JPH01107491A - High frequency heating device - Google Patents

High frequency heating device

Info

Publication number
JPH01107491A
JPH01107491A JP62263821A JP26382187A JPH01107491A JP H01107491 A JPH01107491 A JP H01107491A JP 62263821 A JP62263821 A JP 62263821A JP 26382187 A JP26382187 A JP 26382187A JP H01107491 A JPH01107491 A JP H01107491A
Authority
JP
Japan
Prior art keywords
current
transformer
output
circuit
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62263821A
Other languages
Japanese (ja)
Inventor
Shoichi Noguchi
祥一 野口
Kunio Ishiyama
石山 国雄
Teruaki Otaka
尾高 照明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Nisshin Electronics Co Ltd
Hitachi Ltd
Hitachi Consumer Electronics Co Ltd
Japan Display Inc
Original Assignee
Hitachi Device Engineering Co Ltd
Hitachi Nisshin Electronics Co Ltd
Hitachi Ltd
Hitachi Consumer Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Device Engineering Co Ltd, Hitachi Nisshin Electronics Co Ltd, Hitachi Ltd, Hitachi Consumer Electronics Co Ltd filed Critical Hitachi Device Engineering Co Ltd
Priority to JP62263821A priority Critical patent/JPH01107491A/en
Priority to US07/258,478 priority patent/US4903183A/en
Priority to KR1019880013566A priority patent/KR910006171B1/en
Publication of JPH01107491A publication Critical patent/JPH01107491A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

PURPOSE:To make a current transformer compact and light and simplify a current value detecting circuit by providing a means to detect an AC output current of the secondary side high voltage coil of a transformer, clipping the positive side or negative side of the output of this means and controlling a current to a magnetron to be a desired value. CONSTITUTION:A current transformer 60 of a current detecting means for a high voltage circuit is connected at a position nearer to a transformer 20 than a diode 60 so as to make it possible to measure the AC output current of the secondary side high voltage coil of the transformer 20. This makes the current on the primary side of the current transformer 60 to be AC, so the need of considering saturation of the magnetic circuit of the current transformer is eliminated, and the current transformer 60 which is compact and light can be used. By connecting diodes D1, D2 to each end of the secondary coil to clip the positive or negative side of the output, the current value detecting circuit can be simplified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電源部を小型、軽量化し、かつ出力制御部も
小型、簡単化して、低原価にした電子レンジ等に好適な
高周波加熱装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a high-frequency heating device suitable for microwave ovens, etc., in which the power supply unit is small and lightweight, and the output control unit is also small and simple, making the cost low. Regarding.

〔従来の技術〕[Conventional technology]

高周波加熱装置の加熱用高周波を発生するマグネトロン
の陽極に印加する直流高圧を得るために、商用交流周波
数のまま変圧器で昇圧して整流する方式は、変圧器が大
きく重りなるので、近年、商用交流電源を整流して一旦
直流とし、これをスイッチング素子の開閉動作により、
周波数が商用電源より遥かに高い高周波交流に変換(イ
ンバート)シて、小型、軽量な変圧器により昇圧し、こ
の交流を再度整流して得た直流高圧をマグネトロンの陽
極に印加する、所謂インバータ方式電源を用いた高周波
加熱装置が実用化されている。インバータ方式電源は、
スイッチング素子のオン/オフ期間比(デユーティ比)
を制御することにより出力制御も容易に効率良(行うこ
とが出来る。
In order to obtain the DC high voltage applied to the anode of the magnetron that generates the heating frequency of the high-frequency heating device, the method of boosting and rectifying the voltage at the commercial AC frequency using a transformer requires a large number of transformers, so in recent years commercial AC power is rectified to become DC, which is then turned on and off by switching elements.
The so-called inverter method converts (inverts) into high-frequency alternating current, which has a frequency much higher than that of commercial power, boosts the voltage using a small, lightweight transformer, and rectifies this alternating current again to apply the resulting high voltage direct current to the anode of the magnetron. High-frequency heating devices using a power source have been put into practical use. Inverter power supply is
Switching element on/off period ratio (duty ratio)
By controlling the output, output control can be easily and efficiently performed.

