JPH01107677A - Ultrasonic wave pulse motor - Google Patents

Ultrasonic wave pulse motor

Info

Publication number
JPH01107677A
JPH01107677A JP62263512A JP26351287A JPH01107677A JP H01107677 A JPH01107677 A JP H01107677A JP 62263512 A JP62263512 A JP 62263512A JP 26351287 A JP26351287 A JP 26351287A JP H01107677 A JPH01107677 A JP H01107677A
Authority
JP
Japan
Prior art keywords
vibrating body
power source
cycle
fixed
electrostrictive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62263512A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP62263512A priority Critical patent/JPH01107677A/en
Publication of JPH01107677A publication Critical patent/JPH01107677A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To heighten torque at a low speed, by setting an oscillator with electrostriction material and the like fitted firmly on the one side surface, and by setting a plate-formed mover in contact with said one side surface. CONSTITUTION:So far as a ring-formed oscillator 1 is concerned, in order to generate the progressive wave of ultrasonic wave oscillation, on the bottom surface, the sheet 2 of electrostriction material or magnetostriction material is fixed in contact with each other. Besides, the metallic disc 3 of a mover pressure-welded on the upper surface of the oscillator 1, an encoder 4 for detecting rotation, and a detection head 5 are arranged. Then, to said electrostriction material or magnetostriction material, according to command signal, the ultrasonic wave signal of half a cycle (one cycle) for output generated from a high-frequency power source having a phase difference or a multi-phase AC power source is applied from a driving electric circuit. As a result, by the ultrasonic wave progressive-wave generated on the oscillator 1, the mover 3 is frictionally driven.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超音波パルスモータに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an ultrasonic pulse motor.

〔従来技術及び問題点〕[Prior art and problems]

従来のパルスモータはステータの励磁制御をパルス制御
し、これによって回転するロータの回転をネジ軸に5え
、リニアなステップ運動に変換して、工作機械のテーブ
ル制御a vに利用している。
Conventional pulse motors control the excitation of the stator in pulses, thereby applying the rotation of the rotating rotor to a screw shaft, converting it into a linear step motion, and using it for table control AV of a machine tool.

しかしながら、この従来のモータには回転を直線運動に
変換するネジ軸等の変換機構が必要で、駆動装置が大型
になり、付属する運動変換部でがた等により送り誤差を
生じる欠点があった。又従来のモータは低速で高トルク
が17られず、応谷性も低かった。
However, this conventional motor requires a conversion mechanism such as a screw shaft to convert rotation into linear motion, resulting in a large drive device and the disadvantage of causing feed errors due to play in the attached motion conversion section. . In addition, conventional motors were unable to produce high torque at low speeds and had low response characteristics.

〔問題点の解決手段〕[Means for solving problems]

本発明はこのような欠点を除去するために発明されたも
ので、片面に電歪材若しくは磁歪材を固着した円板若し
くはリング状の振動体を設け、該振動体の片面に板状の
移動体を接触して設け、前記電歪材若しくは磁歪材に指
令信号にしたがって位相差を右する高周波電源若しくは
多相交流電源の出力する半サイクル若しくは1サイクル
の超音波信号を加える駆動゛上気回路を設けて成ること
を特徴とするものである。
The present invention was invented to eliminate such drawbacks, and includes a disk or ring-shaped vibrating body having an electrostrictive material or magnetostrictive material fixed to one side, and a plate-shaped movable body on one side of the vibrating body. A drive circuit that is provided in contact with the body and applies a half-cycle or one-cycle ultrasonic signal output from a high-frequency power source or a multiphase AC power source that adjusts the phase difference to the electrostrictive material or magnetostrictive material according to a command signal. It is characterized by the following.

(実施例〕 以下図面の一実施例により本発明を説明する。(Example〕 The present invention will be explained below with reference to an embodiment of the drawings.

第1図に於て、1は円環形の振動体で、超音波振動の進
行波を発生するために底面に電歪材若しくは磁歪材の薄
板2を接触固定して設ける。3は振動体1の上面に圧接
した移動体の金属、プラスナック、又は金属とプラスチ
ックの複合材より成る円板、円環板等であり、4はこの
移動体円板の回転を検出するエンコーダで、移動体3に
同軸状に固定され、円周に検出ヘッド5を対向して設け
る。
In FIG. 1, reference numeral 1 denotes an annular vibrating body, and a thin plate 2 of electrostrictive material or magnetostrictive material is fixedly attached to the bottom surface of the vibrating body in order to generate a traveling wave of ultrasonic vibration. 3 is a disk, annular plate, etc. made of a metal, plastic snack, or composite material of metal and plastic, which is a moving body pressed against the top surface of the vibrating body 1, and 4 is an encoder for detecting the rotation of this moving body disk. It is fixed coaxially to the movable body 3, and a detection head 5 is provided facing the circumference.

