JPS63214381A - Ultrasonic vibrator and drive control method thereof - Google Patents

Ultrasonic vibrator and drive control method thereof

Info

Publication number
JPS63214381A
JPS63214381A JP4828987A JP4828987A JPS63214381A JP S63214381 A JPS63214381 A JP S63214381A JP 4828987 A JP4828987 A JP 4828987A JP 4828987 A JP4828987 A JP 4828987A JP S63214381 A JPS63214381 A JP S63214381A
Authority
JP
Japan
Prior art keywords
electrostrictive element
electrode
electrodes
vibration
common electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4828987A
Other languages
Japanese (ja)
Inventor
三代 祥二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taga Electric Co Ltd
Original Assignee
Taga Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taga Electric Co Ltd filed Critical Taga Electric Co Ltd
Priority to JP4828987A priority Critical patent/JPS63214381A/en
Publication of JPS63214381A publication Critical patent/JPS63214381A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、任意方向の複合振動を発生させる超音波振動
子に係り、特に超音波モータ、超音波振動切削装置、超
音波カッタなどへの利用に適した超音波振動子とその駆
動制御方法に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to an ultrasonic vibrator that generates complex vibrations in arbitrary directions, and is particularly suitable for use in ultrasonic motors, ultrasonic vibration cutting devices, ultrasonic cutters, etc. The present invention relates to a suitable ultrasonic transducer and its drive control method.

従来の技術 一般に、超音波振動子としては円板形電歪素子を二個の
金属体で挾持し一体で共振するランジュバン型振動子と
、フェライト磁歪材を円筒状又はπ形に成形したπ型振
動子とが多用されている。
Conventional technology Generally speaking, ultrasonic vibrators include a Langevin type vibrator in which a disk-shaped electrostrictive element is sandwiched between two metal bodies and resonate as one, and a π-type vibrator in which a ferrite magnetostrictive material is molded into a cylindrical or π-shape. Vibrators are often used.

また、振動方向として見れば、軸方向に振動する縦型振
動子と軸方向に対称にねじり振動するねじり振動子とが
存する。これらの振動子は単一方向、即ち、軸方向のみ
、又は、ねじり方向のみの振動を発生させる単一方向振
動子である。
In terms of vibration directions, there are vertical vibrators that vibrate in the axial direction and torsional vibrators that torsionally vibrate symmetrically in the axial direction. These vibrators are unidirectional vibrators that generate vibrations in a single direction, that is, only in the axial direction or only in the torsional direction.

このような単一方向振動子により超音波モータを構成し
たものとして、例えば特開昭55−125052号公報
に記載された振動片形振動子がある。すなわち、軸方向
振動子の出力端部に振動片を設け、ロータ等の可動部材
の接合面の法線を振動子の軸方向に対して僅かに傾斜さ
せてその振動片をロータに押圧する。これにより、振動
片の先端部は結果的に楕円振動し、ロータを摩擦振動さ
せるものである。このような振動片型においては、振動
片とロータ接触部との摩耗が著しく、さらに騒音の発生
も大きいと云う欠点を有する。
As an example of an ultrasonic motor configured with such a unidirectional vibrator, there is a vibrating piece type vibrator described in Japanese Patent Application Laid-Open No. 55-125052. That is, a vibrating piece is provided at the output end of an axial vibrator, and the vibrating piece is pressed against the rotor with the normal line of the joint surface of a movable member such as a rotor being slightly inclined with respect to the axial direction of the vibrator. As a result, the tip of the vibrating piece vibrates elliptically, causing the rotor to undergo frictional vibration. Such a vibrating piece type has the disadvantage that the contact portion between the vibrating piece and the rotor is subject to significant wear and also generates a large amount of noise.

二のような単一方向振動子とは別の方式のものとして、
第8図に示すような振動子が存する。すなわち、縦形振
動子1とねじり変換体2とを一体的に締着して振動子3
が形成されている。前記ねじり変換体2の一方の面には
幅の広い溝4が形成され、他方の面には前記溝4とある
角度をもって形成された梁状突起5が形成されている。
As a method different from the unidirectional oscillator like 2,
There is a vibrator as shown in FIG. That is, the vertical vibrator 1 and the torsion converter 2 are integrally fastened together to form the vibrator 3.
is formed. A wide groove 4 is formed on one surface of the torsion converting body 2, and a beam-shaped protrusion 5 formed at a certain angle with the groove 4 is formed on the other surface.

