したものであり、脱硝
装置上流に注入するアンモニア等の脱硝剤注入制御にお
ける先行制御の要素をうる手段として、燃焼装置に供給
する空気流量の変化速度及び/または燃料流量を測定す
る手段と、脱硝装置出口の排ガス温度を測定する手段を
付加し、これらの手段から出力される空気流量、燃料流
量、排ガス温度の信号を燃焼装置の付加デマンド信号に
代えてまたはこれと併用することより正しい排ガスの状
態を把握し、この排ガスの状態に対応して脱硝剤の注入
量を制御するように構成した装置である。
The present invention has been constructed in view of the above-mentioned problems, and is a means for obtaining advance control elements in the injection control of denitrification agent such as ammonia to be injected upstream of the denitrification device, and is designed to improve the rate of change of the air flow rate and/or Alternatively, a means for measuring the fuel flow rate and a means for measuring the exhaust gas temperature at the outlet of the denitrification device are added, and the signals of the air flow rate, fuel flow rate, and exhaust gas temperature output from these means are replaced with the additional demand signal of the combustion device. Alternatively, it is a device configured to grasp the correct state of the exhaust gas by using it in conjunction with this, and to control the injection amount of the denitrification agent in accordance with the state of the exhaust gas.

〔作用〕[Effect]

排ガス条件の変化が燃焼装置の負荷変化で予測できる場
合には負荷デマンド信号による先行注入制御を行い、こ
の排ガス条件の変化が負荷デマンド信号では予測できな
い場合には燃焼装置に対する空気流量及び/または燃料
流量と排ガス温度信号による先行制御に切り換える。
If changes in exhaust gas conditions can be predicted by changes in the load of the combustion equipment, advance injection control is performed using the load demand signal, and if changes in exhaust gas conditions cannot be predicted by the load demand signal, the air flow rate and/or fuel injection for the combustion equipment is controlled. Switch to advance control using flow rate and exhaust gas temperature signals.

〔実施例〕〔Example〕

以下本発明の実施例を図面を参考に具体的に説明する。 Embodiments of the present invention will be specifically described below with reference to the drawings.

先ず本発明の構成の概略を説明する。First, an outline of the configuration of the present invention will be explained.

脱硝装置における脱硝反応の反応率、つまり脱硝率は、
脱硝の対象となる処理ガス量、反応温度、触媒に吸着し
ているアンモニア量及び脱硝装置に充填した脱硝触媒量
との関連に於いて、次に示す(2)および(3)式によ
り求めることができる。
The reaction rate of the denitrification reaction in the denitrification equipment, that is, the denitrification rate, is
In relation to the amount of gas to be denitrified, the reaction temperature, the amount of ammonia adsorbed on the catalyst, and the amount of denitrification catalyst filled in the denitrification equipment, it can be calculated using the following equations (2) and (3). Can be done.

I r (1−X)−’ =KrXQX −・・・ (
2)Kr=f(T)  ・・・ (3) ここで、Xは脱硝率、Fは処理ガス量、Tは反応温度、
Qは触媒に吸着しているアンモニア量、Irは反応速度
定数、Krは温度Tの関数、Sは触媒面積を各々示す。
I r (1-X)-' = KrXQX -... (
2) Kr=f(T) ... (3) Here, X is the denitrification rate, F is the amount of treated gas, T is the reaction temperature,
Q represents the amount of ammonia adsorbed on the catalyst, Ir represents the reaction rate constant, Kr represents the function of temperature T, and S represents the catalyst area.

本発明は(1)〜(3)式に表されるように、脱硝装置
の性能に最も影響を及ぼす排ガス量と温度の変化を、燃
料流量若しくは空気流量の変化、及び触媒層温度に近い
温度を示している脱硝装置出口排ガス温度の信号を用い
検知し、ボイラの実際の変化を正確に把握することによ
り適正なアンモニア注入を行うものである。
As expressed in equations (1) to (3), the present invention is capable of controlling changes in exhaust gas amount and temperature that have the greatest effect on the performance of the denitrification equipment by using changes in fuel flow rate or air flow rate, and a temperature close to the catalyst layer temperature. This system detects the temperature of the exhaust gas at the outlet of the denitrification equipment and accurately ascertains the actual change in the boiler, thereby injecting ammonia appropriately.