第2図は振動体1の斜視図で、母材はニッケル鉄合金笠
の金属とか、耐熱樹脂にニッケル粉末等を混合分散した
複合材により構成され、円周方向に移動する超音波進行
波に対する機械的かたさを避け、振幅増大のために縦方
向に櫛状切欠き1aを形成し、この上面に移動体3を圧
接する。接触間隙には耐摩性及びI!JrM作用を増大
するために硬質材の被覆層を形成するとよく、又移動体
3は振動体1との接触面の摩擦力によって駆動されるの
で、保持トルク、駆動トルクを高めるのにはam係数の
高い材料で構成され或いは摩擦材の被覆層、接着層筈が
形成される。
Figure 2 is a perspective view of the vibrating body 1. The base material is made of a nickel-iron alloy cap metal or a composite material made by mixing and dispersing nickel powder in a heat-resistant resin. A comb-like notch 1a is formed in the vertical direction to avoid mechanical stiffness and increase the amplitude, and the movable body 3 is pressed against the upper surface of the notch 1a. The contact gap has wear resistance and I! In order to increase the JrM effect, it is recommended to form a coating layer of hard material, and since the movable body 3 is driven by the frictional force of the contact surface with the vibrating body 1, the am coefficient can be used to increase the holding torque and driving torque. It is supposed to be made of a material with high viscosity, or a coating layer of a friction material or an adhesive layer is formed.

第3図は振動体1の片面に固着しである電歪材2の正面
図で、電歪材2には各分割部分に+、−方向の分極処理
を行ない電極A、B、Sを設ける。
FIG. 3 is a front view of the electrostrictive material 2 fixed to one side of the vibrating body 1. Each divided portion of the electrostrictive material 2 is polarized in the + and - directions and provided with electrodes A, B, and S. .

電極Aと8は円周上を進行波波長のλ/41れた位置に
設けられ、各々90°位相差を有する高周波電源E+ 
、Ezを接続する。電極Sからは進行波の位相を検出す
る。
Electrodes A and 8 are provided on the circumference at positions separated by λ/41 of the wavelength of the traveling wave, and are each connected to a high frequency power source E+ having a phase difference of 90°.
, connect Ez. The phase of the traveling wave is detected from the electrode S.

第4図は電歪材電極に超音波信号を加える駆動電気回路
図で、マイクロコンピュータCPtJ6により制御され
る。7は高周波発振器、8は90°位相器、9はアンド
ゲート、10はエクスクル−シブオア、11.12は出
力増幅器、13はエンコーダの位置検出信号を端子Eに
入力する入力回路、14はS電極検出信号の位相器、1
5が八重極とS電極の位相比較器である。プログラマブ
ル発振器7の発振する高周波信号は、アンドゲート9、
増@器11を通ってA’l極に供給され、一方90°位
相器8によって位相差制御された信号はCPU6の8端
子から出力する方向切換信号とエクスクル−シブオアゲ
ート10を通り、ゲート9及び増幅器11を通ってS電
極に供給され、このA電極、S電極の励振によりS8体
1には超音波進行波が発生する。ゲート9にはCPU6
のC端子から駆動許可の指令信号が発生し、1パルス毎
に制御することができる。
FIG. 4 is a driving electric circuit diagram for applying an ultrasonic signal to an electrostrictive material electrode, and is controlled by a microcomputer CPtJ6. 7 is a high frequency oscillator, 8 is a 90° phase shifter, 9 is an AND gate, 10 is an exclusive OR, 11.12 is an output amplifier, 13 is an input circuit that inputs the position detection signal of the encoder to terminal E, and 14 is an S electrode. Detection signal phase shifter, 1
5 is a phase comparator of an octupole and an S electrode. The high frequency signal oscillated by the programmable oscillator 7 is passed through an AND gate 9,
The signal is supplied to the A'l pole through the amplifier 11, and the phase difference is controlled by the 90° phase shifter 8. The signal passes through the direction switching signal output from the 8 terminals of the CPU 6 and the exclusive OR gate 10, and is then connected to the gate 9 and The energy is supplied to the S electrode through the amplifier 11, and an ultrasonic traveling wave is generated in the S8 body 1 by excitation of the A and S electrodes. Gate 9 has CPU6
A command signal for driving permission is generated from the C terminal of the motor, and can be controlled pulse by pulse.