前記ねじり変換体2には、ボルト6とコイルバネ7とス
ラストベアリング9とを介してロータ8が押圧状態で取
付けられている。
A rotor 8 is attached to the torsion converter 2 in a pressed state via a bolt 6, a coil spring 7, and a thrust bearing 9.

したがって、縦形振動子1により発生した縦振動がねじ
り変換体2に加えられると、ねじり変換体2の梁状突起
5の先端には矢印方向の楕円振動が発生し、それに接す
るロータ8は矢印のように反時計方向に回転するもので
ある。そのため、効率の良い超音波モータを構成するこ
とができるものである。
Therefore, when the longitudinal vibration generated by the vertical vibrator 1 is applied to the torsional transducer 2, an elliptical vibration is generated at the tip of the beam-like protrusion 5 of the torsional transducer 2 in the direction of the arrow, and the rotor 8 in contact with it is moved in the direction of the arrow. It rotates counterclockwise. Therefore, an efficient ultrasonic motor can be constructed.

発明が解決しようとする問題点 単一方向振動子による振動片型のものに対して、第8図
に示した縦ねじり変換型は、振動片型の欠点を解決した
ものとして期待されているが、その出力端部の振動姿態
である楕円振動の楕円率はねじり変換体2の形状によっ
て一律に決ってしまうものであり、駆動に最適な楕円率
への制御やその回転方向を制御することは不可能である
。すなわち、いずれもロータの単一方向のみの駆動であ
り、さらに、接触面の摩耗が少ない状態で最大トルクで
の駆動を効率良く行うために必要な楕円形状を得るコン
トロールができないものである。
Problems to be Solved by the Invention In contrast to the vibrating piece type using a unidirectional vibrator, the vertical torsion conversion type shown in FIG. 8 is expected to solve the drawbacks of the vibrating piece type. The ellipticity of the elliptic vibration, which is the vibration state of the output end, is uniformly determined by the shape of the torsion converter 2, and it is difficult to control the ellipticity to the optimum ellipticity for driving and the direction of rotation. It's impossible. That is, in both cases, the rotor is driven only in a single direction, and furthermore, it is not possible to control the rotor to obtain the elliptical shape necessary to efficiently drive the rotor at maximum torque with little wear on the contact surface.

問題点を解決するための手段 分割部を境として二分割された電極が一面に形成され共
通電極が他面に形成されるとともに前記電極毎に分極方
向を反転させた電歪素子を設け、一枚又は複数枚の前記
電歪素子の両面に金属材を締着具により一体的に締着す
る。
Means for Solving the Problems An electrostrictive element is provided in which an electrode is divided into two parts with a dividing part as a border, one side is formed, a common electrode is formed on the other side, and the polarization direction is reversed for each electrode. A metal material is integrally fastened to both sides of the electrostrictive element or plurality of electrostrictive elements using a fastener.

作用 それぞれの電極4二同−交流電圧、互いに位相の異なる
交流電圧、互いに振幅の異なる交流電圧、或いはこれら
を組合せた交流電圧を印加することにより出力端部に電
極の分割方向上直角方向の面上で直線振動、円振動、楕
円振動などの複合運動を任意の方向に発生する。
Action By applying an AC voltage, an AC voltage with different phases to each other, an AC voltage with different amplitudes to each other, or a combination of these voltages to each electrode 4, a surface perpendicular to the direction in which the electrodes are divided is applied to the output end. It generates complex movements such as linear vibration, circular vibration, and elliptical vibration in any direction.

実施例 本発明の一実施例を第1図乃至第4図に基づいて説明す
る。まず、分割部1oを境として二分割された電極11
.12が一面に形成され共通電極13が他面に形成され
るとともに前記電極11゜12毎に分極方向を反転させ
丸亀歪素子14が設けられている。
Embodiment An embodiment of the present invention will be explained based on FIGS. 1 to 4. First, the electrode 11 is divided into two parts with the dividing part 1o as a border.
.. A Marugame strain element 14 is provided, in which a common electrode 13 is formed on one surface and a common electrode 13 is formed on the other surface, and the polarization direction is reversed for each of the electrodes 11 and 12.