インバータ方式iIl源を用いた従来の高周波加熱装置
について、例えば、特開昭52−79345号公報に、
マグネトロンの陽極電流を検知する陽極電流検知器と、
この検知器からの信号で、スイッチング素子の開閉のデ
エーティを制御するデユーティ制御部とを設けたものが
開示されている。
Regarding a conventional high-frequency heating device using an inverter-type IIl source, for example, Japanese Patent Application Laid-open No. 79345/1983 describes
an anode current detector that detects the anode current of the magnetron;
A device is disclosed that is provided with a duty control section that controls the duty of opening and closing of the switching element using the signal from the detector.

従来から電子レンジ等に用いる高周波加熱装置の場合、
変圧器の二次側交流高圧出力を、大抵の場合、ダイオー
ドとコンデンサを組み合わせた、半波または全波の倍電
圧整流回路により直流に変換してマグネトロンの陽極電
源としている。上記従来の技術により、このような回路
のマグネトロン陽極電流値を検出する場合、直流とは言
っても電流値が時間的に大きく脈動しているから、通常
、測定対象高圧回路と電流値検出回路の間の絶縁が容易
で電力損失も少ない変流器を使用する。
In the case of high-frequency heating devices conventionally used in microwave ovens,
In most cases, the secondary AC high-voltage output of the transformer is converted to DC by a half-wave or full-wave voltage doubler rectifier circuit that combines a diode and a capacitor, and is used as the anode power source for the magnetron. When detecting the magnetron anode current value of such a circuit using the conventional technology described above, the current value pulsates greatly over time, even though it is a direct current, so it is usually difficult to detect the high voltage circuit to be measured and the current value detection circuit. Use a current transformer with easy insulation between the two and low power loss.

しかし、変流器の一次側に流れるマグネトロン陽極電流
は、既に整流され、一方向のみに流れる電流であるから
、変流器の磁気回路を形成するコアが飽和してしまわな
いように、コア断面を充分大きくしなければならない、
これは全波整流回路を用いた場合には特に甚だしい。
However, the magnetron anode current that flows to the primary side of the current transformer is already rectified and flows only in one direction, so to prevent the core that forms the magnetic circuit of the current transformer from becoming saturated, the core cross section must be large enough,
This is especially serious when a full-wave rectifier circuit is used.

また、電流値検出回路側では、変流器出力には直流分が
無(なっているので、直流再生回路でゼロレベル調整を
しなければならないため部品点数が多くなる。
Furthermore, on the current value detection circuit side, since there is no DC component in the current transformer output, zero level adjustment must be performed with a DC regeneration circuit, which increases the number of parts.

第2図はインバータ方式電源による高周波を変圧器入力
とし、変圧器二次側に半波倍電圧整流回路を用いた従来
の高周波加熱装置の一例の概略回路図で、1は商用交流
電源、10は整流回路、20は変圧器、30はスイッチ
ング素子、31は駆動回路、40はコンデンサ、50は
ダイオード、60は変流器、70はマグネトロンへの電
流値検出回路の出力電圧を予め所望出力に対応させて設
定した基準電圧値と比較する電圧比較器、80はマグネ
トロン、81はマグネトロンのヒータ電源、R1、R2
、R3、R4、R5は抵抗、Olはダイオード、Ql、
口2はトランジスタ、CIはコンデンサである。測定対
象は整流したマグネトロン陽極電流(直流)であるけれ
ども、検知手段として変流器を用いると、その出力すな
わち電流値検出回路の電流には直流分が無くなる。
Figure 2 is a schematic circuit diagram of an example of a conventional high-frequency heating device in which high-frequency waves from an inverter type power source are input to a transformer and a half-wave voltage doubler rectifier circuit is used on the secondary side of the transformer. 20 is a rectifier circuit, 20 is a transformer, 30 is a switching element, 31 is a drive circuit, 40 is a capacitor, 50 is a diode, 60 is a current transformer, and 70 is an output voltage of the current value detection circuit to the magnetron to a desired output in advance. A voltage comparator for comparing with a correspondingly set reference voltage value, 80 is a magnetron, 81 is a heater power supply for the magnetron, R1, R2
, R3, R4, R5 are resistors, Ol is a diode, Ql,
Port 2 is a transistor, and CI is a capacitor. Although the object to be measured is the rectified magnetron anode current (direct current), if a current transformer is used as the detection means, there will be no direct current component in its output, that is, the current of the current value detection circuit.

そのため直流再生回路でゼロレベル調整してからダイオ
ードD1でクリップして陽極電流を検出しなければなら
ず1.02、R4、CI等を含む部品点数の多い回路と
なっている。
Therefore, the anode current must be detected by adjusting the zero level with a DC regeneration circuit and then clipping with the diode D1, resulting in a circuit with a large number of components including 1.02, R4, CI, etc.

