JPH01107518A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPH01107518A
JPH01107518A JP26450387A JP26450387A JPH01107518A JP H01107518 A JPH01107518 A JP H01107518A JP 26450387 A JP26450387 A JP 26450387A JP 26450387 A JP26450387 A JP 26450387A JP H01107518 A JPH01107518 A JP H01107518A
Authority
JP
Japan
Prior art keywords
gas
purge
pressure
line
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26450387A
Other languages
Japanese (ja)
Inventor
Yoshiko Mino
美濃 美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26450387A priority Critical patent/JPH01107518A/en
Publication of JPH01107518A publication Critical patent/JPH01107518A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a film with good reproducibility by providing a discharge amount control line in a discharge line in case of switching a reaction gas supply line to a purge gas supply line, thereby setting the gas discharge amount and gas conditions of a step of extracting gas in a reaction tube of previous step of vapor growth to the same as those of the step of vapor growth. CONSTITUTION:In purge gas lines 3, 3A, 3B, purge gases 2 controlled by flowrate controllers 1 flow to a reaction tube 5 which is reduced under pressure by a gas discharge system 4, and is discharged through a discharge line 6 to a discharge (I). In this case, in the first purge, the pressure is high due to a large quantity of purge gas flowing from two systems, is then reduced in quantity to one system, discharge amount is further suppressed by the operation of a discharge control line, and regulated substantially to the same conditions as those of a step of vapor growth. Then, the purge line is turned OFF, the gas in the tube is extracted, but since the pressure is reduced in the second purge, the time of gas extraction is shortened, and pressure change due to the introduction of reaction gas is reduced, thereby forming a film with good reproducibility.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は気相成長方法に関し、特に半導体の気相成長過
程におけるガス供給方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a vapor phase growth method, and more particularly to a gas supply method during the vapor phase growth process of semiconductors.

従来の技術 半導体への気相成長過程における圧力変化は反応管内の
雰囲気を不安定にさせて膜均一性等に影響をおよぼす。
Conventional Technology Pressure changes during the process of vapor phase growth of semiconductors destabilize the atmosphere within the reaction tube and affect film uniformity.

例えばPo1y−5i膜形成の場合には反応速度が速く
、反応管内の温度バラツキによる影響は少ないがSi3
N、膜形成の場合にはそれに反して反応速度が遅く、反
応管内の温度バラツキを±0.3°C以下に抑えること
でバッチ内バラツキに低値を得ることができる。このこ
とは、形成膜によっては反応管内の温度バラツキに対し
て厳しい条件が要求されるということであり、膜形成工
程における温度変化も抑えなけ【ばならない。
For example, in the case of forming a Po1y-5i film, the reaction rate is fast and the influence of temperature variations in the reaction tube is small, but Si3
On the other hand, in the case of nitrogen film formation, the reaction rate is slow, and by suppressing the temperature variation within the reaction tube to ±0.3°C or less, it is possible to obtain a low value for intra-batch variation. This means that depending on the film to be formed, strict conditions are required for temperature variations within the reaction tube, and temperature changes during the film formation process must also be suppressed.

従来法の一例としてガス系統図である第3図を用いて以
下に述べる。
An example of the conventional method will be described below using FIG. 3, which is a gas system diagram.

パージ工程において、流量制御器1で制御されたパージ
ガス2は、パージガス供給ライン3,3′を通シ、排気
システム4によって減圧された反応管5へ導入されたの
ち排気ライ/6を通シ、排気lへ排気量れる。
In the purge process, the purge gas 2 controlled by the flow rate controller 1 passes through the purge gas supply lines 3 and 3', is introduced into the reaction tube 5 whose pressure is reduced by the exhaust system 4, and is then passed through the exhaust line/6. Displacement volume goes to exhaust l.

一方、形成膜種によって反応ガスライン7.89のいづ
nかを選択、作動させて、パージガスと同様に流量制御
器1で制御しながら、まずは排気■へ空流しをする。こ
のとき反応管内の雰囲気はパージ状態に保たれている。
On the other hand, depending on the type of film to be formed, one of the reaction gas lines 7.89 is selected and activated, and while controlled by the flow rate controller 1 in the same manner as the purge gas, air is first flowed to the exhaust gas (2). At this time, the atmosphere inside the reaction tube is kept in a purged state.