このような電歪素子14を二個準備し、分割部10を一
致させるとともに残留分極の方向を対向させてU字形に
形成した二個の電極板15.16を間にして前記電極1
1.12を重ね合わせ、中心部に絶縁筒17を挿通する
。そして、一方の電歪素子14の共通電極13の面には
出力端部18を細く形成するとともにエクスポネンシャ
ル段部を有する金属材19が接合され、他方の電歪素子
14の共通電極13の面には共通電極板20が接合され
、この共通電極板20には金属材21を接合させて締着
具としてのボルト22によりこれらは一体的に固定され
ている。
Two such electrostrictive elements 14 are prepared, and the electrode 1 is placed between two U-shaped electrode plates 15 and 16 with their divided portions 10 aligned and the directions of residual polarization facing each other.
1. 12 are stacked one on top of the other, and the insulating tube 17 is inserted through the center. A metal material 19 having a thin output end 18 and an exponential step is bonded to the surface of the common electrode 13 of one electrostrictive element 14 , and the common electrode 13 of the other electrostrictive element 14 is A common electrode plate 20 is bonded to the surface, a metal material 21 is bonded to the common electrode plate 20, and these are integrally fixed by bolts 22 as fasteners.

すなわち、前記金属材21には前記ボルト22を挿通す
る孔23が形成されており、前記金属材19には前記ボ
ルト22が螺合するねじ部24が形成されている。この
ようにして、複合振動子25が構成されている。
That is, the metal material 21 is formed with a hole 23 through which the bolt 22 is inserted, and the metal material 19 is formed with a threaded portion 24 into which the bolt 22 is screwed. In this way, the composite vibrator 25 is configured.

ついで、前記電極11.12と前記共通電極13とには
、電極板15.16と共通電極板20とを介在させて図
示しない駆動制御回路が接続されている。
Next, a drive control circuit (not shown) is connected to the electrodes 11.12 and the common electrode 13 via electrode plates 15.16 and a common electrode plate 20.

このような構成において、共通電極板2oに対して電極
板15.16に〜位相を制御できる駆動電源を接続して
その駆動周波数をたわみ共振周波数に調節する。その位
相差を零として駆動したときには、励振電圧は両型歪素
子14a、14bに同一に印加されるので、一方が延び
たとき他方が縮んでたわみ共振振動を行ない、その出力
端部18は第1図(d)に示すように軸に直角方向の直
線運動を行なう。そこで、一方の電極板15に対し、他
方の電極板16に印加する駆動電圧の位相を進ませると
、第1図(C)に示すようなたわみ方向に長い反時計方
向の楕円振動を行ない、その進相度をさらに増して行く
と、(b)(a)の如くたわみ方向に短く、軸方向に長
い楕円形状に変化する。同様に、その位相を遅らせると
、楕円振動方向は時計方向に反転し、また、位相差の増
大に伴って、第1図(e)(f)(g)の如くその振動
姿態が変化する。
In such a configuration, a drive power source whose phase can be controlled is connected to the electrode plates 15 and 16 of the common electrode plate 2o, and the drive frequency thereof is adjusted to the deflection resonance frequency. When driving with the phase difference set to zero, the same excitation voltage is applied to both types of strain elements 14a and 14b, so when one of them is extended, the other is contracted and flexurally vibrates, causing the output end 18 of the As shown in Figure 1(d), a linear motion is performed in a direction perpendicular to the axis. Therefore, if the phase of the driving voltage applied to one electrode plate 15 is advanced relative to the other electrode plate 16, a long counterclockwise elliptical vibration is performed in the deflection direction as shown in FIG. 1(C). When the degree of phase advance is further increased, the shape changes to an elliptical shape that is shorter in the deflection direction and longer in the axial direction, as shown in (b) and (a). Similarly, when the phase is delayed, the direction of elliptical vibration is reversed clockwise, and as the phase difference increases, the vibration mode changes as shown in FIGS. 1(e), (f), and (g).