又圧電効果によりS電極から検出される進行波の位相は
、A電極信号と比較器15で比較されCF)U6に入力
する。これによりCPU6はAとSとの位相差がある値
に成るよう目標速度にしたがって発振器1の位相を変え
て速度制御をする。勿論電歪材の励振電圧を変えて速度
制御することができる。又移動体3の移動量がエンコー
ダ5により検出され、信号入力回路13からCPU6に
入力されCPUはこれに応じて端子Cから出力する指令
信号を制御する。エンコーダ5は速度の検出もでき、こ
れによりCPUが速度制御することができる。
Further, the phase of the traveling wave detected from the S electrode due to the piezoelectric effect is compared with the A electrode signal by a comparator 15 and input to CF)U6. Thereby, the CPU 6 controls the speed by changing the phase of the oscillator 1 according to the target speed so that the phase difference between A and S becomes a certain value. Of course, the speed can be controlled by changing the excitation voltage of the electrostrictive material. Further, the amount of movement of the moving body 3 is detected by the encoder 5, and inputted from the signal input circuit 13 to the CPU 6, and the CPU controls the command signal output from the terminal C accordingly. The encoder 5 can also detect the speed, which allows the CPU to control the speed.

又CP IJの8m子から方向切換信号を出力すると電
極へと8とに270°の位相差信号が加わり移動方向が
逆転υJIBできる。
Also, when a direction switching signal is output from the 8m element of the CP IJ, a phase difference signal of 270° is added to the electrode 8 and the moving direction can be reversed υJIB.

尚、これらの制御回路は、13i −CMO8半導体技
術を用いて小型化にすることができ、小型のモータを構
成することができる。
Note that these control circuits can be miniaturized using 13i-CMO8 semiconductor technology, and a small motor can be constructed.

以上のようにして、1G動体1に固着した電歪材2が電
極Aと8に90°位相差の超音波信号が加えられ、これ
により第3図のように分極処理された電歪材が、電界方
向と分極と同じ時には厚み方向に伸び、それが逆向きの
ときには縮むが、分極方向が交互に反転するよう並んで
いるから/If極によって配列に応じた定在波を発生し
、又位置的に90”ずれたB電極によっても90″位相
差のある定在波が発生し、両定在波が重なって進行波が
発生する。進行波は環状振動体1を循環するように発生
し、撮動体上面に圧接する移動体3を摩擦によって回転
する。これは円環振動体1が電歪材2の励振制御によっ
て屈曲振動し、即ち時間的に90゜の位相差のある高周
波電界によって二つの定在波が重なりあって時間と共に
一方向に移動する進行波屈曲撮動が発生し、進行波は振
動体リング1を循環するが、振動体1は、縦方向に切込
み1aを形成して軟らかくしであるから円周方向と上限
縦方向の振動振幅が増大し、これに摩擦接触する移動体
3はこの屈曲振動の進行波に乗って移動し回転するよう
になる。回転角はCPU6の指令数にしたがってパルス
制御し、エンコーダの・検出にしたがって指令数を制御
することにより目標移動囲の精密制御をすることができ
る。
As described above, an ultrasonic signal with a phase difference of 90° is applied to the electrostrictive material 2 fixed to the 1G moving object 1 to the electrodes A and 8, and as a result, the electrostrictive material 2 is polarized as shown in FIG. , when the electric field direction and polarization are the same, they extend in the thickness direction, and when they are opposite, they contract, but since they are arranged so that the polarization direction is alternately reversed, the If polarity generates a standing wave according to the arrangement, and A standing wave with a phase difference of 90'' is also generated by the B electrode which is shifted by 90'' in position, and both standing waves overlap to generate a traveling wave. The traveling wave is generated so as to circulate in the annular vibrating body 1, and rotates the movable body 3, which is in pressure contact with the upper surface of the photographing body, by friction. This is because the annular vibrating body 1 bends and vibrates by controlling the excitation of the electrostrictive material 2. In other words, two standing waves overlap with each other due to a high-frequency electric field with a temporal phase difference of 90 degrees, and move in one direction over time. Traveling wave bending imaging occurs, and the traveling wave circulates through the vibrating body ring 1, but since the vibrating body 1 is a soft comb with cuts 1a formed in the vertical direction, the vibration amplitude in the circumferential direction and the upper limit vertical direction is small. increases, and the movable body 3 that comes into frictional contact with the movable body 3 begins to move and rotate riding on the traveling wave of this bending vibration. The rotation angle is pulse-controlled according to the number of commands from the CPU 6, and by controlling the number of commands according to the detection by the encoder, the target movement range can be precisely controlled.

例えば、PZTffi歪材を用いて、周波数40KH2
190°位相差の交流半サイクルの信号を印加して駆動
したとき、円環振動体に圧接する移動体は半径s tm
部分で1パルス信号当り約2.5μ請働き、12560
パルスで1回転するパルス制御ができた。
For example, using PZTffi strain material, the frequency is 40KH2
When driven by applying an AC half-cycle signal with a phase difference of 190°, the moving body in pressure contact with the annular vibrating body has a radius s tm
Approximately 2.5μ per pulse signal in the part, 12560
We were able to perform pulse control to make one rotation with a pulse.