また、変流器の一次側に流れる電流は、脈動はしている
が一方向にしか流れない直流であるから、変流器磁気回
路の断面を充分太き(とって磁束が飽和せず、二次巻線
と鎮交する磁束量が充分大きく変化するようにしなけれ
ばならない、そのため、変流器のコアが出力の割に大き
くなり、結局、変流器として大型で重い、従って高原価
なものを用いることになる。
In addition, since the current flowing through the primary side of a current transformer is a direct current that only flows in one direction, although it pulsates, the cross section of the current transformer's magnetic circuit must be made sufficiently thick (so that the magnetic flux does not become saturated). The amount of magnetic flux that intersects with the secondary winding must be changed sufficiently, so the core of the current transformer becomes large in proportion to the output, resulting in a large and heavy current transformer, and therefore a high cost. You will have to use something.

なお、電流値検出回路の出力電圧は、予め所望のマグネ
トロン陽極電流値に対応した基準電圧値が設定しである
電圧比較器70で基準値と比較され、所望以上の電流が
流れている場合は電圧比較器70の出力が駆動回路31
を制御してスイッチング素子のデユーティ比を下げ、電
流値が所望値以下の場合は逆にデユーティ比を上げるよ
うに制御が行われる。即ち駆動回路31と電圧比較器7
0とが、スイッチング素子30の制御回路を形成してい
る。
The output voltage of the current value detection circuit is compared with a reference value by a voltage comparator 70, which has been set in advance with a reference voltage value corresponding to a desired magnetron anode current value, and if a current exceeding the desired value is flowing, The output of the voltage comparator 70 is connected to the drive circuit 31
control is performed to lower the duty ratio of the switching element, and conversely to increase the duty ratio when the current value is less than a desired value. That is, the drive circuit 31 and the voltage comparator 7
0 forms a control circuit for the switching element 30.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明はインバータ方式電源を用いた従来の高周波加熱
装置で、所望出力に制御する回路が、電流検知手段が大
型で重いものになったり、電流値検出回路の部品点数が
多いものになるという問題点を解決し、小型軽量な電流
検知手段と部品点数の少ない簡単な電流値検出回路を用
いた高周波加熱装置を提供することを目的とする。
The present invention is a conventional high-frequency heating device using an inverter type power supply, and the problem is that the current detection means for controlling the desired output is large and heavy, and the current value detection circuit has a large number of parts. It is an object of the present invention to provide a high-frequency heating device using a small and lightweight current detection means and a simple current value detection circuit with a small number of parts.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために本発明においては、所望出
力に制御するためにマグネトロンの(整流後の)陽極電
流を検知する代わりに、変圧器の二次側高圧smの交流
出力電流を検知する手段を設け、この手段の出力の正側
または負側をクリフプすることにより電流値検出回路を
部品点数の少ない簡単なものにした。
In order to solve the above problems, in the present invention, instead of detecting the anode current (after rectification) of the magnetron in order to control the output to the desired output, the alternating current output current of the secondary side high voltage sm of the transformer is detected. By providing a means and cliffing the positive side or negative side of the output of this means, the current value detection circuit can be made simple with a small number of parts.

〔作用〕[Effect]

本発明においても高圧回路の電流検知手段として、−次
回路と二次回路の間の絶縁が容易で、二次側の電圧基準
点(例えば接地点)を任意に決められる変流器を用いる
が、変流器の一次側に流れる電流は交流であるから、変
流器磁気回路の飽和を考慮する必要がなくなり、小型軽
量な変流器が使用できるようになる。
In the present invention, a current transformer is used as a current detection means for a high-voltage circuit, since it is easy to insulate between the negative circuit and the secondary circuit, and the voltage reference point (e.g., ground point) on the secondary side can be arbitrarily determined. Since the current flowing through the primary side of the current transformer is alternating current, there is no need to consider the saturation of the current transformer's magnetic circuit, and a small and lightweight current transformer can be used.

また、この場合、変流器の二次側には、当然、交番電圧
が発生するが、これを二次巻線の両端それぞれにダイオ
ードを接続することによって、出力の正側または負側を
クリップしてしまえば、電流値検出回路は簡単になる。
In this case, an alternating voltage is naturally generated on the secondary side of the current transformer, but by connecting diodes to both ends of the secondary winding, the positive or negative side of the output can be clipped. Once this is done, the current value detection circuit will be simple.