さらに、電極板15.16に印加するそれぞれの励振電
圧の相対位相を零として、その相対振幅を変化させると
、出力端部18の振動姿態は第1図(h)(i)(k)
(Ω)のようにたわみ方向に対して傾斜した直線で振動
する。すなわち、印加電圧が同振幅の場合には、第1図
(j)に示すように軸と直角方向に共振振動するが、電
極板15の駆動電圧を電極板16のそれよりも低くする
と、第1図(i)のように傾き、さらに、その差を大き
くすると、第1図(h)のように一層その振動方向は傾
斜する。また、その差を反転すると、同様に第1図(k
)(1)のように逆方向に傾斜する。これらの傾斜角度
は、駆動電圧の相対振幅により自由に制御することがで
きるものである。
Furthermore, when the relative phase of each excitation voltage applied to the electrode plates 15 and 16 is set to zero and the relative amplitude thereof is changed, the vibration state of the output end 18 changes as shown in FIGS. 1(h), (i), and (k).
It vibrates in a straight line inclined to the direction of deflection (Ω). That is, when the applied voltages have the same amplitude, resonance vibration occurs in the direction perpendicular to the axis as shown in FIG. If the vibration direction is tilted as shown in FIG. 1(i) and the difference is further increased, the vibration direction becomes even more tilted as shown in FIG. 1(h). Moreover, if the difference is reversed, it is similarly shown in Figure 1 (k
) Tilt in the opposite direction as shown in (1). These angles of inclination can be freely controlled by the relative amplitudes of the drive voltages.

次に、その駆動周波数を軸方向共振周波数に設定し、1
80度位相の異なる駆動電圧をそれぞれの電極板15.
16に印加すると電歪素子14a。
Next, the drive frequency is set to the axial resonance frequency, and 1
Drive voltages with a phase difference of 80 degrees are applied to each electrode plate 15.
16, the electrostrictive element 14a.

14bは同時に延びたり縮んだりして通常の縦形振動子
と同様に第1図(p)に示すように軸方向に共振振動を
行なう、そこで、それぞれの電極板15.16に印加す
る駆動電圧の位相差を180度を基準として進相あるい
は遅相とすると、その度合いに応じて第1図(m)〜(
o)、(q)〜(s)のように回転方向と楕円率を変化
させて楕円振動を行なう。また、位相差を180度とし
て相対振幅を変化させると、同様にその大小と極性とに
よって第1図(t)(u)(w)(x)に示すようにそ
の傾斜を変えて直線振動する。
14b expands and contracts at the same time to perform resonant vibration in the axial direction as shown in FIG. If the phase difference is advanced or delayed with respect to 180 degrees, then Figure 1 (m) to (
o), (q) to (s), the rotational direction and ellipticity are changed to perform elliptic vibration. Furthermore, when the phase difference is set to 180 degrees and the relative amplitude is changed, linear vibration occurs with the slope changing as shown in Figure 1 (t), (u), (w), and (x) depending on the magnitude and polarity. .

さらに、相対位相と相対振幅とを同時に変化させると、
その振動姿態は楕円振動が傾斜した傾斜楕円振動が得ら
れ、その楕円率、傾斜角、回転方向及び大きさは、それ
ぞれの駆動電圧の相対位相と振幅により自由に制御する
ことができる。
Furthermore, if we change the relative phase and relative amplitude simultaneously,
The vibration state is a tilted elliptical vibration in which the elliptical vibration is tilted, and the ellipticity, inclination angle, rotation direction, and magnitude can be freely controlled by the relative phase and amplitude of each drive voltage.

このような振動子において、軸方向又はたわみ方向振動
でのみ動作させる場合には、その共振振動数を用いれば
よい。複合振動として用いる時には、軸方向共振振動数
とたわみ方向共振振動数とはその使用する負荷状態にて
一致させるのが最も好ましいが、完全に一致させるのは
構造上困難であり、しかも、ある範囲内、例えば1〜2
%の差であれば実用上問題とはならない。したがって、
前述の説明における軸方向又はたわみ共振周波数は、そ
の好ましい周波数であるとともに理解し易くするために
示したものであって、それらに限定されるものでなく、
いずれの共振周波数にても同様に適用できる。
When such a vibrator is operated only by vibration in the axial direction or in the flexural direction, its resonance frequency may be used. When used as a compound vibration, it is most preferable that the axial resonance frequency and the flexural resonance frequency match under the load conditions used, but it is structurally difficult to make them completely match, and furthermore, within a certain range. For example, 1 to 2
A difference of % does not pose a practical problem. therefore,
The axial or flexural resonant frequencies in the foregoing description are preferred frequencies and are shown for ease of understanding and are not limited thereto.
It is equally applicable to any resonance frequency.