反応ガスの空流しおよび反応管内のパージが充分にでき
たのちパージガス供給ライン3,3′を止め、充分減圧
状態にしてから反応ガスが反応管内へ導入されるように
切換える。このときの反応ガス流量は膜形成時の圧力を
変化させる。反応ガス流量によって圧力変化させた場合
には形成膜の膜均一性に大きく影響をおよぼす。それに
ついて以下に説明する。膜形成における必要条件は、ガ
ス流量、圧力、温度である。温度を一定にし、ガス流量
、圧力の相関を調べたものを第4図に示す。これはガス
導入口を反応管の上部(Top )、排気を下部(Bo
ttom )に設けた縦型反応装置を用いて、それぞれ
の条件における反応管内の温度分布を調べたもので、亀
は反応ガス導入量による圧力調整(Gas FloWC
ontrolり、bは排気コンダクタンスによる圧力調
整(Kxhausst Control)を行ったもの
を示す。
After the reaction gas has been sufficiently flushed and the reaction tube has been sufficiently purged, the purge gas supply lines 3, 3' are stopped, the pressure is sufficiently reduced, and then the reaction gas is introduced into the reaction tube. The reaction gas flow rate at this time changes the pressure during film formation. When the pressure is changed by the flow rate of the reactant gas, the uniformity of the formed film is greatly affected. This will be explained below. The requirements for film formation are gas flow rate, pressure, and temperature. Figure 4 shows the correlation between gas flow rate and pressure while keeping the temperature constant. This is done by placing the gas inlet at the top of the reaction tube (Top) and the exhaust at the bottom (Bo
The temperature distribution inside the reaction tube was investigated under various conditions using a vertical reactor installed in a gas flow chamber (Gas FloWC).
control, b indicates pressure adjustment using exhaust conductance (Kxhausst Control).

前記のように反応ガス流量によって圧力変化させた場合
、第4図1の右に示すように反応ガス導入口付近での反
応管内温度に変化がみられる。これは、同時間の膜形成
であっても温度の下がっているTop部と、安定してい
る部分では堆積する膜厚が異なり、従ってバッチ内バラ
ツキが高値になる。
When the pressure is changed by the flow rate of the reactant gas as described above, a change is observed in the temperature inside the reaction tube near the reactant gas inlet, as shown on the right side of FIG. 4. This is because even if the film is formed for the same time, the thickness of the deposited film is different between the top part where the temperature is decreasing and the part where the temperature is stable, and therefore the intra-batch variation becomes high.

そこで、排気ライン6に排気コントロールライン10を
設けてガスを付加しその流量調整によって圧力を変化さ
せた。この場合には反応ガス導入口付近の温度変化はみ
られなかった。(第4図b)このことから、膜形成すな
わち気相成長工程においては適切なガス流量、圧力にな
るよう排気量を調整して設定している。例えば圧力を6
oPaに設定する場合、パージ用N2 ガスを800c
c/win流さなければならない。一方、気相成長工程
での反応ガス流量をパージ用N2ガスとほぼ同程度にす
れば前記同圧力に保たれるわけであるが、この場合導入
ガス量が多く、反応管内の反応ガス導入口付近で温度が
下がるため、反応ガス量を前記温度変化の生じない条件
例えばsoo/winにし、排気コントロールライン1
0にガスを付加して排気量を変化させて前記パージ工程
と同圧力にしている。なぜならば、ガス導入量を同量と
し、反応管内温度に変化させないためにはヒータ加熱条
件を変化させなければならない。この均熱条件を出すこ
とは大変手間がかかるからである。
Therefore, an exhaust control line 10 was provided in the exhaust line 6 to add gas, and the pressure was changed by adjusting the flow rate. In this case, no temperature change was observed near the reactant gas inlet. (FIG. 4b) For this reason, in the film formation process, that is, the vapor phase growth process, the exhaust amount is adjusted and set so as to obtain an appropriate gas flow rate and pressure. For example, the pressure is 6
When setting to oPa, use 800c of N2 gas for purging.
I have to run c/win. On the other hand, if the flow rate of the reaction gas in the vapor phase growth process is made approximately the same as that of the N2 gas for purging, the same pressure can be maintained, but in this case, the amount of introduced gas is large and the reaction gas inlet in the reaction tube is Since the temperature decreases in the vicinity, the amount of reaction gas is set to a condition where no temperature change occurs, for example, soo/win, and the exhaust control line 1 is
Gas is added to 0 to change the exhaust volume to maintain the same pressure as in the purge process. This is because the heater heating conditions must be changed in order to maintain the same amount of gas introduced and to prevent the temperature inside the reaction tube from changing. This is because it takes a lot of time and effort to establish these soaking conditions.

