JPH01107429A - High voltage vacuum discharge device - Google Patents

High voltage vacuum discharge device

Info

Publication number
JPH01107429A
JPH01107429A JP62262893A JP26289387A JPH01107429A JP H01107429 A JPH01107429 A JP H01107429A JP 62262893 A JP62262893 A JP 62262893A JP 26289387 A JP26289387 A JP 26289387A JP H01107429 A JPH01107429 A JP H01107429A
Authority
JP
Japan
Prior art keywords
intermediate shield
shield cylinder
insulating container
high voltage
discharge device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62262893A
Other languages
Japanese (ja)
Inventor
Shinichi Aoki
伸一 青木
Kiyoshi Matsuyama
清 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62262893A priority Critical patent/JPH01107429A/en
Priority to CN88106456A priority patent/CN1016121B/en
Priority to KR1019880012252A priority patent/KR910003656B1/en
Priority to US07/249,836 priority patent/US4896008A/en
Priority to EP88115857A priority patent/EP0309978B1/en
Priority to DE3887725T priority patent/DE3887725T2/en
Publication of JPH01107429A publication Critical patent/JPH01107429A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • H01H2033/66276Details relating to the mounting of screens in vacuum switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • H01H2033/66292Details relating to the use of multiple screens in vacuum switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To aim at improvement in yield during conditioning by constituting an insulating vessel in a form with wavy folds with a ceramic so as to become creeping length longer than clearance length between sealing fixtures, besides uniform wall thickness, while making an intermediate shield cylinder so as to be supported on an inner wall of a trough part of the wavy fold. CONSTITUTION:Wall thickness of an insulating vessel 1 is made to be almost uniform over the overall length, while a trough part 1c supporting an intermediate cylinder 3 in wavy folds is set to be equal to each bore diameter of ends 1a, 1b or smaller than it, thereby making the intermediate shield cylinder 3 insertable from either side of these ends 1a, 1b. Consequently, during conditioning, even if vacuum dielectric breakdown occurs between the shield cylinder 3 and two electrodes 5A, 5B, through breakdown is hard to occur in and around support part of the intermediate shield cylinder 3 or in and around both sealing fixtures 6A, 6B. Under such constitution, if a partial discharge occurs, a partial discharge passage comes to head for an external direction from a crest part 1d of the wavy fold, so that it does not reach a trough part 1c of the wavy fold supporting the intermediate shield cylinder 3, thus the yield in a conditioning process is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、真空遮断器、真空開閉器、真空コンタクタ
、真空ヒユーズ、真空避雷器などの高電圧真空放電装置
に係り、特に、金属製の中間シールド筒を2つの電極か
ら絶縁した状態で支持するための絶縁容器を備えた高電
圧真空放電装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to high voltage vacuum discharge devices such as vacuum circuit breakers, vacuum switches, vacuum contactors, vacuum fuses, and vacuum arresters, and particularly relates to high voltage vacuum discharge devices such as vacuum circuit breakers, vacuum switches, vacuum contactors, vacuum fuses, and vacuum arresters. The present invention relates to a high voltage vacuum discharge device including an insulating container for supporting a shield cylinder insulated from two electrodes.

〔従来の技術〕[Conventional technology]

第6図は、例えば特公昭59−27050号公報に示さ
れた従来の高電圧真空放電装置(真空スイッチ管)を示
す縦断面図であり、図において、1は絶縁容器を示し、
真空容器の一部を構成するものである。
FIG. 6 is a longitudinal sectional view showing a conventional high voltage vacuum discharge device (vacuum switch tube) disclosed in, for example, Japanese Patent Publication No. 59-27050, and in the figure, 1 indicates an insulating container;
It forms part of the vacuum container.

2は絶縁容器1の内壁に設けられた帯状突出部を示し、
金属製の中間シールド筒3および取付金具4を機械的に
支持するものである。
2 indicates a band-shaped protrusion provided on the inner wall of the insulating container 1;
It mechanically supports the metal intermediate shield cylinder 3 and the mounting bracket 4.

5Aは固定電極、5Bは可動電極を示し、画電極5A#
 5Bは絶縁容器1の端部1a、1bに気密に封着され
た封着金具6A、6Bで中間シールド筒3から絶縁され
た状態で支持され、端部が中間シールド筒3内に位置し
ている。
5A is a fixed electrode, 5B is a movable electrode, and picture electrode 5A#
5B is supported in an insulated state from the intermediate shield tube 3 by sealing fittings 6A and 6B that are hermetically sealed to the ends 1a and 1b of the insulating container 1, and the end portion is located inside the intermediate shield tube 3. There is.

絶縁容器1は、画電極5A、SBが開極中は高電圧の電
路を絶縁する機能を有し、一般的に、アルミナ粉末の調
合、ラバープレスによる円筒成形。
The insulating container 1 has a function of insulating a high-voltage electrical circuit while the picture electrodes 5A and SB are open, and is generally formed by mixing alumina powder and forming a cylinder using a rubber press.