また、特に後述する超音波カッタや超音波振動切削装置
などのように、軸と直角方向の振動(たわみ振動)を必
要とする場合には、同一励振電圧で駆動できるため、駆
動回路が簡素化される。
In addition, in cases where vibrations in the direction perpendicular to the axis (flexural vibrations) are required, such as ultrasonic cutters and ultrasonic vibration cutting devices, which will be described later, the drive circuit can be simplified because the drive circuit can be driven with the same excitation voltage. be done.

つぎに、第4図に示すものは、本実施例における電歪素
子14の変形例であり、半円弧状に二分割して形成され
た電歪素子本体26の一方に電極27と共通電極29と
を形成し、他方に電極28と共通電極29とを形成した
ものである。そして、両者を一定の間隔をおいて組み立
てるが、両者間の空隙を分割部としているものである。
Next, what is shown in FIG. 4 is a modified example of the electrostrictive element 14 in this embodiment. and an electrode 28 and a common electrode 29 are formed on the other side. Then, the two are assembled with a certain interval between them, with the gap between them serving as a dividing part.

しかして、第5図乃至第7図に示すものは、前記実施例
で説明した超音波振動子の応用例であり、第1図乃至第
4図について説明した部分と同一部分は同一符号を用い
、説明も省略する。
Therefore, what is shown in FIGS. 5 to 7 is an application example of the ultrasonic transducer explained in the above embodiment, and the same parts as those explained in FIGS. 1 to 4 are denoted by the same reference numerals. , the explanation is also omitted.

まず、第5図に示すものは、超音波モータとして利用し
たものである。すなわち、支軸30が中心に設けられた
円板状のロータ31の面32に複合振動子25の出力端
部18を圧接したものである。そこで、例えば、出力端
部18の振動を第1図における(S)の状態とすると、
ロータ31は矢印の方向に回転する。そして、その相対
位相を制御して第1図(g)の姿態とすると、ロータ3
1の回転速度は遅くなり、第1図(p)に示すように軸
方向振動とすると静止し、駆動電圧の位相差を逆方向に
増加させて行けばロータ31は逆方向にその速度を増加
させて行く。このようにしてロータ31はその回転速度
及び回転方向を制御されて駆動される。
First, the one shown in FIG. 5 is used as an ultrasonic motor. That is, the output end 18 of the composite vibrator 25 is pressed against the surface 32 of a disk-shaped rotor 31 with the support shaft 30 provided in the center. Therefore, for example, if the vibration of the output end 18 is set to the state (S) in FIG.
The rotor 31 rotates in the direction of the arrow. Then, if the relative phase is controlled to take the position shown in FIG. 1(g), the rotor 3
The rotational speed of the rotor 31 becomes slower, and if it is an axial vibration as shown in Fig. 1(p), it becomes stationary, and if the phase difference of the drive voltage is increased in the opposite direction, the rotor 31 increases its speed in the opposite direction. Let me go. In this manner, the rotor 31 is driven with its rotation speed and rotation direction controlled.

このような超音波モータは前述のように回転運動させる
ものの他に、ロータ31に変えて直進可動体を用いれば
、その直進可動体を相対的に直線駆動することができる
ものである。すなわち、振動子側を固定すれば直進可動
体が直線運動し、その直進可動体を固定すれば振動子側
が直線運動する。また、−個の複合振動子25で正逆両
方向の駆動ができるとともにその楕円率を制御すること
ができるため、接触面での摩耗を少なく最良の接触状態
での駆動が可能となり、その効率と信頼性とが高められ
る。
In addition to the type of ultrasonic motor that performs rotational motion as described above, if a linear movable body is used in place of the rotor 31, the linear movable body can be relatively linearly driven. That is, if the transducer side is fixed, the linear movable body moves linearly, and if the linear movable body is fixed, the transducer side moves linearly. In addition, since it is possible to drive in both forward and reverse directions with the - number of composite vibrators 25 and to control the ellipticity, it is possible to drive in the best contact condition with less wear on the contact surface, and to improve its efficiency. Reliability is enhanced.