、  発明が解決しようとする問題点 このような反応管内が減圧状態の装置を用いて膜形成を
行う場合、管内パージ、反応ガス空流し、管内ガス抜き
状態から気相成長状態にガス系を切シ換える際に、電気
的な切換動作に時間差を生じて圧力が変動するため反応
管内の雰囲気が不安定になる。雰囲気すなわち圧力、管
内温度、ガス量、ガス温度の変化は、反応速度、膜均一
性等に影響をおよぼす。
, Problems to be Solved by the Invention When film formation is performed using such an apparatus in which the inside of the reaction tube is under reduced pressure, it is necessary to purge the tube, air-flow the reaction gas, and switch off the gas system from the tube degassing state to the vapor phase growth state. When switching, a time difference occurs in the electrical switching operation, causing pressure fluctuations, which makes the atmosphere inside the reaction tube unstable. Changes in the atmosphere, ie, pressure, tube temperature, gas amount, and gas temperature, affect the reaction rate, film uniformity, and the like.

問題点を解決するための手段 本発明は上記問題点が反応ガスを反応管内へ導入、すな
わち気相成長する前の圧力変化に起因していることに注
目し、これを解決するためにノζ−ジガス量と排気量を
変化させて二段階パージを行い、第二のパージにおいて
管内パージ工程と気相成長工程のガス系切換に際して、
管内の圧力変化が生じないように反応管の排気部と排気
システムとの間に排気量コントロール用の不活性ガス導
入ラインを設けて、気相反応工程乗件と同量の不活性ガ
スを管内パージ工程、反応ガス空流し工程、気相反応工
程に付加してどの工程も排気量を同条件とする。
Means for Solving the Problems The present invention focuses on the fact that the above problems are caused by pressure changes before the reaction gas is introduced into the reaction tube, that is, before vapor phase growth. - Perform two-stage purging by changing the amount of gas and the amount of exhaust gas, and in the second purge, when switching the gas system between the pipe purge process and the vapor growth process,
In order to prevent pressure changes inside the tube, an inert gas introduction line for exhaust volume control is installed between the exhaust part of the reaction tube and the exhaust system, and the same amount of inert gas as the gas phase reaction process passenger is introduced into the tube. In addition to the purge process, reaction gas air flow process, and gas phase reaction process, the exhaust volume is set to be the same in all processes.

作用 従来パージ工程と気相成長工程との切換には次のような
作業が必要であった。
Function Conventionally, switching between the purge process and the vapor growth process required the following operations.

(1)パージガス閉栓 (2)管内ガス抜き (3)反応ガス管内導入・排気量コントロールライン開
栓 (3)においては、反応ガスの管内導入と排気量コント
ロールライン開栓のふたつの動作を必要とするため、電
気的な切換による時間差と排気量差の変化によって管内
圧力の変動を生じていた。従って上記手段を用いること
で、(3)においては、反応ガスの管内導入のみの動作
で〜よく、またパージ工程、管内ガス抜き工程、反応ガ
スの管内導入すなわち気相成長工程ともに同排気状態で
あることから排気量差による圧力変化も生じない。
(1) Closing the purge gas (2) Venting the gas inside the pipe (3) Opening the reactant gas introduction into the pipe/evacuation control line (3) requires two operations: introducing the reactant gas into the pipe and opening the evacuation control line. Therefore, changes in the time difference and displacement difference due to electrical switching caused fluctuations in the pressure inside the pipe. Therefore, by using the above means, in (3), it is sufficient to perform only the operation of introducing the reaction gas into the tube, and the purge step, the step of degassing the inside of the tube, and the introduction of the reaction gas into the tube, that is, the vapor phase growth step, can all be performed under the same exhaust state. Because of this, pressure changes do not occur due to differences in displacement.