成形品の切削加工、高温焼成等によって作られる。It is made by cutting molded products, high-temperature firing, etc.

そして、外面に施釉して焼付け、端部1a、1bにpi
 OM nメタライズ法によってペーストを塗布して焼
付ける。
Then, the outer surface is glazed and baked, and the ends 1a and 1b are coated with pi.
The paste is applied and baked using the OM n metallization method.

さらyc、?+11メツキと、その焼付は等の諸工程を
経て製作される。
Sara yc,? +11 plating and its printing are made through various processes.

次に、動作について説明する。Next, the operation will be explained.

真空スイッチ管は、上述の部品を適宜に蝋付けや溶接で
組み立てた後、加熱排気を行なって真空密封して完成さ
れる。
The vacuum switch tube is completed by assembling the above-mentioned parts by appropriately brazing or welding, heating and evacuating the tube, and vacuum-sealing the tube.

上述のように真空スイッチ管を構成した後、コンディジ
謬二ングと称する工程で画電極5A、5B間に高電圧を
印加し【真空絶縁破壊電圧を高めるが、この際の印加電
圧は真空スイッチ管の定格耐電圧(例えば、7.2 K
 V用ではAC22KV。
After configuring the vacuum switch tube as described above, a high voltage is applied between the picture electrodes 5A and 5B in a process called conditioning to increase the vacuum breakdown voltage. Rated withstand voltage (e.g. 7.2 K
AC22KV for V.

36KV用ではAC70KV、120KV用ではAC2
30KV)よりも遥かに高い値とされ、絶縁容器1に高
い電気的ストレスを与える。
AC70KV for 36KV, AC2 for 120KV
30 KV), which gives high electrical stress to the insulating container 1.

このコンディショニングでは、特に、中間シールド筒3
や取付金具4に電界が集中するので、真空絶縁破壊の際
、絶縁容器1の帯状突出部2の近傍において絶縁容器1
の肉厚方向へ貫通破壊が発生することがある。そして、
この貫通破壊が発生すると、その段階で製品は不良とな
り、再生できなくなる。
In this conditioning, especially the intermediate shield tube 3
Since the electric field concentrates on the mounting brackets 4 and the mounting bracket 4, the insulation container 1 is
Penetration failure may occur in the thickness direction. and,
When this penetration failure occurs, the product becomes defective at that stage and cannot be recycled.

したがっ【、中間シールド筒3を有する真空スイッチ管
のコンディジlユング工程における歩留りを向上させる
ためには、■中間シールド筒3の電界を緩和する方法と
、■中間シールド筒3に真空絶縁破壊を起させない方法
とがある。
Therefore, in order to improve the yield in the conditioning process of vacuum switch tubes having an intermediate shield tube 3, two methods are needed: There is a way to prevent it.

上述した方法■、■を同時に実施する方法としては、第
7図(実公昭58−43152号公報。
A method for simultaneously carrying out methods (1) and (2) described above is shown in FIG. 7 (Japanese Utility Model Publication No. 58-43152).

実公昭58−43153号公報)K示すように、中間シ
ールド筒3と画電極5A、5Bとの間に第2の中間シー
ルド筒7A、7Bを設けたり(第7図(a))、第3の
中間シールド筒9AI 9Bを設ける(第7図(b))
方法がある。
Publication of Utility Model Publication No. 58-43153) As shown in FIG. Provide intermediate shield cylinders 9AI and 9B (Fig. 7(b)).
There is a way.

なお、中間シールド筒3は第1の中間シールド筒に相当
する。
Note that the intermediate shield cylinder 3 corresponds to a first intermediate shield cylinder.

しかし、この方法では絶縁容器1が多段積みとなり、真
空スイッチ管の全長が長くなり過ぎて取扱い性が悪く、
構造が複雑となるため、真空スイッチ管の組立工数が増
大し、各中間シールド筒3゜7A、7B#8Aおよび8
Bを支持するために内表面が増大するとともに、絶縁容
器1内に別の絶縁筒を設けるので、加熱排気工程が複雑
になるという問題点があった。
However, with this method, the insulating containers 1 are stacked in multiple stages, and the total length of the vacuum switch tube becomes too long, making it difficult to handle.
Since the structure is complicated, the number of steps required to assemble the vacuum switch tube increases, and each intermediate shield tube 3゜7A, 7B#8A and 8
In order to support B, the inner surface is increased, and another insulating cylinder is provided inside the insulating container 1, so there is a problem that the heating and exhausting process becomes complicated.