つぎに、第6図に示したものは、カッタに利用した例で
ある。すなわち、金属材33にはその先端にナイフ形切
刃34が設けられ、電極板15゜16には共通電極板2
0に対して同一駆動電圧を印加することにより、振動子
25はたわみ振動し、切刃34の先端は矢印35のよう
に軸と直角方向に直線振動する。通常の超音波カッタが
軸方向の振動による切れ味向上効果を持つのに対して、
このカッタは軸と直角方向に振動するため刃は被切削物
に対してカット方向に振動するので、超音波振動による
効果が一層向上する。
Next, what is shown in FIG. 6 is an example of use as a cutter. That is, the metal material 33 is provided with a knife-shaped cutting edge 34 at its tip, and the electrode plates 15 and 16 are provided with a common electrode plate 2.
By applying the same driving voltage to 0, the vibrator 25 bends and vibrates, and the tip of the cutting blade 34 vibrates linearly in a direction perpendicular to the axis as shown by an arrow 35. While ordinary ultrasonic cutters have the effect of improving sharpness through axial vibration,
Since this cutter vibrates in a direction perpendicular to the axis, the blade vibrates in the cutting direction relative to the object to be cut, which further improves the effect of ultrasonic vibration.

ついで、第7@に示すものは、超音波振動切削する旋盤
に利用した例である。すなわち、複合振動子25はその
軸方向に1波長で構成され、出力端部にバイト36が固
定される。複合振動子25は先端部より第1のノードま
で細径で構成されることにより、たわみ振動変位は拡大
されて、バイト36は第7図中で上下方向に大きく共振
振動を行ない、矢印の方向に回転する被加工物37に押
し当てることにより振動切削加工が行なわれる。
Next, the example shown in No. 7 @ is an example of use in a lathe that performs ultrasonic vibration cutting. That is, the composite vibrator 25 has one wavelength in its axial direction, and a cutting tool 36 is fixed to the output end. Since the compound vibrator 25 has a small diameter from the tip to the first node, the deflection vibration displacement is expanded, and the cutting tool 36 performs a large resonant vibration in the vertical direction in FIG. 7, and moves in the direction of the arrow. Vibration cutting is performed by pressing the vibration against the rotating workpiece 37.

このように複合振動子25の一方の端部にバイト36を
設けたため、従来の振動切削装置における縦形振動子が
不要となるだけでなく、全長が短くて振幅拡大比が大き
く取れ、従って、装置がコンパクトになり、さらに、た
わみ振動のノードを点当りで保持すれば、振動体の固定
や交換が簡単確実となり、振動損失がなく効串の良い駆
動が行なえる。
Since the cutting tool 36 is provided at one end of the compound vibrator 25 in this way, not only does the vertical vibrator in the conventional vibration cutting device become unnecessary, but the overall length is short and a large amplitude expansion ratio can be achieved. is made more compact, and if the nodes of flexural vibration are held at points, the vibrating body can be fixed and replaced easily and reliably, and highly effective driving can be performed without vibration loss.

発明の効果 本発明は上述のように1分割部を境として二分割された
電極が一面に形成され共通電極が他面に形成されるとと
もに前記電極毎に分極方向を反転させた電歪素子を設け
、一枚又は複数枚の前記電歪素子の両面に金属材を締着
具により一体的に締着するようにしたので、それぞれの
電極に同一交流電圧、互いに位相の異なる交流電圧、互
いに振幅の異なる交流電圧、或いはこれらを組合せた交
流電圧を印加することにより出力端部に電極の分割方向
と直角方向の面上で直線振動、円振動、楕円振動などの
複合運動を任意の方向に発生させることができ、さらに
、その回転方向、楕円率、傾斜角などを自由に制御する
ことができるものである。
Effects of the Invention The present invention provides an electrostrictive element in which, as described above, an electrode is divided into two parts with one dividing part as a boundary, an electrode is formed on one surface, a common electrode is formed on the other surface, and the polarization direction is reversed for each of the electrodes. Since the metal material is integrally fastened to both sides of one or more of the electrostrictive elements using fasteners, each electrode can receive the same AC voltage, AC voltages with different phases, and amplitudes of each other. By applying different AC voltages or a combination of these AC voltages, complex motions such as linear vibration, circular vibration, and elliptical vibration can be generated in any direction at the output end on a plane perpendicular to the direction in which the electrodes are divided. Furthermore, the direction of rotation, ellipticity, angle of inclination, etc. can be freely controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す縦断側面図、第2図は
電歪素子の斜視図、第3図は電極の斜視図、第4図は電
歪素子の変形例を示す斜視図、第5図は超音波モータに
利用した状態を示す斜視図。 第6図は超音波カッタに利用した状態を示す斜視図、第
7図は超音波切削装置に利用した状態を示す側面図、第
8図は従来の超音波モータの一例を示す分解斜視図であ
る。 10・・・分割部、11.12・・・電極、13・・・
共通電極、14・・・電歪素子、19.21・・・金属
村山 願 人   多賀電気株式会社 37図 」 5国 36 図
Fig. 1 is a longitudinal side view showing an embodiment of the present invention, Fig. 2 is a perspective view of an electrostrictive element, Fig. 3 is a perspective view of an electrode, and Fig. 4 is a perspective view showing a modification of the electrostrictive element. , FIG. 5 is a perspective view showing a state in which the ultrasonic motor is used. Fig. 6 is a perspective view showing how it is used in an ultrasonic cutter, Fig. 7 is a side view showing how it is used in an ultrasonic cutting device, and Fig. 8 is an exploded perspective view showing an example of a conventional ultrasonic motor. be. 10... Division part, 11.12... Electrode, 13...
Common electrode, 14...Electrostrictive element, 19.21...Metal Murayama Nobuhito Taga Electric Co., Ltd. Figure 37'' 5 countries Figure 36