〔実施例〕〔Example〕

第1図は本発明の一実施例図で、変流器60が、変圧器
20の二次側高圧巻線の交流出力電流を測定できるよう
に、ダイオード50よりも変圧器に近い個所に接続され
ている。そのため、変流器60の一次巻線(このような
計測用の変圧器の場合は、−次側のアンペアターンが二
次側に比して圧倒的に大きく、磁気回路の磁束の状態は
一次側のアンペアターンにより決定される)には交流が
流れるので、磁気回路コアの飽和に対する懸念は無くな
り、整流済みのマグネトロン陽極電流を検知する従来の
場合に比較して、変流器は小型軽量なものになる。
FIG. 1 shows an embodiment of the present invention, in which a current transformer 60 is connected closer to the transformer than the diode 50 so that the AC output current of the secondary high voltage winding of the transformer 20 can be measured. has been done. Therefore, the primary winding of the current transformer 60 (in the case of such a measurement transformer, the ampere turns on the - side are overwhelmingly larger than the secondary side, and the state of the magnetic flux in the magnetic circuit is Since there is an alternating current flowing through the current (determined by the ampere-turns on the Become something.

電流値検出回路では、変流器二次巻線の両端にダイオー
ドDiSD2が接続されて出力電圧の負側をクリップし
ており、また、直流再生回路がなくなって簡単になって
いる。
In the current value detection circuit, a diode DiSD2 is connected to both ends of the current transformer secondary winding to clip the negative side of the output voltage, and the DC regeneration circuit is eliminated, making the circuit simple.

上記以外の符号や、部品の作用は、第2図の場合と同様
である。
The symbols other than those mentioned above and the functions of the parts are the same as in the case of FIG. 2.

第3図は第1図に示した実施例の動作説明図である。同
図(a)はスイッチング素子30のオン、オフ動作を示
す、オフの期間は、回路を構成する巻線のインダクタン
スや図示してない共振用コンデンサの容量などにより略
一定(但し、波高値は出力が大きくなるにつれて高くな
る)で、出力制御は主としてオンの期間の制御により行
われる。
FIG. 3 is an explanatory diagram of the operation of the embodiment shown in FIG. Figure (a) shows the on/off operation of the switching element 30. The off period is approximately constant depending on the inductance of the windings forming the circuit and the capacitance of a resonance capacitor (not shown) (however, the peak value is (the output increases as the output increases), and the output control is mainly performed by controlling the on period.

同図(b)は変流器の二次巻線電流を示す、同図(C)
は電流値検出回路の検知電圧を示す。
Figure (b) shows the secondary winding current of the current transformer, Figure (c) shows the current in the secondary winding of the current transformer.
indicates the detection voltage of the current value detection circuit.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、マグネトロンへの
入力電流を検知するための変流器が小型軽量なもので済
み、また変流器二次側に接続する電流値検出回路が簡単
になり、安価な高周波加熱装置が得られる。
As explained above, according to the present invention, the current transformer for detecting the input current to the magnetron can be small and lightweight, and the current value detection circuit connected to the secondary side of the current transformer can be simplified. , an inexpensive high-frequency heating device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例図、第2図はインバータ方式
電源による従来の高周波加熱装置の一例の概略回路図、
第3図は第1図に示した実施例の動作説明図である。 1−商用交流電源、 10・−整流回路、 20−・変
圧器、 30−=スイッチング素子、 31−駆動回路
、50・・−ダイオード、 60−・−変流器、 70
・−・電圧比較器、 80・・−マグネトロン、R1,
R2,R3,R5−・抵抗、DI、02−・ダイオード
、 Ql−)ランジスタ。 代理人 弁理士 小川 勝馬 r′
FIG. 1 is a diagram of an embodiment of the present invention, and FIG. 2 is a schematic circuit diagram of an example of a conventional high-frequency heating device using an inverter type power source.
FIG. 3 is an explanatory diagram of the operation of the embodiment shown in FIG. 1 - Commercial AC power supply, 10 - Rectifier circuit, 20 - Transformer, 30 - Switching element, 31 - Drive circuit, 50 - Diode, 60 - Current transformer, 70
・-Voltage comparator, 80...-Magnetron, R1,
R2, R3, R5-・Resistance, DI, 02-・Diode, Ql-) transistor. Agent Patent Attorney Katsuma Ogawa r'