また、各中間シールド筒3 = 7 A 、7 B a
 Bムおよび8Bに電圧を印加してコンディジ璽エング
を行なわざるを得ないため、コンディショニングも複雑
になるなどの問題点があった。
Also, each intermediate shield cylinder 3 = 7 A, 7 B a
Since it is necessary to perform conditioning by applying a voltage to B and 8B, there are problems in that conditioning becomes complicated.

したがっ【、この方法では真空スイッチ管を経済的(安
価)に製作することができなくなる。
Therefore, with this method, it is no longer possible to manufacture the vacuum switch tube economically (at low cost).

また、近年の開発によって耐電圧の極めて高い電極材料
が出現し、真空スイッチ管は益々小形化が進んでいるの
で、この観点から考察すると、両電ff15A、5Bの
コンディジ欝二ングは最早問題でなくなり、中間シール
ド筒3と画電極5A、5Bとの間に真空絶縁破壊が優先
して起る事態となってきている。
In addition, with recent developments, electrode materials with extremely high withstand voltages have appeared, and vacuum switch tubes are becoming increasingly smaller. Considering this from this perspective, conditioner damping of both electric FF15A and FF5B is no longer a problem. As a result, vacuum dielectric breakdown occurs preferentially between the intermediate shield cylinder 3 and the picture electrodes 5A and 5B.

したがって、コンディショニング工程で中間シールド筒
3と画電極5A、5Bとの金属間で真空絶縁破壊が起っ
ても、器壁に貫通破壊が生じなり・絶縁容器1の構造の
開発が強く要望されている。
Therefore, even if vacuum dielectric breakdown occurs between the metal between the intermediate shield tube 3 and the picture electrodes 5A and 5B during the conditioning process, penetrating breakdown will occur in the container wall.Therefore, there is a strong demand for the development of a structure for the insulating container 1. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の高電圧真空放電装置は以上のように構成されてい
るので、絶縁容器1の器壁に貫通破壊が起り易いという
問題点があった。
Since the conventional high-voltage vacuum discharge device is constructed as described above, there is a problem in that the wall of the insulating container 1 is susceptible to penetrating breakdown.

すなわち、従来の絶縁容器1は乾式ラバープレス法で作
られているため、成形時にアルミナ粉体の廖擦力によっ
て粉末の流動性が悪く、厚肉の帯状突出部2には充分な
加圧力が加わらないので、ピンホールが生じ易くなる。
In other words, since the conventional insulating container 1 is made using a dry rubber press method, the fluidity of the alumina powder is poor due to the frictional force of the alumina powder during molding, and the thick band-shaped protruding portion 2 is not sufficiently pressurized. Since it is not added, pinholes are likely to occur.

したがって、コンディショニング中の真空絶縁破壊によ
って中間シールド筒3.取付金具4の電位が急変すると
、帯状突出部2のピンホールに異常な電界集中を生じ、
絶縁容器1が貫通破壊に至る原因となって〜・た。
Therefore, vacuum dielectric breakdown during conditioning will cause the intermediate shield cylinder 3. When the potential of the mounting bracket 4 suddenly changes, abnormal electric field concentration occurs in the pinhole of the band-shaped protrusion 2,
This caused the insulating container 1 to undergo through-breakage.

また、封着金具6A、6Bの封着部は、本来、電界が集
中し易い部分であり、絶縁容器1の内面および外面に向
って高い電位傾斜を有しているので、第7図に示すよう
に、各中間シールド筒3゜7A、7B、9Aおよび8B
を設けても絶縁容器1の外面の電界緩和効果は充分とは
いえない。
In addition, the sealed portions of the sealing fittings 6A and 6B are originally areas where electric fields tend to concentrate, and have a high potential gradient toward the inner and outer surfaces of the insulating container 1, so as shown in FIG. As shown, each intermediate shield cylinder 3°7A, 7B, 9A and 8B
Even if this is provided, the effect of alleviating the electric field on the outer surface of the insulating container 1 cannot be said to be sufficient.

そこで、貫通破壊を防ぐためには端部1a、1bの外面
に電界緩和リング(図示省略)を取り付け、コンディシ
ヨニングを行なう必要があり、作業が複雑になるなどの
問題点があった。
Therefore, in order to prevent through-breakage, it is necessary to attach electric field relaxation rings (not shown) to the outer surfaces of the ends 1a and 1b and perform conditioning, which poses problems such as complicated work.