尚、電歪材2には、同極分極した電歪材に交互に並べて
十極−極が印加される電極を設け、これに高周波電源の
両極を交互に印加するよう結線して設けることができる
。又電歪材の分極、高周波励起の仕方は、電極数を増減
することができ、又二つの定在波を発生するのに電歪材
を重ねて設けることができる。
It should be noted that the electrostrictive material 2 may be provided with electrodes to which ten poles are applied alternately to the electrostrictive material polarized in the same polarity, and connected to these electrodes so that both poles of the high frequency power source are applied alternately. can. Furthermore, the polarization and high frequency excitation of the electrostrictive material can be changed by increasing or decreasing the number of electrodes, and the electrostrictive materials can be stacked to generate two standing waves.

又電歪材には多相電源、例えば位相120°づつ異なる
3相電源等により超音波信号を印加してもよく、超音波
振動子に磁歪材を用い、超音波磁界を加えて振動させる
ことができる。
Further, an ultrasonic signal may be applied to the electrostrictive material by a multi-phase power source, for example, a three-phase power source with a phase difference of 120°, etc., and a magnetostrictive material may be used as an ultrasonic vibrator and an ultrasonic magnetic field is applied to vibrate it. Can be done.

又前記実施例の場合は、電歪材(又は磁歪材)2を振動
体1に接着して固定するようにしたのであるが、一体に
焼結成形することができる。例えば主体の振動体の部分
には耐熱性樹脂の例えばイミド樹脂を単独に或いは振動
伝播性を高めるために金属若しくはセラミックス粒子、
ファイバを混合し分散させたコンポジット樹脂を充填し
、電歪材の部分にはPZTSPLZT、PVDF、Ti
2033a等の原料粉末と樹脂の混合体を充填し、これ
を一体に焼結成形する。焼結は短時間の通電焼結笠を利
用する。電歪材は通電により強い成極作用が働き電歪効
果を向上したものが容易に得られる。電歪材の焼結に於
て、PVDFを40 vo1%どイミド樹脂60 vo
1%の混合体を230℃、5分の焼結をしたとき、5G
の衝撃で約5Vの電圧を発生した。従来のものでは約0
.01〜0,02 V電圧であり、短時間通電焼結によ
る成極作用の高いことがわかる。
Further, in the case of the above embodiment, the electrostrictive material (or magnetostrictive material) 2 was fixed to the vibrating body 1 by adhesion, but it is also possible to sinter and form the material integrally. For example, in the main vibrating body part, heat-resistant resin such as imide resin may be used alone, or metal or ceramic particles may be used to improve vibration propagation.
It is filled with a composite resin in which fibers are mixed and dispersed, and the electrostrictive material part is filled with PZTSPLZT, PVDF, and Ti.
A mixture of raw material powder such as 2033a and resin is filled, and the mixture is sintered and formed into one piece. Sintering uses a sintering cap that is energized for a short time. The electrostrictive material has a strong polarization effect when energized, and it is easy to obtain an electrostrictive material with improved electrostrictive effect. In sintering electrostrictive material, 40 vo 1% of PVDF and 60 vo of imide resin
When a 1% mixture is sintered at 230℃ for 5 minutes, 5G
The impact generated a voltage of approximately 5V. About 0 with the conventional one
.. The voltage was 0.01 to 0.02 V, which indicates that the short-time current sintering has a high polarization effect.

尚各部成形には樹脂を全体とすることなく、金属、セラ
ミックス材を主体にした粉末焼結でもよい。
Incidentally, each part may be molded by powder sintering mainly made of metal or ceramic material instead of using resin as a whole.

第5図は移動体として長尺板16を円環撮動体1の一部
に摩擦圧接して設け、円環移動体1に発生する超音波進
行波によって長尺板1Gを長さ方向に直線駆動するよう
にした実施例で、振動体1に固着した電歪材の励掘制御
を第4図のような駆動回路によって制御することにより
パルス的に制御でき、長尺板の移動量はリニアエンコー
ダを用いて検出すればよく、この検出信号をフィードバ
ックすることによりプログラム制御を精密に行なうこと
ができる。長尺板16は振動体1に発生する進行波の移
動方向を切換えることによって左右自在に移動制御する
ことができる。
In FIG. 5, a long plate 16 is provided as a movable body by friction welding to a part of the annular moving body 1, and the long plate 1G is moved in a straight line in the length direction by the ultrasonic traveling wave generated in the annular moving body 1. In this embodiment, the excitation of the electrostrictive material fixed to the vibrating body 1 can be controlled in a pulsed manner by controlling the excitation of the electrostrictive material fixed to the vibrating body 1 using a driving circuit as shown in FIG. Detection may be performed using an encoder, and precise program control can be performed by feeding back this detection signal. The elongated plate 16 can be controlled to move left and right by switching the moving direction of the traveling wave generated in the vibrating body 1.