実施例 本発明の実施例について第1図を用いて以下に述べる。Example An embodiment of the present invention will be described below with reference to FIG.

3.3人、3Bはパージガスラインでありそれぞれの流
量制御器1によって制御さnたパージガス2が排気シス
テム4によって減圧にされた反応管5へ流n、排気ライ
ン6を通シ排気Iへ排気される構成になっている。
3.3 people, 3B is a purge gas line, and the purge gas 2 controlled by each flow controller 1 flows into the reaction tube 5, which is reduced in pressure by the exhaust system 4, and is exhausted through the exhaust line 6 to the exhaust gas I. The configuration is such that

ま′ず第1のパージでは、排気コントロールラインは作
動せずパージライン3A、3Bから流れるパージガスを
強力に引いている。このときのパージガス量はパージラ
イン3人、3Bそれぞnにセットした量が流れ管内のパ
ージ効果を高めている。
First, in the first purge, the exhaust control line is not activated and the purge gas flowing from the purge lines 3A and 3B is strongly pulled. At this time, the amount of purge gas set to n for each of purge lines 3 and 3B enhances the purging effect in the flow pipe.

次に第二のパージとしてパージライン3BiOFFKL
パージガス量を抑えるとともに排気コントロールライン
を作動させて、気相成長工程と同条件にする。このとき
のパージライン3Bに流れるガス量は気相成長工程にお
ける反応ガス量とほぼ同じとする。次に形成膜種によっ
て選択した反応ガスライン7、 8. 9のいづれかを
作動させ、まず排気■へ空流しをする。次にパージガス
ライン3ムt−0FFl、反応管S内のガス抜きを行っ
たのち、反応ガスが反応管へ流れるように切シ換え気相
成長させる。
Next, as a second purge, purge line 3BiOFFKL
The amount of purge gas is reduced and the exhaust control line is activated to create the same conditions as in the vapor phase growth process. The amount of gas flowing into the purge line 3B at this time is approximately the same as the amount of reaction gas in the vapor phase growth process. Next, reaction gas lines 7 and 8 selected depending on the type of film to be formed. Activate one of 9 and first flush air to the exhaust ■. Next, after degassing the purge gas line 3m-0FFl and the reaction tube S, the reaction gas is switched so that it flows into the reaction tube, and vapor phase growth is performed.

次に反応ガス供給を止め管内の反応ガスを抜いたあと、
管内のガス巻き込みを防ぐためまずパージライン3ムよ
りパージガスを流し、次にパージライン3Bよりパージ
ガスを流して、管内を充分にパージする。そnから排気
ライン6をOFFにし30 mHg程度にま°で至った
ら、パージライン3を作動させ多量のパージガスを管内
に流して常圧に戻す。パージ、ガス抜き、気相成長の各
工程における時間経過と管内圧力の相関を第2図、第6
図に示す。
Next, after stopping the reaction gas supply and venting the reaction gas inside the tube,
To prevent gas from being entrained inside the pipe, purge gas is first flowed through purge line 3M, and then purge gas is flowed through purge line 3B to sufficiently purge the inside of the pipe. Then, the exhaust line 6 is turned off, and when the pressure reaches about 30 mHg, the purge line 3 is activated to flow a large amount of purge gas into the pipe to return the pressure to normal pressure. Figures 2 and 6 show the correlation between the passage of time and the pressure inside the tube in each process of purging, degassing, and vapor phase growth.
As shown in the figure.