この発明は、上記のような問題点を解消するためになさ
れたもので、例えコンディショニング中に中間シールド
筒と両電極との間に真空絶縁破壊が生じても、中間シー
ルドを支持する近傍の絶縁容器は貫通破壊せず、絶縁容
器の端部において外面へ向か5部分放電を抑制してコン
ディショニング工程における歩留りが向上する高電圧真
空放電装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems. Even if vacuum insulation breakdown occurs between the intermediate shield tube and both electrodes during conditioning, the insulation in the vicinity of the intermediate shield It is an object of the present invention to provide a high-voltage vacuum discharge device in which the container does not undergo through-breakage, and the yield in the conditioning process is improved by suppressing partial discharge toward the outer surface at the end of the insulating container.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る高電圧真空放電装置は、均一な肉厚で、
封着金具間の間隙長よりも長い沿面長となるように波形
ひだを有する形状に絶縁容器をセラミックで構成すると
ともに、波形ひだの谷部の内壁で中間シールド筒を支持
する構成としたものである。
The high voltage vacuum discharge device according to the present invention has a uniform wall thickness,
The insulating container is made of ceramic and has corrugated corrugations so that the creepage length is longer than the gap length between the sealing fittings, and the intermediate shield cylinder is supported by the inner wall of the valley of the corrugated corrugations. be.

〔作 用〕[For production]

この発明における高電圧真空放電装置は、均一な肉厚で
、封着金具間の間隙長よりも長い沿面長となるように波
形ひだを有する形状に絶縁容器をセラミックで構成した
ので、封着金具から外沿面へ向って発生する部分放電が
抑制されるとともに、例え部分放電が発生しても部分放
電路は波形ひだの山部から外方向へ向うことになり、中
間シールド筒を支持する波形ひだの谷部へ到達しなくな
る。
In the high voltage vacuum discharge device of the present invention, the insulating container is made of ceramic and has a uniform wall thickness and a waveform corrugation so that the creepage length is longer than the gap length between the sealing fittings. Partial discharges that occur from the top to the outer creeping surface are suppressed, and even if a partial discharge occurs, the partial discharge path will be directed outward from the peaks of the corrugated corrugations, and the corrugated corrugations that support the intermediate shield cylinder will be It will no longer reach the valley of the area.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、1はアルミナ粉末の泥漿の作成、鋳込
成形、乾燥を経て約1650℃で焼結したアルミナセラ
ミック製の絶縁容器を示1−1肉厚は金髪にわたってほ
ぼ均一とされ、波形ひだの中間シールド筒3を支持する
谷部IC)’!端部1a。
In Fig. 1, 1 indicates an insulating container made of alumina ceramic, which has been sintered at approximately 1650°C after forming a slurry of alumina powder, casting, and drying. The valley IC that supports the intermediate shield tube 3 of the folds)'! End portion 1a.

1bの内径と同径かまたは小径とされ、端部1a+1b
のいずれか一方から中間シールド筒3の挿入を可能にし
ている。そして、他の谷部は端部1 a +1bの内径
と同じに製作されている。
The inner diameter of 1b is the same or smaller, and the end portion 1a+1b
The intermediate shield cylinder 3 can be inserted from either side. The other valley portions are manufactured to have the same inner diameter as the end portion 1 a +1 b.

1dは波形ひだの山部を示し、端部1a、1bの外径よ
りも太径に構成されている。
Reference numeral 1d indicates a peak portion of the waveform folds, and the diameter is larger than the outer diameter of the end portions 1a and 1b.

1eは波形ひだの深さ、Lは封着金具6A、6B間の間
隙長、2は絶縁容器1の沿面長を示す。
1e indicates the depth of the corrugated folds, L indicates the gap length between the sealing fittings 6A and 6B, and 2 indicates the creeping length of the insulating container 1.

なお、中間シールド筒3は取付金具40作用によって谷
部1Cに機械的に支持されている。
Note that the intermediate shield tube 3 is mechanically supported by the valley portion 1C by the action of the mounting bracket 40.

第2図は第1図の一部分を拡大して示した部分拡大断面
図であり、図にお〜・て、θは絶縁容器1の軸に平行な
面と波形ひだの面とのなす角を示し、120度である。
FIG. 2 is a partially enlarged cross-sectional view showing a part of FIG. The angle is 120 degrees.

なお、第1図、第2図の実施例では、絶縁容器1の平均
肉厚は4.5 mm 、絶縁容器1の外径における山部
1dに対する谷部1cの深さ1eは11mm〜19 m
mとされ、間隙長りに対する沿面長1の比は1.3とな
っている。
In the embodiments shown in FIGS. 1 and 2, the average wall thickness of the insulating container 1 is 4.5 mm, and the depth 1e of the valley 1c relative to the peak 1d on the outer diameter of the insulating container 1 is 11 mm to 19 m.
m, and the ratio of creepage length 1 to gap length is 1.3.

次に、動作について説明する。Next, the operation will be explained.

上記のように7.2 K V用真空スイッチ管を作成し
、排気した後、AC30KVを印加してコンディショニ
ングを実施した結果、試料20個のうちから絶縁容器1
に貫通破壊を生じるものは皆無であった。
After creating a vacuum switch tube for 7.2 KV as described above and evacuating the tube, conditioning was performed by applying AC 30 KV.
There were no cases of penetrating failure.