第6図は第5図の直線駆動のモータを工作機械等の移動
テーブルに利用した実施例で、17はベツド21に固定
された円環形振動体、18は長尺板の移動体で、第5図
のように振動体の一部に移動体18がI!!擦接触して
左右のX軸に駆動される。19は長尺板18に固定され
た円環形振動体、20は振動体19に圧接する長尺板移
動体で紙面に直角のY軸に駆動される。23は長尺板2
0に固定された移動台で、この上に被加工物24が取付
支持される。22は移動台を支持するパッドで、移動台
23に固定し下面のベツド而21をIN #lする。尚
長尺板18の両端はパッド22を紙面に直角に移動自在
にベアリング支持される。
FIG. 6 shows an embodiment in which the linear drive motor shown in FIG. 5 is used in a moving table of a machine tool, etc. 17 is an annular vibrating body fixed to the bed 21, 18 is a long plate movable body, As shown in Figure 5, a moving body 18 is attached to a part of the vibrating body. ! They rub against each other and are driven in the left and right X-axes. 19 is an annular vibrating body fixed to the long plate 18, and 20 is a long plate moving body that is in pressure contact with the vibrating body 19 and is driven in the Y axis perpendicular to the plane of the paper. 23 is the long plate 2
A workpiece 24 is mounted and supported on a moving table fixed at zero. Reference numeral 22 denotes a pad for supporting the movable base, which is fixed to the movable base 23 and connects the bed 21 on the lower surface. Note that both ends of the elongated plate 18 are supported by bearings so that the pad 22 can freely move at right angles to the plane of the paper.

振動体17に発生する進行波によって長尺板18がX軸
に移動され、又振動体19に発生する進行波によって長
尺板20をY軸に移動し、移動台23はX軸及びY軸に
駆動制御される。尚振動体17.19と移動体18.2
0問に各々クラッチを設け、X軸移動、Y軸移動時にク
ラッチを切換!11t[lするようにすることができる
。移動台23はベツド21間にパッド22を介在させて
いることによって、被加工物24の重量が振動体17.
19と移動体長尺板18,20間に作用することがない
から、両者間の接触圧に変化はなく、一定のwm力を作
用してモータ駆動制御を行なうことができる。又振動体
17.19と移動体長尺板18,20問には従来の回転
−直線変換のネジ軸等が存在しないから、振動体の非励
磁時には長尺板が所定の11擦力で自在に滑動でき、被
加工体24を取付けた移動台23を手動で自由に移動さ
せてX−Y平面の任意な点に位置決め制御を行なうこと
ができる便利がある。
The traveling wave generated in the vibrating body 17 moves the long plate 18 along the X axis, and the traveling wave generated in the vibrating body 19 moves the long plate 20 along the Y axis, and the moving table 23 moves along the X and Y axes. The drive is controlled. In addition, the vibrating body 17.19 and the moving body 18.2
A clutch is provided for each question, and the clutch is switched when moving on the X-axis and Y-axis! 11t[l. The movable table 23 has a pad 22 interposed between the beds 21, so that the weight of the workpiece 24 is reduced by the vibrating body 17.
19 and the movable body elongated plates 18 and 20, there is no change in the contact pressure between them, and motor drive control can be performed by applying a constant wm force. In addition, since the vibrating body 17 and 19 and the movable long plate 18 and 20 do not have screw shafts for conventional rotation-linear conversion, the long plate can freely move with a predetermined friction force when the vibrating body is not energized. It is convenient that the movable stage 23 with the workpiece 24 mounted thereon can be freely moved manually to control the positioning at any point on the XY plane.

第7図は、第5図実施例の長尺移動体の駆動力を2倍に
する実施例で、長尺板16と平行に円環振動体1の他端
に長尺板25を設け、この両長尺板16.25をリンク
26で連結したものである。これによれば振動体1に循
環する方向の進行波によって摩擦する長尺板16,25
が同時に駆動され、長尺板25の移動はリンク26を通
して長尺板16の移動方向に加わり、長尺板16を2倍
の駆動力で移動することができる。これを第6図のテー
ブル制御に利用する場合は長尺板16のみを移動台23
に固定して設ければよい。
FIG. 7 shows an embodiment in which the driving force of the elongated movable body of the embodiment shown in FIG. Both long plates 16 and 25 are connected by a link 26. According to this, the long plates 16, 25 are rubbed by the traveling waves in the direction circulating in the vibrating body 1.
are driven at the same time, and the movement of the elongated plate 25 is applied in the moving direction of the elongated plate 16 through the link 26, so that the elongated plate 16 can be moved with twice the driving force. When using this for table control as shown in FIG.
It may be fixed to

尚、第6図に於て移動体台23に回転を与えるには、第
1図のような撮動体1に円板若しくは円環板3をa!擦
圧接させた超音波モータを設ければよく、X軸、Y軸駆
動、回転駆動等を任意に組合せた移動制御を行なうこと
ができる。
In addition, in order to give rotation to the movable body base 23 in FIG. 6, a disk or annular plate 3 is attached to the photographing body 1 as shown in FIG. It is only necessary to provide an ultrasonic motor that is brought into frictional contact with the motor, and movement control can be performed using any combination of X-axis, Y-axis drive, rotational drive, etc.