第2図は本発明の方法によるもので、第1パージでは2
系統から流れる多量のパージガスのため圧力は高く、次
にパージが1系統に減量され、さらに排気コントロール
ラインの作動によシ排気量が抑えられて気相成長工程と
ほぼ同条件に調整される。そののち、パージラインがO
FFされ管内のガス抜きが行なわれるが第2のパージに
おいて低圧力になっているため、ガス抜きの時間が短か
く、また反応ガス導入による圧力変化も少ない。
Figure 2 shows the method of the present invention, in which 2
The pressure is high due to the large amount of purge gas flowing from the system, and then the purge is reduced to one system, and the exhaust amount is suppressed by operating the exhaust control line, adjusting to almost the same conditions as in the vapor phase growth process. After that, the purge line is
FF is performed to vent gas inside the tube, but since the pressure is low in the second purge, the time for venting is short and there is little change in pressure due to the introduction of the reaction gas.

第6図は従来の方法によるもので、パージ効果を考慮し
てガス量が多いため圧力は高く、パージラインがOFF
さn管内のガス抜きにおいても本発明の方法と比べると
時間がかかる。また、ガス抜きののちの反応ガス導入と
排気コントロールライン作動のふたつの動作を同時に行
わなければならないが゛峨気的切換に時間差が生じ気相
成長条件に至る迄の間、圧力変動が犬きく不安定である
ことが判る。
Figure 6 shows the conventional method, in which the pressure is high due to the large amount of gas taking into consideration the purge effect, and the purge line is turned off.
It also takes more time to vent the gas inside the tube than in the method of the present invention. In addition, the two operations of introducing the reaction gas after degassing and activating the exhaust control line must be performed at the same time, but there is a time lag in the changeover, resulting in pressure fluctuations until the vapor phase growth conditions are reached. It turns out that it is unstable.

従って、本発明によれば次のような効果が得られる。Therefore, according to the present invention, the following effects can be obtained.

発明の効果 本発明の方法によれば、ガス切換時の圧力変動が極めて
少なく、反応管内の雰囲気が安定に保たれる。
Effects of the Invention According to the method of the present invention, pressure fluctuations during gas switching are extremely small, and the atmosphere inside the reaction tube is kept stable.

また圧力変動に伴う管内均熱変化を抑えることができる
ため、従来の温度とガス反応および圧力で影響されてい
たバッチ内膜均一性を向上できる上、再現性のよい膜形
成を行うことができる。
In addition, it is possible to suppress changes in the internal temperature of the tube due to pressure fluctuations, which improves the uniformity of the film within the batch, which was conventionally affected by temperature, gas reactions, and pressure, and enables film formation with good reproducibility. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法によるガス系統図、第2図は本発
明の方法による各工程の時間経過と管内圧力を示す図、
第3図は従来の方法によるガス系統図、第4図はガス量
、圧力による管内温度分布を示し、第4図aは反応ガス
導入量による圧力調整を行ったデータを示す図、第4図
すは排気コンダクタンスによる圧力調整を行ったデータ
を示す図、第5図は従来の方法による各工程の時間経過
と管内圧力を示す図である。 1・・・・・・流量制御器、2・・・・・・パージガス
、3・・・・・・パージガス供給ライン、4・・・・・
・排気システム、5・・・・・・反応管、6・・・・・
・排気ライン、7. 8. 9・・・・・・反応ガスラ
イン、10・・・・・・排気コントロールライン。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名項P
気、くI)            よ申駆I)第2図 II奇閘 5−・−及庭曹 ぷF気(1)       肩F民(り第4図 (OJ) ウエーノい12 (b) ウェーハイtL
Fig. 1 is a gas system diagram according to the method of the present invention, Fig. 2 is a diagram showing the time course of each process and the pressure inside the pipe according to the method of the present invention,
Fig. 3 is a gas system diagram according to the conventional method, Fig. 4 shows the temperature distribution in the pipe depending on the gas amount and pressure, and Fig. 4a shows the data after pressure adjustment according to the amount of reactant gas introduced. Figure 5 is a diagram showing the time course of each process and the pressure inside the pipe according to the conventional method. 1...Flow rate controller, 2...Purge gas, 3...Purge gas supply line, 4...
・Exhaust system, 5...Reaction tube, 6...
・Exhaust line, 7. 8. 9... Reaction gas line, 10... Exhaust control line. Name of agent: Patent attorney Toshio Nakao and 1 other name
Ki, Ku I) Yoshin Kakeru I) Fig. 2 II Kikan 5 - - and Niwa Sopu F Ki (1) Shoulder F Min (ri Fig. 4 (OJ) Uenoi 12 (b) Way High tL