この発明ではコンディショニング中、例え中間シールド
筒3と両電極5 A* 5 nとの間で真空絶縁破壊が
生じても、中間シールド筒3の支持部近傍または封着金
具6A16Bの近傍で器壁に貫通破壊が起りにくい特徴
を有しているが、そのメカニズムは次のように考えられ
る。
In this invention, during conditioning, even if vacuum dielectric breakdown occurs between the intermediate shield cylinder 3 and both electrodes 5A*5n, the instrument wall will not be damaged near the support part of the intermediate shield cylinder 3 or near the sealing fittings 6A16B. It has the characteristic that penetrating failure is difficult to occur, and the mechanism is thought to be as follows.

第1K、ラバープレスによる乾式成形法でなく、アルミ
ナ粉末の泥漿による鋳込成形法で成形されるため、粉体
相互の摩擦力が小さく、粉体の流動性が増加する。
1st K. Molding is performed not by dry molding using a rubber press, but by casting using slurry of alumina powder, so the frictional force between the powders is small and the fluidity of the powder is increased.

したがって、波形ひた付きの絶縁容器1が容易に成形で
き、器壁の材質が均質化し、肉厚も均一化する。
Therefore, the insulating container 1 with a corrugated flap can be easily formed, and the material of the container wall is made uniform, and the wall thickness is also made uniform.

また、焼成品について、中間シールド筒3の支持部の材
料特性、すなわち密度、抗折力、ピンホールの残存度合
などを比較検討した結果、均質性については鋳込成形品
の方が優れ【いることが判かった。
In addition, as a result of comparing and examining the material properties of the support part of the intermediate shield cylinder 3 for fired products, such as density, transverse rupture strength, and degree of remaining pinholes, we found that cast products are superior in terms of homogeneity. It turned out that.

第2に、絶縁容器1の形状を波形ひた付きとしたので、
沿面長ぶが従来よりも30%も長いために封着端部から
の表藺洩れ電流が抑制され、絶縁容器1の電位分布が平
均化した。
Second, since the shape of the insulating container 1 is corrugated,
Since the creepage length is 30% longer than the conventional one, surface leakage current from the sealed end is suppressed, and the potential distribution of the insulating container 1 is averaged.

また、波形ひだの山部1dの外径が端部1a、1bの外
径よりも大きいので、遮蔽効果が生じ、封着部から外分
面に発生する部分放電が阻止される。
Further, since the outer diameter of the ridge portion 1d of the corrugated folds is larger than the outer diameter of the end portions 1a and 1b, a shielding effect is produced, and partial discharge generated from the sealed portion to the outer surface is prevented.

第3K、例え端部1a、1bから外分面へ向けて部分放
電が発生しても、部分放電の放電路は山部1dから内径
側へ向うことはなく、絶縁容器1の軸と平行する方向へ
直進する性質を有するので、部分放電の放電路が中間シ
ールド筒3を支持している谷部1Cへは到達しなくなる
3rd K, even if a partial discharge occurs from the ends 1a and 1b toward the outer surface, the discharge path of the partial discharge will not go from the peak 1d toward the inner diameter side, but will be parallel to the axis of the insulating container 1. Since the partial discharge has the property of traveling straight in the direction, the discharge path of the partial discharge does not reach the valley portion 1C that supports the intermediate shield cylinder 3.

したがって、中間シールド筒3と両電極5A、5Bとの
間で真空絶縁破壊が生じ、同時に端部la。
Therefore, vacuum dielectric breakdown occurs between the intermediate shield cylinder 3 and both electrodes 5A, 5B, and at the same time, the end portion la.

1bから部分放電が発生しても、中間シールド筒3の支
持部近傍における器壁の貫通破壊は防止できる。
Even if a partial discharge occurs from 1b, penetration damage to the vessel wall near the support portion of the intermediate shield cylinder 3 can be prevented.

なお、角θが120度の場合について説明したが、角0
は90度であってもよい。
Note that although the case where the angle θ is 120 degrees has been explained, if the angle θ is 120 degrees,
may be 90 degrees.

また、谷部1Cの内径を全て端部1a+1bの内径より
も小さく構成してもよい。
Further, the inner diameter of the valley portion 1C may be configured to be smaller than the inner diameter of the end portions 1a+1b.

第3図はこの発明の他の実施例による高電圧真空放電装
置を示す縦断面図であり、角θを90度としたのである
FIG. 3 is a longitudinal sectional view showing a high voltage vacuum discharge device according to another embodiment of the present invention, in which the angle θ is 90 degrees.

第3図のように構成すると、間隙長しに対する沿面長ぷ
の比は1.4となり、封着金具6A、6Bからの表面電
流の抑制、外分面へ向う部分放電の抑制効果が向上する
結果、絶縁容器10貫通破壊を防止する効果が増大する
When configured as shown in Fig. 3, the ratio of the creepage length to the gap length is 1.4, and the effect of suppressing surface current from the sealing fittings 6A and 6B and partial discharge toward the outer surface is improved. As a result, the effect of preventing penetration breakdown of the insulating container 10 is increased.