第8図は他の実施例で、長尺板16の上下両面に長方環
形の振動体21をr!J擦接触して設け、内壁面に設け
た電歪材28を位相差^周波電源により励振し、リング
をw1貫する超音波進行波を発生し、圧接する長尺板1
6を直線駆動するようにしたものである。尚、図のよう
に設けることによって上下移動体27に発生する進行波
によって長尺板16の駆動力は倍加されるが、一方の振
動体27だけで駆動するようにしてもよい。
FIG. 8 shows another embodiment in which a rectangular ring-shaped vibrating body 21 is mounted on both upper and lower surfaces of a long plate 16. A long plate 1 is provided in frictional contact with the electrostrictive material 28 provided on the inner wall surface and is excited by a phase difference ^ frequency power source to generate an ultrasonic traveling wave that penetrates the ring w1 and is pressed into contact with the electrostrictive material 28.
6 is linearly driven. Although the driving force of the elongated plate 16 is doubled by the traveling wave generated in the vertical moving body 27 by providing it as shown in the figure, it is also possible to drive only one of the vibrating bodies 27.

第9図は、第8図の長方環形振動体を中実に形成した振
動体29を設け、底面に電歪材30を設け、その上面に
長尺板16を摩Fs接触して設けたものである。電歪材
30の励振制御によって振動体29の表面を循環する超
音波進行波の表面波(レイリー波)を発生させ、これに
より表面に接触する長尺板16を直線駆動することがで
きる。
FIG. 9 shows a vibrating body 29 formed of the rectangular annular vibrating body shown in FIG. It is. By controlling the excitation of the electrostrictive material 30, a surface wave (Rayleigh wave) of an ultrasonic traveling wave is generated that circulates on the surface of the vibrating body 29, thereby linearly driving the elongated plate 16 in contact with the surface.

第10図は長尺環形振動体31の上面に棒状移動体33
.34を振触して振動体に発生する進行波により1’!
!!駆動して直線移動させるようにしたものである。側
面は第11図のようで、振動体31の底面に電歪材32
を接着して励振する。
FIG. 10 shows a rod-shaped moving body 33 on the top surface of a long annular vibrating body 31.
.. 1'! due to the traveling wave generated in the vibrating body by shaking 34!
! ! It is designed to be driven and moved in a straight line. The side surface is as shown in FIG. 11, with electrostrictive material 32 on the bottom of the vibrating body 31.
Glue and excite.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明すれば、片面に電歪材若しくは磁歪
材を固着した円板若しくはリング状(円環、長方環等)
撮動体を設け、該振動体の片面に板状(円板若しくは円
環板又は長尺板等)の移動体を接触して設け、前記電歪
材若しくは磁歪材に指令信号にしたがって位相差を有す
る高周波電踪若しくは多相交Fl電源の出力する半サイ
クル若しくは1サイクルの超音波信号を加える駆動電気
回路を設けて成るものであるから、振動体に発生する超
音波進行波により移動体が摩擦駆動されることにより低
速で高トルクが得られ、単純、小型構造であり、高応答
の制御ができ、超音波振動のパルス制御により位置制御
が容易に正確に行なえる。
According to the present invention as described above, a disk or ring shape (circular ring, rectangular ring, etc.) with an electrostrictive material or magnetostrictive material fixed to one side can be obtained.
A moving body is provided, a moving body in the form of a plate (disc, annular plate, elongated plate, etc.) is provided in contact with one side of the vibrating body, and a phase difference is applied to the electrostrictive material or magnetostrictive material according to a command signal. The device is equipped with a drive electric circuit that applies a half-cycle or one-cycle ultrasonic signal output from a high-frequency electromagnetic or multiphase AC Fl power source, so that the moving body is frictionally driven by the ultrasonic traveling waves generated in the vibrating body. As a result, high torque can be obtained at low speeds, the structure is simple and compact, high response control is possible, and position control can be performed easily and accurately by pulse control of ultrasonic vibration.