Claims (1)

【特許請求の範囲】 1、分割部を境として二分割された電極が一面に形成さ
れ共通電極が他面に形成されるとともに前記電極毎に分
極方向を反転させた電歪素子を設け、一枚又は複数枚の
前記電歪素子の画面に金属材を締着具により一体的に締
着したことを特徴とする超音波振動子。 2、分割部を境として二分割された電極が一面に形成さ
れ共通電極が他面に形成されるとともに前記電極毎に分
極方向を反転させた電歪素子を設け、一枚又は複数枚の
前記電歪素子の両面に金属材を締着具により一体的に締
着し、前記電歪素子の電極に同相又は逆相の同一振幅の
駆動電圧を印加するようにしたことを特徴とする超音波
振動子の駆動制御方法。 3、分割部を境として二分割された電極が一面に形成さ
れ共通電極が他面に形成されるとともに前記電極毎に分
極方向を反転させた電歪素子を設け、一枚又は複数枚の
前記電歪素子の両面に金属材を締着具により一体的に締
着し、前記電歪素子の電極に相対位相を制御した駆動電
圧を印加して駆動するようにしたことを特徴とする超音
波振動子の駆動制御方法。 4、分割部を境として二分割された電極が一面に形成さ
れ共通電極が他面に形成されるとともに前記電極毎に分
極方向を反転させた電歪素子を設け、一枚又は複数枚の
前記電歪素子の両面に金属材を締着具により一体的に締
着し、前記電歪素子の電極に相対振幅を制御した駆動電
圧を印加して駆動するようにしたことを特徴とする超音
波振動子の駆動制御方法。 5、分割部を境として二分割された電極が一面に形成さ
れ共通電極が他面に形成されるとともに前記電極毎に分
極方向を反転させた電歪素子を設け、一枚又は複数枚の
前記電歪素子の両面に金属材を締着具により一体的に締
着し、前記電歪素子の電極に相対位相及び相対振幅を制
御した駆動電圧を印加して駆動するようにしたことを特
徴とする超音波振動子の駆動制御方法。
[Scope of Claims] 1. An electrostrictive element is provided in which an electrode is divided into two parts with a dividing part as a border, and a common electrode is formed on one surface, and the polarization direction is reversed for each of the electrodes. An ultrasonic transducer characterized in that a metal material is integrally fastened to the screen of one or more of the electrostrictive elements using a fastener. 2. An electrostrictive element is provided in which an electrode is divided into two parts with the dividing part as a border, and a common electrode is formed on the other surface, and the polarization direction is reversed for each electrode, and one or more of the above-mentioned Ultrasonic waves characterized in that a metal material is integrally fastened on both sides of an electrostrictive element using fasteners, and a driving voltage of the same amplitude in the same phase or in opposite phase is applied to the electrodes of the electrostrictive element. Vibrator drive control method. 3. An electrostrictive element is provided in which an electrode is divided into two parts with the dividing part as a border, and a common electrode is formed on the other surface, and the polarization direction is reversed for each of the electrodes, and one or more of the above-mentioned Ultrasonic waves characterized in that metal materials are integrally fastened on both sides of an electrostrictive element using fasteners, and the electrostrictive element is driven by applying a driving voltage with a controlled relative phase to the electrodes of the electrostrictive element. Vibrator drive control method. 4. An electrostrictive element is provided in which an electrode is divided into two parts with the dividing part as a boundary, and a common electrode is formed on the other surface, and the polarization direction is reversed for each of the electrodes, and one or more of the above-mentioned Ultrasonic waves characterized in that metal materials are integrally fastened to both sides of an electrostrictive element using fasteners, and the electrostrictive element is driven by applying a driving voltage with a controlled relative amplitude to the electrodes of the electrostrictive element. Vibrator drive control method. 5. An electrostrictive element is provided, in which an electrode is divided into two parts with the dividing part as a border, and a common electrode is formed on one side, and the polarization direction is reversed for each electrode, and one or more of the above-mentioned electrodes are provided. Metal materials are integrally fastened to both sides of the electrostrictive element using fasteners, and the electrostrictive element is driven by applying a driving voltage with controlled relative phase and relative amplitude to the electrodes of the electrostrictive element. A method for controlling the drive of an ultrasonic transducer.
JP4828987A 1987-03-03 1987-03-03 Ultrasonic vibrator and drive control method thereof Pending JPS63214381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4828987A JPS63214381A (en) 1987-03-03 1987-03-03 Ultrasonic vibrator and drive control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4828987A JPS63214381A (en) 1987-03-03 1987-03-03 Ultrasonic vibrator and drive control method thereof