第4図はこの発明のさらに他の実施例による高電圧真空
放電装置を示す縦断面図であり、中間シールド筒を複数
有する定格電圧84KVの真空スイッチ管に適用したも
のである。
FIG. 4 is a longitudinal sectional view showing a high voltage vacuum discharge device according to still another embodiment of the present invention, which is applied to a vacuum switch tube having a rated voltage of 84 KV and having a plurality of intermediate shield tubes.

第4図において、7 At 7 Bは一対の金属製の第
2の中間シールド筒を示し、両1!極5At 5Bの外
周に同軸的に配置され、かつ、両電極5A。
In FIG. 4, 7 At 7 B indicates a pair of second intermediate shield cylinders made of metal, and both 1! Both electrodes 5A are arranged coaxially on the outer periphery of the pole 5At 5B.

5B間の間隙長よりも狭い間隙長で、絶縁容器1の谷部
1Cで支持されている。
It is supported in the valley 1C of the insulating container 1 with a gap length narrower than the gap length between the insulating containers 1 and 5B.

なお、第2の中間シールド筒7A、7Bは適宜な方法で
11例えば形状記憶合金で構成して絶縁容器1内に挿入
した後、加熱することkよって図示のように取り付ける
ことができる。
The second intermediate shield tubes 7A and 7B can be attached as shown in the figure by inserting them into the insulating container 1 by using an appropriate method, for example, made of a shape memory alloy, and then heating them.

第5図はこの発明のさらに他の実施例による高電圧真空
数11i装置を示す縦断面図であり、定格電圧120K
Vの真空スイッチ管に適用したものである。
FIG. 5 is a longitudinal sectional view showing a high voltage vacuum number 11i device according to still another embodiment of the present invention, with a rated voltage of 120K.
This is applied to V vacuum switch tubes.

第5図において、8A、8Bは一対の金属製の第3の中
間シールド筒を示し、第2の中間シールド筒7^、7B
の外周に同軸的に配置され、かつ、第2の中間シールド
筒7A、7B間の間隙長よりも狭い間隙長で、絶縁容器
1の谷部1Cで支持されている。
In FIG. 5, 8A and 8B indicate a pair of third intermediate shield tubes made of metal, and second intermediate shield tubes 7^ and 7B
It is disposed coaxially on the outer periphery of the insulating container 1, and is supported in the trough 1C of the insulating container 1 with a gap length narrower than the gap length between the second intermediate shield tubes 7A and 7B.

なお、第2.第3の中間シールド筒7A、7B。In addition, the second. Third intermediate shield cylinders 7A, 7B.

8Aおよび8Bは、第4図で説明したように、例えば形
状記憶合金で構成することKより、図示のように取り付
けることができる。
8A and 8B may be constructed of, for example, a shape memory alloy, as explained in FIG. 4, and may be attached as shown.

第5図の実施例では、電極5A、5B間のコンディジ璽
二ング電圧はAC350KV以上を要し、コンディジ冒
二ングが進行するにつれて第2.第3の中間シールド筒
7h、7B、8Aおよび8Bも順次真空絶縁破壊を生じ
るようKなり、最終的にAC350KV以上の耐電圧に
絶えるようになった。この間、器壁の肉厚がほぼ均一の
絶縁容器1に貫通破壊が生じることはなかった。
In the embodiment shown in FIG. 5, the conduit switching voltage between the electrodes 5A and 5B requires AC 350 KV or more, and as the condigi cutting progresses, the second voltage increases. The third intermediate shield cylinders 7h, 7B, 8A, and 8B also gradually became vacuum dielectric breakdown, and finally reached a withstand voltage of AC350 KV or more. During this period, no through-breakage occurred in the insulating container 1 whose wall thickness was substantially uniform.

第1図〜第5図の実施例のよ5K、絶縁容器1の谷部1
Cで各中間シールド筒317A、7B。
5K as in the embodiment shown in FIGS. 1 to 5, the valley 1 of the insulating container 1
C indicates each intermediate shield cylinder 317A, 7B.

8Aおよび8Bを支持しても、内表面は増加しないので
、排気工程が簡略化できる。
Supporting 8A and 8B does not increase the inner surface, so the evacuation process can be simplified.

また、画電極5A、5Bに電圧を印加してコンディショ
ニングを行なうことで、各中間シールド筒3.7AI7
B、8Aおよび8Bのコンディジ1ニングが同時に行な
えるため、コンディジ曹二ングも簡略化できる。
In addition, by applying voltage to the picture electrodes 5A and 5B and performing conditioning, each intermediate shield cylinder 3.7AI7
Since conditioning of B, 8A, and 8B can be performed simultaneously, conditioning can also be simplified.