又円環若しくは長方環形の撮動体の超音波進行波によっ
て駆動される移動体に長尺板を設けて直線駆動するとき
は回転−直1運動変換のネジ軸等を除去して直線運動を
直接取り出すことができ、送り装置の構成が簡単小型に
なり、積置な正確な直線送り制御を与えることができる
In addition, when a long plate is provided on a moving body driven by an ultrasonic traveling wave of an annular or rectangular imaging body and the moving body is driven in a straight line, the screw shaft etc. for rotation-direction motion conversion is removed and the linear motion is performed. It can be taken out directly, the configuration of the feeding device is simple and compact, and accurate linear feeding control can be provided.

又移動体の移動位置若しくは移動位置と速度を検出する
エンコーダを設け、前記電歪材若しくは磁歪材に前記エ
ンコーダの検出に基づく指令信号にしたがって位相差を
有する高周波電源若しくは多相交流電源の出力する半サ
イクル若しくは1サイクルの超音波信号を加える駆動電
気回路を設けたことによってパルスモータによる位置制
御、送り速度制御を極めて正確に制御すること°ができ
る。
Further, an encoder is provided to detect the moving position or the moving position and speed of the moving body, and a high frequency power source or a multiphase AC power source having a phase difference is outputted to the electrostrictive material or magnetostrictive material in accordance with a command signal based on the detection by the encoder. By providing a driving electric circuit that applies a half-cycle or one-cycle ultrasonic signal, it is possible to control the position and feed speed by the pulse motor very accurately.

又パルスモータの応用例として、前記振動体を固定部に
固定すると共に前記移動体を送り装置等の移動体に固定
して設け、該移動部と固定部間に移動自在にパッドを設
けるようにしたから、撮動体と移動体との接触圧は常に
一定に加圧維持でき、摩擦力を一定にさVることができ
、モータのパルス的駆動を安定に精密に制御することが
できる。
Further, as an application example of the pulse motor, the vibrating body is fixed to a fixed part, the moving body is fixed to a moving body such as a feeding device, and a movable pad is provided between the moving part and the fixed part. Therefore, the contact pressure between the imaging body and the movable body can be maintained constant, the frictional force can be kept constant, and the pulse drive of the motor can be controlled stably and precisely.

又、この超音波パルスモータを設けた工作機械の加工テ
ーブル等の送り装置は振動体の非励振時にはネジ等がな
く撮動体と移動体間を自在に摺動させることができ、手
動で自在に送り位置出し制御を行なうことができる。
In addition, the feeding device for the machining table of a machine tool equipped with this ultrasonic pulse motor has no screws, etc. when the vibrating body is not excited, and can be freely slid between the photographing body and the moving body, and can be moved freely by hand. Feed positioning control can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の側面図で、第2図はその一
部分の斜視図、第3図はその底面正面図、第4図はその
駆動電気回路図、第5図乃至第11図は他の実施例図で
ある。 1・・・・・・・・・振動体 2・・・・・・・・・電歪材 3・・・・・・・・・移動体 4・・・・・・・・・エンコーダ 特  許  出  願  人 株式会社井上ジpパックス研究所 代表者 井 上   潔
FIG. 1 is a side view of one embodiment of the present invention, FIG. 2 is a perspective view of a portion thereof, FIG. 3 is a bottom front view thereof, FIG. 4 is a driving electric circuit diagram thereof, and FIGS. 5 to 11. The figure shows another embodiment. 1... Vibrating body 2... Electrostrictive material 3... Moving body 4... Encoder patent Applicant: Kiyoshi Inoue, Representative of Inoue Zipax Laboratory Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)片面に電歪材若しくは磁歪材を固着した円板若し
くはリング状の振動体を設け、該振動体の片面に板状の
移動体を接触して設け、前記電歪材若しくは磁歪材に指
令信号にしたがつて位相差を有する高周波電源若しくは
多相交流電源の出力する半サイクル若しくは1サイクル
の超音波信号を加える駆動電気回路を設けて成ることを
特徴とする超音波パルスモータ。
(1) A disc or ring-shaped vibrating body having an electrostrictive material or magnetostrictive material fixed to one side is provided, a plate-shaped moving body is provided in contact with one side of the vibrating body, and the electrostrictive material or magnetostrictive material is An ultrasonic pulse motor characterized by being provided with a drive electric circuit that applies a half-cycle or one-cycle ultrasonic signal output from a high-frequency power source or a multiphase AC power source having a phase difference in accordance with a command signal.
(2)片面に電歪材若しくは磁歪材を固着した円板若し
くはリング状の振動体を設け、該振動体の片面に板状の
移動体を接触して設け、該移動体の移動位置若しくは移
動位置と速度を検出するエンコーダを設け、前記電歪材
若しくは磁歪材に前記エンコーダの検出に基づく指令信
号にしたがって位相差を有する高周波電源若しくは多相
交流電源の出力する半サイクル若しくは1サイクルの超
音波信号を加える駆動電気回路を設けて成ることを特徴
とする超音波パルスモータ。
(2) A disc or ring-shaped vibrating body having an electrostrictive material or magnetostrictive material fixed to one side is provided, a plate-shaped moving body is provided in contact with one side of the vibrating body, and the moving position or movement of the moving body is An encoder for detecting position and velocity is provided, and a half cycle or one cycle of ultrasonic waves is output from a high frequency power source or a multiphase AC power source having a phase difference according to a command signal detected by the encoder to the electrostrictive material or magnetostrictive material. An ultrasonic pulse motor characterized by comprising a drive electric circuit that applies a signal.
(3)片面に電歪材若しくは磁歪材を固着した円板若し
くはリング状の振動体を設け、該振動体の片面に板状の
移動体を接触して設け、前記振動体を固定部に固定する
と共に前記移動体を移動部に固定して設け、該移動部と
固定部間に移動自在にスペーサを設け、前記電歪材若し
くは磁歪材に指令信号にしたがつて位相差を有する高周
波電源若しくは多相交流電源の出力する半サイクル若し
くは1サイクルの超音波信号を加える駆動電気回路を設
けて成ることを特徴とする超音波パルスモータ。
(3) A disc or ring-shaped vibrating body with an electrostrictive material or magnetostrictive material fixed to one side is provided, a plate-shaped moving body is provided in contact with one side of the vibrating body, and the vibrating body is fixed to a fixed part. At the same time, the movable body is fixed to a movable part, a spacer is movably provided between the movable part and the fixed part, and the electrostrictive material or the magnetostrictive material is provided with a high frequency power source or a high frequency power source having a phase difference according to a command signal. An ultrasonic pulse motor characterized by being provided with a driving electric circuit that applies a half-cycle or one-cycle ultrasonic signal output from a multiphase AC power source.
JP62263512A 1987-10-19 1987-10-19 Ultrasonic wave pulse motor Pending JPH01107677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62263512A JPH01107677A (en) 1987-10-19 1987-10-19 Ultrasonic wave pulse motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263512A JPH01107677A (en) 1987-10-19 1987-10-19 Ultrasonic wave pulse motor