Claims (1)

【特許請求の範囲】 1、商用交流電源を整流して得た直流を、制御回路によ
り開閉動作を駆動、制御されるスイッチング素子により
、周波数が商用電源より高い交流に変換して変圧器の一
次側に入力し、この変圧器の二次側高圧巻線の出力を整
流して加熱用高周波を発生するマグネトロンの陽極に印
加する高周波加熱装置において、前記変圧器の二次側高
圧巻線の交流出力電流を検知する手段を設け、この手段
の出力の正側または負側をクリップして得た信号を前記
制御回路に与えて負帰還ループを形成させ、前記マグネ
トロンへの電流を予め設定した所望値に制御するように
したことを特徴とする高周波加熱装置。 2、変圧器の高圧交流出力電流を検知する手段として変
流器を用いた特許請求の範囲第1項記載の高周波加熱装
置。 3、変流器の出力巻線の両端それぞれに接続したダイオ
ードにより出力の正側または負側をクリップする特許請
求の範囲第2項記載の高周波加熱装置。
[Scope of Claims] 1. Direct current obtained by rectifying a commercial AC power source is converted into alternating current with a frequency higher than that of the commercial power source by a switching element whose opening/closing operation is driven and controlled by a control circuit, and is used as the primary source of the transformer. In a high-frequency heating device in which the output of the secondary high-voltage winding of the transformer is rectified and applied to the anode of a magnetron that generates a heating high-frequency wave, the alternating current of the secondary high-voltage winding of the transformer A means for detecting an output current is provided, and a signal obtained by clipping the positive or negative side of the output of the means is provided to the control circuit to form a negative feedback loop, and the current to the magnetron is set to a desired value in advance. A high-frequency heating device characterized by controlling the heating value. 2. The high-frequency heating device according to claim 1, which uses a current transformer as a means for detecting the high-voltage AC output current of the transformer. 3. The high frequency heating device according to claim 2, wherein the positive side or negative side of the output is clipped by diodes connected to both ends of the output winding of the current transformer.
JP62263821A 1987-10-21 1987-10-21 High frequency heating device Pending JPH01107491A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62263821A JPH01107491A (en) 1987-10-21 1987-10-21 High frequency heating device
US07/258,478 US4903183A (en) 1987-10-21 1988-10-17 Power supply for a magnetron
KR1019880013566A KR910006171B1 (en) 1987-10-21 1988-10-18 Power source for magnetron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263821A JPH01107491A (en) 1987-10-21 1987-10-21 High frequency heating device

Publications (1)

Publication Number Publication Date
JPH01107491A true JPH01107491A (en) 1989-04-25

Family

ID=17394697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263821A Pending JPH01107491A (en) 1987-10-21 1987-10-21 High frequency heating device

Country Status (1)

Country Link
JP (1) JPH01107491A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170391A (en) * 1988-10-14 1990-07-02 Philips Gloeilampenfab:Nv Power feeder for electronic oven

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170391A (en) * 1988-10-14 1990-07-02 Philips Gloeilampenfab:Nv Power feeder for electronic oven

Similar Documents

Publication Publication Date Title
EP0489725B1 (en) High-frequency heating apparatus
JPH0371589A (en) Microwave range
US4903183A (en) Power supply for a magnetron
JP2691626B2 (en) Switching power supply for high frequency heating equipment
US5001318A (en) High frequency heating apparatus with abnormal condition detection
JPH01107491A (en) High frequency heating device
JP2000324830A (en) Power-converter, and power-converter and method for induction heating
JPH05242962A (en) High-frequency power unit for microwave oven
JP3117697B2 (en) High frequency cooking device
JP2604263B2 (en) Magnetron drive
JPS634424B2 (en)
JPH026331Y2 (en)
JP2758252B2 (en) High frequency cooking device
JPS6236468B2 (en)
JP2866191B2 (en) Induction heating cooking equipment
JPH0624155Y2 (en) Induction heating cooker
JPH11329707A (en) High frequency power source device for magnetron
JPS6290899A (en) Electric source for microwave discharge light source
JPH05336747A (en) Switching power supply
JP2839646B2 (en) High frequency cooking device
JPH0432191A (en) High frequency heat-cooking apparatus
JPH0432186A (en) High frequency heat-cooking apparatus
JPH01236593A (en) High frequency heating device
JPH0974750A (en) Power supply device for bath room
JPS5858867A (en) Dc stabilized power source