なお、上記実施例では真空スイッチ管について説明した
が、絶縁容器内に中間シールド筒を有する他の高電圧真
空放電装置、例えば真空ヒエーズ。
Although the vacuum switch tube has been described in the above embodiments, other high voltage vacuum discharge devices having an intermediate shield tube inside an insulating container, such as a vacuum HEAZ device, may also be used.

真空避雷器、真空トリガトロン等にも適用でき、同等の
効果を得ることができる。
It can also be applied to vacuum lightning arresters, vacuum triggertrons, etc., and the same effect can be obtained.

そして、セラミックとしてアルミナセラミックで説明し
たが、封着金具6 A+ 6 Bが端部に封着できれば
他のセラミックであってもよい。
Although alumina ceramic has been described as the ceramic, other ceramics may be used as long as the sealing fittings 6A+6B can be sealed to the ends.

また、電極として固定、可動電極5A、5Bの場合で説
明したが、画電極が固定電極であっ【もよい。
Further, although the explanation has been made in the case where the fixed and movable electrodes 5A and 5B are used as the electrodes, the picture electrode may be a fixed electrode.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、均一な肉厚で、封着
金具間の間隙長よりも長い沿面長となるように波形ひだ
を有する形状に絶縁容器をセラミックで構成するととも
に、波形ひだの谷部の内壁で中間シールド筒を支持する
構成としたので、コンディショニング中の歩留りが向上
し、安価になるという効果がある。
As described above, according to the present invention, the insulating container is made of ceramic and has a uniform wall thickness and has corrugated corrugations so that the creepage length is longer than the gap length between the sealing fittings. Since the structure is such that the intermediate shield cylinder is supported by the inner wall of the valley, the yield during conditioning is improved and the cost is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による高電圧真空放電装置
を示す縦断面図、第2図は第1図の一部分を拡大し【示
した部分拡大断面図、第3図、第4図および第5図はこ
の発明の他の実施例による高電圧真空放電装置を示す縦
断面図、第6図は従来の高電圧真空放電装置を示す縦断
面図、第7図(a) 、 (b)は従来の他の高電圧真
空放電装置を示す縦断面図である。 図において、1は絶縁容器、1a、Ibは絶縁容器1の
端部、1Cは波形ひだの谷部、1dは波形ひだの山部、
3は中間シールド筒、4は取付金具、5Aは固定電極、
5Bは可動電極、6A、6Bは封着金具、7A# 7B
は第2の中間シールド筒、8A、8nは第3の中間シー
ルド筒、Lは封着金具6A、6B間の間隙長、Jは沿面
長を示す。 なお、図中、同一符号は同一、または相当部分を示す。 特許出願人  三菱電機株式会社 代理人 弁理士   1)澤 博 昭 (外2名) 第2図 5B さ 訣 手続補正書(自発) 6左4・12 昭和     月  日
FIG. 1 is a longitudinal sectional view showing a high voltage vacuum discharge device according to an embodiment of the present invention, FIG. 2 is a partially enlarged sectional view showing a part of FIG. 1, FIGS. FIG. 5 is a longitudinal sectional view showing a high voltage vacuum discharge device according to another embodiment of the present invention, FIG. 6 is a longitudinal sectional view showing a conventional high voltage vacuum discharge device, and FIGS. 7(a) and (b). FIG. 2 is a longitudinal sectional view showing another conventional high voltage vacuum discharge device. In the figure, 1 is the insulating container, 1a and Ib are the ends of the insulating container 1, 1C is the valley of the corrugated folds, 1d is the peak of the corrugated folds,
3 is the intermediate shield cylinder, 4 is the mounting bracket, 5A is the fixed electrode,
5B is a movable electrode, 6A, 6B are sealing fittings, 7A# 7B
is the second intermediate shield cylinder, 8A and 8n are the third intermediate shield cylinders, L is the gap length between the sealing fittings 6A and 6B, and J is the creepage length. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Patent Applicant Mitsubishi Electric Co., Ltd. Agent Patent Attorney 1) Hiroshi Sawa (2 others) Figure 2 5B Amendment to the procedure (voluntary) 6 left 4/12 Showa Month Day

Claims (4)