Publications (1)

Publication Number Publication Date
JPH01107677A true JPH01107677A (en) 1989-04-25

Family

ID=17390560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263512A Pending JPH01107677A (en) 1987-10-19 1987-10-19 Ultrasonic wave pulse motor

Country Status (1)

Country Link
JP (1) JPH01107677A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114385A1 (en) * 2006-04-04 2007-10-11 Nikon Corporation Oscillator manufacturing method, oscillator, oscillatory actuator, lens barrel and camera system
JP2014000115A (en) * 2012-06-15 2014-01-09 Canon Inc Vibration type driving device, medical apparatus, and medical system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114385A1 (en) * 2006-04-04 2007-10-11 Nikon Corporation Oscillator manufacturing method, oscillator, oscillatory actuator, lens barrel and camera system
JP5187190B2 (en) * 2006-04-04 2013-04-24 株式会社ニコン Vibrator manufacturing method, vibrator, vibration actuator, lens barrel, and camera system
US8555483B2 (en) 2006-04-04 2013-10-15 Nikon Corporation Method of manufacturing a vibrating element
JP2014000115A (en) * 2012-06-15 2014-01-09 Canon Inc Vibration type driving device, medical apparatus, and medical system

Similar Documents

Publication Publication Date Title
US4339682A (en) Rotative motor using a piezoelectric element
JPH0117354B2 (en)
JP4119903B2 (en) Flat plate piezoelectric ultrasonic motor
JP2007195389A (en) Ultrasonic motor
US4764702A (en) Ultrasonic motor device
JPH0458273B2 (en)
CN103560694B (en) One kind indulges curved compound ultrasonic motor
JPH01107677A (en) Ultrasonic wave pulse motor
JPH0514511B2 (en)
JP5029948B2 (en) Ultrasonic motor
US4399385A (en) Rotative motor using a triangular piezoelectric element
JPS62126874A (en) Ultrasonic vibrator and drive controlling method thereof
JPS6055867A (en) Piezoelectric motor
JPH01122375A (en) Controlling method for piezoelectric motor
JPH03253267A (en) Ultrasonic motor
JPS63294279A (en) Piezoelectric driving device
JPS62152377A (en) Drive-controlling method for ultrasonic wave vibrator
JPH09224385A (en) Ultrasonic motor driving device
JPS62277079A (en) Piezoelectric driving device
JP2004222453A (en) Actuator
JPH01264579A (en) Control method of progressive-wave type ultrasonic motor
JPS627379A (en) Ultrasonic wave motor apparatus
JPS63214381A (en) Ultrasonic vibrator and drive control method thereof
JPH0479236B2 (en)
JP3401092B2 (en) Ultrasonic motor drive