Claims (2)

【特許請求の範囲】[Claims] (1)圧力およびガス流量を制御した気相成長において
、反応ガス供給ラインとパージガス供給ラインとの切替
に際し、排気ラインに排気量コントロールラインを設け
て気相成長の前工程である反応管内のガス抜き工程の排
気量およびガス条件が気相成長工程と同条件になるよう
にしてなる気相成長方法。
(1) In vapor phase growth with controlled pressure and gas flow rate, when switching between the reaction gas supply line and the purge gas supply line, an exhaust volume control line is provided in the exhaust line to ensure that the gas in the reaction tube, which is a pre-process of vapor phase growth, is switched between the reaction gas supply line and the purge gas supply line. A vapor phase growth method in which the exhaust volume and gas conditions of the extraction process are the same as those of the vapor phase growth process.
(2)パージガス量と排気量を変化させ二段階パージを
行う特許請求の範囲第1項の気相成長方法。
(2) The vapor phase growth method according to claim 1, in which two-stage purging is performed by changing the amount of purge gas and the amount of exhaust gas.
JP26450387A 1987-10-20 1987-10-20 Vapor growth method Pending JPH01107518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26450387A JPH01107518A (en) 1987-10-20 1987-10-20 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26450387A JPH01107518A (en) 1987-10-20 1987-10-20 Vapor growth method

Publications (1)

Publication Number Publication Date
JPH01107518A true JPH01107518A (en) 1989-04-25

Family

ID=17404141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26450387A Pending JPH01107518A (en) 1987-10-20 1987-10-20 Vapor growth method

Country Status (1)

Country Link
JP (1) JPH01107518A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189051A (en) * 2009-02-20 2010-09-02 Iwaki Packs Kk Partition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189051A (en) * 2009-02-20 2010-09-02 Iwaki Packs Kk Partition

Similar Documents

Publication Publication Date Title
US6740166B2 (en) Thin film deposition apparatus for semiconductor
US7482283B2 (en) Thin film forming method and thin film forming device
EP0875595B1 (en) Process-gas supply apparatus
US6905549B2 (en) Vertical type semiconductor device producing apparatus
US5879415A (en) Semiconductor fabricating apparatus, method for controlling oxygen concentration within load-lock chamber and method for generating native oxide
KR20000019570A (en) Apparatus for supplying gas in chemical vapor deposition device and control method thereof
JPH07122498A (en) Gas supply method to chamber
US6133148A (en) Method of depositing film for semiconductor device in single wafer type apparatus using a lamp heating method
JPH01220434A (en) Heat treating furnace
JPH0698292B2 (en) Ultra high purity gas supply method and supply system
JPH01107518A (en) Vapor growth method
JPH05206033A (en) Cvd film deposition method and apparatus
JPH09148259A (en) Lateral reactor
WO2020246309A1 (en) Substrate processing method and substrate processing device
JP3908625B2 (en) Substrate processing equipment
JPS62106627A (en) Semiconductor manufacturing device
JP3670524B2 (en) Manufacturing method of semiconductor device
JPH10312968A (en) Method and device for exhaust gas switching
JPH06318116A (en) Gas flow rate controller
JP4354428B2 (en) Substrate processing equipment
JPH10237654A (en) Vapor growth device
JP3715824B2 (en) Substrate processing equipment
JPH04240198A (en) Vapor phase growth method for thin film
JPH04293778A (en) Discharge device for cvd device
KR20030004740A (en) Liquid reagent delivery system and process method using the same