第1図において、脱硝装置入口に於ける窒素酸化物濃度
を窒素酸化物濃度検出器4で検出して窒素酸化物濃度信
号24として出力する。一方、空気流量検知器3に於い
て検出された空気流量信号21は関数変換器8において
排ガス量信号23に変換され、この排ガス量信号23と
前記の入口窒素酸化物濃度信号24は乗算器9において
乗算され、脱硝装置入口窒素酸化物信号30として別の
乗算器13に出力される。
In FIG. 1, the nitrogen oxide concentration at the inlet of the denitrification device is detected by a nitrogen oxide concentration detector 4 and output as a nitrogen oxide concentration signal 24. On the other hand, the air flow rate signal 21 detected by the air flow rate detector 3 is converted into an exhaust gas amount signal 23 by a function converter 8, and this exhaust gas amount signal 23 and the above-mentioned inlet nitrogen oxide concentration signal 24 are combined by a multiplier 9. The signal is multiplied at , and outputted to another multiplier 13 as the denitrification device inlet nitrogen oxide signal 30 .

入口窒素酸化物濃度信号24と、出口窒素酸化物設定器
5において設定された設定出口窒素酸化物濃度信号25
とは演算器10に出力され、この演算器10からモル比
信号28が出力される。更に入口窒素酸化物濃度信号2
4、設定出口窒素酸化物濃度信号25、及び出口窒素酸
化物検出器6により検出された検出窒素酸化物濃度信号
26を用いることにより演算器11において設定出口窒
素酸化物濃度と、実測された出口窒素酸化物濃度との偏
差を求め、この偏差を出口補正モル比信号27とする。
An inlet nitrogen oxide concentration signal 24 and a set outlet nitrogen oxide concentration signal 25 set in the outlet nitrogen oxide setting device 5
is output to the arithmetic unit 10, and the molar ratio signal 28 is output from the arithmetic unit 10. Furthermore, the inlet nitrogen oxide concentration signal 2
4. Using the set outlet nitrogen oxide concentration signal 25 and the detected nitrogen oxide concentration signal 26 detected by the outlet nitrogen oxide detector 6, the arithmetic unit 11 calculates the set outlet nitrogen oxide concentration and the actually measured outlet nitrogen oxide concentration. The deviation from the nitrogen oxide concentration is determined, and this deviation is used as the exit correction molar ratio signal 27.

前記モル比信号28と出口補正モル比信号27により加
算器12において補正モル比信号29を得、前記入口窒
素酸化物濃度信号30とこの補正モル比信号29とによ
り乗算器13において必要注入アンモニア量信号31を
得る。
A corrected molar ratio signal 29 is obtained in the adder 12 using the molar ratio signal 28 and the exit corrected molar ratio signal 27, and a necessary amount of injected ammonia is calculated in the multiplier 13 using the inlet nitrogen oxide concentration signal 30 and this corrected molar ratio signal 29. Obtain signal 31.

一方燃焼装置に負荷変化が生じた場合、負荷デマンド信
号20により微分器16を介して負荷変化速度を得、更
にこの負荷変化速度と前記負荷デマンド信号20とによ
り関数発生器37において先行注入アンモニア流量信号
34を得る。この先行注入アンモニア流量信号34と必
要注入アンモニア量信号31とを加算器14に出力し、
これにより注入アンモニア流量信号32を得る。
On the other hand, when a load change occurs in the combustion device, the load change rate is obtained from the load demand signal 20 via the differentiator 16, and the pre-injected ammonia flow rate is determined in the function generator 37 based on this load change rate and the load demand signal 20. A signal 34 is obtained. This advance injection ammonia flow rate signal 34 and the required injection ammonia amount signal 31 are output to the adder 14,
This provides the injected ammonia flow rate signal 32.

また前記空気流量信号21を微分器7において微分する
ことにより得た空気流量変化信号22と前記脱硝装置出
口温度検出器1により得た温度信号19とを関数演算器
15において演算することによりガス量補正先行注入信
号33を得るが、負荷変化が無い場合には、切り換え器
38によって前記負荷変化先行注入信号34をこのガス
量補正先行注入信号33に切り換え、加算器14に出力
する。
In addition, the air flow rate change signal 22 obtained by differentiating the air flow rate signal 21 in the differentiator 7 and the temperature signal 19 obtained by the denitration equipment outlet temperature detector 1 are calculated in the function calculator 15 to determine the gas amount. A corrected advance injection signal 33 is obtained, but if there is no load change, the load change advance injection signal 34 is switched to this gas amount corrected advance injection signal 33 by a switch 38 and output to the adder 14.

このように燃焼装置であるボイラの変化の状態に対応し
てアンモニア注入を制御する要素を変化させるので、ア
ンモニア注入を常にボイラの運転状態に対応させること
ができ、常時高い精度で注入量の制御を行うことができ
る。
In this way, the elements that control ammonia injection are changed in response to the changing conditions of the boiler, which is a combustion device, so ammonia injection can always be made to correspond to the operating conditions of the boiler, and the amount of injection can be controlled with high precision at all times. It can be performed.