Publications (1)

Publication Number Publication Date
JPS63214381A true JPS63214381A (en) 1988-09-07

Family

ID=12799277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4828987A Pending JPS63214381A (en) 1987-03-03 1987-03-03 Ultrasonic vibrator and drive control method thereof

Country Status (1)

Country Link
JP (1) JPS63214381A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600196A (en) * 1989-06-05 1997-02-04 Canon Kabushiki Kaisha Vibration driven motor
JP2009119560A (en) * 2007-11-15 2009-06-04 Seiko Epson Corp Driving method for oscillating cutter
JP2010524314A (en) * 2007-04-04 2010-07-15 エセック エージー Ultrasonic transducer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600196A (en) * 1989-06-05 1997-02-04 Canon Kabushiki Kaisha Vibration driven motor
JP2010524314A (en) * 2007-04-04 2010-07-15 エセック エージー Ultrasonic transducer
JP2009119560A (en) * 2007-11-15 2009-06-04 Seiko Epson Corp Driving method for oscillating cutter
JP4507006B2 (en) * 2007-11-15 2010-07-21 セイコーエプソン株式会社 Driving method of vibration cutter

Similar Documents

Publication Publication Date Title
US4728843A (en) Ultrasonic vibrator and drive control method thereof
US5200665A (en) Ultrasonic actuator
US6252332B1 (en) Ultrasonic motor
US4812697A (en) Ultrasonic vibrator and a method of controllingly driving same
JPS62247870A (en) Method of controlling drive of ultrasonic vibrator
JPH0117354B2 (en)
US4764702A (en) Ultrasonic motor device
JPH0458273B2 (en)
US4983874A (en) Vibrator and ultrasonic motor employing the same
JPS62114478A (en) Ultrasonic vibrator and control method for drive thereof
JPS63214381A (en) Ultrasonic vibrator and drive control method thereof
JPS6130972A (en) Supersonic motor device
JPS62152377A (en) Drive-controlling method for ultrasonic wave vibrator
JPS62126874A (en) Ultrasonic vibrator and drive controlling method thereof
JPS59185180A (en) Supersonic motor
Dong et al. ACenter-Wobbling'Ultrasonic Rotary Motor Using a Metal Tube-Piezoelectric Plate Composite Stator
JP3029677B2 (en) Ultrasonic transducer, driving method thereof, and ultrasonic actuator
JP2971971B2 (en) Ultrasonic actuator
JPS62152378A (en) Ultrasonic wave vibrator and its drive-controlling method
JPS63110973A (en) Piezoelectric driver
JPS62247871A (en) Ultrasonic vibrator
JPS63294276A (en) Ultrasonic wave motor
JPH06210244A (en) Ultrasonic vibrator and ultrasonic actuator
JPH02228275A (en) Ultrasonic motor and method of drive thereof
JPH07178370A (en) Vibrator and vibrating actuator