【特許請求の範囲】[Claims] (1)絶縁容器内に支持された中間シールド筒と、前記
絶縁容器の端部に封着された封着金具で前記中間シール
ド筒から絶縁された状態で支持されるとともに、端部が
前記中間シールド筒内に位置する2つの電極を備えた高
電圧真空放電装置において、均一な肉厚で、前記封着金
具間の間隙長よりも長い沿面長となるように波形ひだを
有する形状に前記絶縁容器をセラミックで構成するとと
もに、前記波形ひだの谷部の内壁で前記中間シールド筒
を支持することを特徴とする高電圧真空放電装置。
(1) An intermediate shield cylinder supported within an insulating container and a sealing fitting sealed to an end of the insulating container are supported in a state insulated from the intermediate shield cylinder, and the end is connected to the intermediate shield cylinder. In a high voltage vacuum discharge device equipped with two electrodes located in a shield cylinder, the insulation has a uniform wall thickness and a waveform corrugated shape such that the creepage length is longer than the gap length between the sealing fittings. A high voltage vacuum discharge device characterized in that the container is made of ceramic, and the intermediate shield tube is supported by the inner wall of the valley of the corrugated folds.
(2)中間シールド筒を支持する波形ひだの谷部の最小
内径は、前記絶縁容器の端部の内径よりも小さいことを
特徴とする特許請求の範囲第1項記載の高電圧真空放電
装置。
(2) The high voltage vacuum discharge device according to claim 1, wherein the minimum inner diameter of the trough of the corrugated folds supporting the intermediate shield cylinder is smaller than the inner diameter of the end of the insulating container.
(3)波形ひだの山部の外径は、絶縁容器の端部の外径
よりも大きいことを特徴とする特許請求の範囲第1項記
載の高電圧真空放電装置。
(3) The high voltage vacuum discharge device according to claim 1, wherein the outer diameter of the crest of the corrugated folds is larger than the outer diameter of the end of the insulating container.
(4)中間シールド筒は、複数設けられていることを特
徴とする特許請求の範囲第1項記載の高電圧真空放電装
置。
(4) The high voltage vacuum discharge device according to claim 1, wherein a plurality of intermediate shield cylinders are provided.
JP62262893A 1987-09-29 1987-10-20 High voltage vacuum discharge device Pending JPH01107429A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62262893A JPH01107429A (en) 1987-10-20 1987-10-20 High voltage vacuum discharge device
CN88106456A CN1016121B (en) 1987-09-29 1988-08-31 Vacuum electric-discharge device
KR1019880012252A KR910003656B1 (en) 1987-09-29 1988-09-22 Vacuum discharge device
US07/249,836 US4896008A (en) 1987-09-29 1988-09-27 Vacuum discharge device
EP88115857A EP0309978B1 (en) 1987-09-29 1988-09-27 Vacuum discharge device
DE3887725T DE3887725T2 (en) 1987-09-29 1988-09-27 Vacuum unloading device.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62262893A JPH01107429A (en) 1987-10-20 1987-10-20 High voltage vacuum discharge device

Publications (1)

Publication Number Publication Date
JPH01107429A true JPH01107429A (en) 1989-04-25

Family

ID=17382077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62262893A Pending JPH01107429A (en) 1987-09-29 1987-10-20 High voltage vacuum discharge device

Country Status (1)

Country Link
JP (1) JPH01107429A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304555A (en) * 2005-04-22 2006-11-02 Toshiba Corp Switching device and interlock device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304555A (en) * 2005-04-22 2006-11-02 Toshiba Corp Switching device and interlock device therefor
JP4711726B2 (en) * 2005-04-22 2011-06-29 株式会社東芝 Switchgear and interlock device thereof

Similar Documents

Publication Publication Date Title
JP2016081910A (en) Arc-resistant shield composite for vacuum interrupter and methods for forming the same
DE3887725T2 (en) Vacuum unloading device.
CN109716474B (en) Insulator arrangement for a high-voltage or medium-voltage switchgear assembly
DE2350702C3 (en) Contact system for high-voltage circuit breakers
KR100443325B1 (en) Clad end seal for vacuum interrupter
JPH01107429A (en) High voltage vacuum discharge device
JPH0364817A (en) High voltage vacuum insulation vessel
KR910003656B1 (en) Vacuum discharge device
US6506067B2 (en) Disconnector
DE69108502T2 (en) Insulating element and electrical components made of it.
CA1084565A (en) High-current vacuum switch with reduced contact erosion
US10840044B2 (en) Ceramic insulator for vacuum interrupters
JPH01151186A (en) Vacuum discharge device
WO2003088291A1 (en) Cermic tube for vacuum circuit breaker
JPH0610591Y2 (en) Switch for high voltage
JPH03179627A (en) Vacuum breaker
KR100379570B1 (en) vacuum interrupter
JP2006344557A (en) Vacuum valve and conditioning treatment method
JPH03214580A (en) Micro-gap type surge absorbing element
JPH0210679A (en) Vacuum discharger
JP2004235120A (en) Insulated tube type vacuum circuit breaker
JP3592530B2 (en) Power switch
JPH06101283B2 (en) Ceramic insulation container for high-voltage vacuum discharge device
KR20020007255A (en) method for union ceramic dielectric for band blocking filter for hi Frequency and hi voltage and ceramic dielectric using the method
JPH01122529A (en) Formation of vacuum breaker