以上説明した装置では、燃焼装置の変化状態を検出する
検出器の一つを空気流量検出器3とし、燃焼装置に供給
される空気量から燃焼装置の負荷状態を測定するように
構成しであるが、この空気流量検出器3に代えて、若し
くはこれに加えて燃焼装置に対する燃料流量を検出する
検出器を配置し、燃料流量を用いて燃焼装置の運転状態
を把握するように構成することも固より可能である。
In the device described above, one of the detectors for detecting the changing state of the combustion device is the air flow rate detector 3, and the load state of the combustion device is measured from the amount of air supplied to the combustion device. However, instead of or in addition to this air flow rate detector 3, a detector for detecting the fuel flow rate to the combustion device may be arranged, and the fuel flow rate may be used to determine the operating state of the combustion device. It is definitely possible.

〔効果〕〔effect〕

本発明は以上にその構成を具体的に示したように、脱硝
装置上流に注入するアンモニア等の脱硝剤注入における
先行制御の要素を得る手段として、燃焼装置に供給する
空気流量の変化速度及び/または燃料流量を測定する手
段と、脱硝装置出口の排ガス温度を測定する手段を付加
し、これらの手段から出力される空気流量、燃料流量、
排ガス温度信号を燃焼装置の付加デマンド信号に代えて
またはこれと併用することより正しい排ガス状態を把握
できるので、燃焼装置の運転状況に対応して、常時過不
足なく脱硝剤を注入することができる。
As the configuration of the present invention has been specifically shown above, the present invention is used as a means for obtaining advance control elements in the injection of a denitrification agent such as ammonia to be injected upstream of the denitrification device, and is used to control the rate of change of the air flow rate supplied to the combustion device and/or Alternatively, a means for measuring the fuel flow rate and a means for measuring the exhaust gas temperature at the outlet of the denitrification device are added, and the air flow rate, fuel flow rate,
By using the exhaust gas temperature signal instead of or in combination with the additional demand signal of the combustion equipment, it is possible to grasp the correct exhaust gas condition, so it is possible to always inject the correct amount of denitrification agent in accordance with the operating status of the combustion equipment. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す脱硝剤注入制御装置の系
統図、第2図は従来型脱硝剤注入制御装置の系統図、第
3図はアンモニア注入量と脱硝装置出口窒素酸化物濃度
との関係を示す線図、第4図は従来型制御装置に於ける
燃焼装置の負荷変動に対するアンモニア注入状態を示す
線図、第5図は燃焼装置の負荷変化と空気量、燃料量の
オーバーシュート、アンダーシュートの状態等を示す線
図である。 1・・・脱硝装置温度検出器  2・・・負荷デマンド
  3・・・空気流量検出器 4・・・入口窒素酸化物濃度検出器 5・・・出口窒素酸化物濃度設定器 6・・・出口窒素酸化物濃度検出器 7・・・微分器  8・・・関数発生器19・・・温度
信号  20・・・負荷デマンド信号  21・・・空
気流量信号  22・・・空気流量変化信号  23・
・・排ガス流量信号24・・・入口窒素酸化物濃度信号 25・・・設定出口窒素酸化物濃度信号26・・・出口
窒素酸化物濃度信号 30・・・入口窒素酸化物濃度信号 31・・・必要注入アンモニア量信号 32・・・注入アンモニア量信号 38・・・切り換え器 第1図 第2図 第3図 第4図 時間 第5図
Fig. 1 is a system diagram of a denitrification agent injection control device showing an embodiment of the present invention, Fig. 2 is a system diagram of a conventional denitrification agent injection control device, and Fig. 3 is a diagram showing ammonia injection amount and nitrogen oxide concentration at the denitrification device outlet. Figure 4 is a diagram showing the ammonia injection status with respect to combustion equipment load fluctuations in a conventional control device, and Figure 5 is a diagram showing the relationship between combustion equipment load changes and air and fuel quantity overflows. FIG. 3 is a diagram showing the states of shoots, undershoots, and the like. 1...Denitration equipment temperature detector 2...Load demand 3...Air flow rate detector 4...Inlet nitrogen oxide concentration detector 5...Outlet nitrogen oxide concentration setting device 6...Outlet Nitrogen oxide concentration detector 7... Differentiator 8... Function generator 19... Temperature signal 20... Load demand signal 21... Air flow rate signal 22... Air flow rate change signal 23.
...Exhaust gas flow rate signal 24...Inlet nitrogen oxide concentration signal 25...Setting outlet nitrogen oxide concentration signal 26...Outlet nitrogen oxide concentration signal 30...Inlet nitrogen oxide concentration signal 31... Required injection ammonia amount signal 32...Injection ammonia amount signal 38...Switcher Fig. 1 Fig. 2 Fig. 3 Fig. 4 Time Fig. 5

Claims (2)

【特許請求の範囲】[Claims] (1)燃焼装置の負荷デマンド、燃焼装置に供給する空
気量及び脱硝装置出口窒素酸化物制定量等から燃焼装置
の負荷変動に先行して脱硝剤の注入量を制御する装置に
おいて、先行制御の要素として燃焼装置に供給する空気
流量の変化速度及び/または燃料流量を測定する手段か
ら出力される信号と、脱硝装置出口の排ガス温度を測定
する手段から出力される信号を付加し、これらの手段か
ら出力される空気流量信号、燃料流量信号及び排ガス温
度信号のうち少なくとも一つと前記負荷デマンド信号と
を相互に切り換え可能な手段を脱硝剤注入量を演算する
手段に接続し、燃焼装置の運転状況に対応して、制御要
素を燃焼装置の負荷デマンド信号とし、またはこの負荷
デマンド信号に代えて排ガス温度信号、空気流量信号及
び燃料流量信号のうち少なくとも一つとするようにした
ことを特徴とする脱硝剤注入制御装置。
(1) In a device that controls the amount of denitrification agent injected in advance of changes in the load of the combustion equipment based on the load demand of the combustion equipment, the amount of air supplied to the combustion equipment, the established amount of nitrogen oxides at the outlet of the denitrification equipment, etc. A signal output from a means for measuring the rate of change of the air flow rate and/or a fuel flow rate supplied to the combustion device as an element, and a signal output from a means for measuring the exhaust gas temperature at the outlet of the denitrification device are added, and these means are added. Means capable of switching between at least one of an air flow rate signal, a fuel flow rate signal, and an exhaust gas temperature signal outputted from the load demand signal and the load demand signal is connected to a means for calculating the amount of denitrification agent to be injected, and the operation status of the combustion device is In response to this, the control element is a load demand signal of the combustion device, or in place of the load demand signal, at least one of an exhaust gas temperature signal, an air flow rate signal, and a fuel flow rate signal is used. Drug injection control device.
(2)前記脱硝剤をアンモニアとしたことを特徴とする
特許請求の範囲第(1)項記載の脱硝剤注入制御装置。
(2) The denitrification agent injection control device according to claim (1), wherein the denitrification agent is ammonia.
JP62263926A 1987-10-21 1987-10-21 Control device for denitration agent injection Pending JPH01107832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62263926A JPH01107832A (en) 1987-10-21 1987-10-21 Control device for denitration agent injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263926A JPH01107832A (en) 1987-10-21 1987-10-21 Control device for denitration agent injection

Publications (1)

Publication Number Publication Date
JPH01107832A true JPH01107832A (en) 1989-04-25

Family

ID=17396182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263926A Pending JPH01107832A (en) 1987-10-21 1987-10-21 Control device for denitration agent injection

Country Status (1)

Country Link
JP (1) JPH01107832A (en)

Similar Documents

Publication Publication Date Title
US4259837A (en) Water and steam injection system for emission control of gas turbines
JP2554836B2 (en) Denitration control device
CN102654776B (en) Smoke denitration ammonia injection amount control method and device
US20130098462A1 (en) Model-based controls for selective catalyst reduction systems
US8584444B2 (en) Model-based controls for selective catalyst reduction system
EP0263183B1 (en) NH3-Injection controller
CN104793652A (en) Load dispatch curve based ammonia injection quantity adjustment method and system
EP1334760B1 (en) Feedback control method in v-shaped characteristic system, and NH3 injection rate control method for NOx removal apparatus using the same
JP6761368B2 (en) Denitration control device and denitration control method
JPH10116105A (en) Generalized predictive control system and denitration controller
JPH01107832A (en) Control device for denitration agent injection
JPH0263524A (en) Method for controlling amount of nh3 to be injected into exhaust gas denitrification device
JP2635643B2 (en) Denitration control device for gas turbine plant
JP3410555B2 (en) Ammonia injection amount control device for denitration equipment
JPH08168639A (en) Method and device for controlling injection amount of ammonia into denitrification device with denitration catalyst
JPH11333251A (en) Method and device for regulating amount of ammonia to be injected of denitration apparatus
JP2633599B2 (en) Ammonia injection amount control method
JPS6312650B2 (en)
JPS62276322A (en) Nitrogen oxide reducing device
JP2002028449A (en) Method for controlling ammonia injection into catalytic denitrification equipment
JP4352453B2 (en) Cogeneration system
JPS58174142A (en) Feedback controller of air fuel ratio in internal-combustion engine
JPH1119469A (en) Ammonia injection controller for denitrifying reactor
JPH04150921A (en) Denitrification device
JPH06343826A (en) Denitrification controller