JPH01107158A - Flow injection analyzing method - Google Patents

Flow injection analyzing method

Info

Publication number
JPH01107158A
JPH01107158A JP26505487A JP26505487A JPH01107158A JP H01107158 A JPH01107158 A JP H01107158A JP 26505487 A JP26505487 A JP 26505487A JP 26505487 A JP26505487 A JP 26505487A JP H01107158 A JPH01107158 A JP H01107158A
Authority
JP
Japan
Prior art keywords
flow
mixing
solution
solutions
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26505487A
Other languages
Japanese (ja)
Other versions
JPH0616053B2 (en
Inventor
Hiroshi Shimizu
博司 清水
Kyoji Kirie
桐栄 恭二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP62265054A priority Critical patent/JPH0616053B2/en
Priority to SE8801366A priority patent/SE503661C2/en
Priority to GB8809273A priority patent/GB2211293B/en
Priority to DE19883820196 priority patent/DE3820196A1/en
Priority to CA000573714A priority patent/CA1321080C/en
Publication of JPH01107158A publication Critical patent/JPH01107158A/en
Publication of JPH0616053B2 publication Critical patent/JPH0616053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Optical Measuring Cells (AREA)

Abstract

PURPOSE:To make it possible to perform highly accurate analysis quickly, by sending sample solution and reagent solution through flow lines independently, sending both solutions into a mixing flow line by specified amounts alternately, and mixing the solutions so as to react each other. CONSTITUTION:Sample solution and reagent solution are alternately sent to a mixing flow line by minute amounts through independent flow lines C1 and C2. The contact areas of both solutions are made large, and the solutions are mixed. As a pump used for this purpose, a non-pulsating-flow double-plunger type pump is suitable. A plunger for the sample solution line C1 and a plunger for the reagent solution line C2 are not synchronized. The amount of discharged solution per stroke is adjusted at about 5mul. Thus, the reaction rate in an flow injection analysis can be brought to 100% indefinitely. The reaction rate can be kept constant all the time. Since extra reagent and the like are not used, the method is economical.

Description

【発明の詳細な説明】 (イ)技術分野 本発明は、物質の化学的組成を定量的に知るために行な
う定量分析法に関するもので、更に詳しくはフローイン
ジェクション分析法(以下、FIAという)の改良に関
するものである。
Detailed Description of the Invention (a) Technical Field The present invention relates to a quantitative analysis method for quantitatively determining the chemical composition of a substance, and more specifically relates to a flow injection analysis method (hereinafter referred to as FIA). It is about improvement.

即ち、耐腐食性チューブ例えばテフロンチューブ中に試
料溶液と試薬溶液をIIl量流入させて反応せしめ、そ
の反応生成物の物理的又は化学的特性を利用してフロー
セル中で測定しく一般的には吸光光度法が多い)、該試
料中の目的とする化学成分を7敬する分析技術の改良に
関するものである。
That is, a sample solution and a reagent solution are introduced into a corrosion-resistant tube, such as a Teflon tube, in an amount of 1/2 to cause a reaction, and the physical or chemical properties of the reaction product are used for measurement in a flow cell. This invention relates to the improvement of analytical techniques for determining the target chemical components in a sample (mostly photometric methods).

(ロ)背景技術 試料を構成している成分物質の量を定量する湿式化学分
析方法としては、主たるものとして重液分析法、容量分
析法及び吸光光度法とがある。
(B) Background Art The main wet chemical analysis methods for quantifying the amounts of component substances constituting a sample include heavy liquid analysis, volumetric analysis, and spectrophotometry.

重量分析法は目的成分を100%不溶性の沈殿物として
i戸別し、これを秤量して定量を行なうものであり、ま
た容量分析法及び吸光光度法は目的成分の溶液に既知の
濃度の試薬溶液を作用させ。
In gravimetric analysis, the target component is separated as a 100% insoluble precipitate and then weighed for quantitative determination, while in volumetric analysis and spectrophotometry, a reagent solution of a known concentration is added to the solution of the target component. Let it work.

その100%が反応した当贋点又は吸光度を求めて目的
成分の含量を算出するものである。
The content of the target component is calculated by determining the point or absorbance at which 100% of the reaction occurs.

」−記吸光光度分析法では、反応が定量的に進行して副
反応を伴なわないこと、反応の終了を迅速明確に知り得
ること1反応速度が早いことが必要条件となる。
In the spectrophotometric analysis method, the following conditions are required: the reaction proceeds quantitatively and does not involve side reactions, and the completion of the reaction can be quickly and clearly determined.1 The reaction rate is fast.

そして、この吸光光度分析においても目的成分を100
%完全に着色化合物としてその吸光度を測定し定量する
のである。
Also in this spectrophotometric analysis, the target component was measured at 100%
It is quantified by measuring its absorbance as a completely colored compound.

このように、定量分析の根本理念は目的成分を無限に1
00%近く反応させた後、定量することが必須条件であ
る。
In this way, the basic idea of quantitative analysis is to limit the number of target components to 1.
It is essential to quantify after reacting to nearly 00%.

しかるに、FIAは分析操作が簡単で多検体の分析に適
しており、例えば極細のテフロンチューブ中で試薬溶液
と試料溶液とを混合・反応させて反応生成物を生成させ
る訳であるが、チューブ中の滞留時間が短く、従って極
めて短時間の反応であるため、はとんどの場合反応が1
00%完全には終了せず、反応途中の段階であることが
多く。
However, FIA is easy to operate and is suitable for analyzing multiple samples.For example, a reagent solution and a sample solution are mixed and reacted in an ultra-thin Teflon tube to generate a reaction product. Because the residence time of
In most cases, the reaction is not completely completed and is still in the middle of the reaction.

完全な定量分析となっていないのが現状である。At present, a complete quantitative analysis has not been conducted.

かかる従来のFIAの問題点に鑑み、本発明はtT) 
F I Aの反応率を無限に100%に近付けること、 ■反応条件を一定にし、反応率がたとえ100%になら
なくとも、100%に近いコンスタントな反応率が得ら
れること、 を根本的な設計思想として開発されたものである。
In view of the problems of the conventional FIA, the present invention has been developed (tT)
The basic idea is to make the reaction rate of FIA infinitely close to 100%, and ■ to keep the reaction conditions constant so that even if the reaction rate does not reach 100%, a constant reaction rate close to 100% can be obtained. It was developed as a design concept.

(ハ)発明の開示 本発明は、FIAの上記のような問題点を解消し、より
高精度な定量を行なわしめるフローラインの組Wて応用
技術を提供するもので、次のような理念に従って改良さ
れたものである。
(C) Disclosure of the Invention The present invention solves the above-mentioned problems of FIA and provides an applied technology using a flow line set W that enables more accurate quantification. This is an improved version.

(a)試料溶液と試薬溶液を交互に微量づつ送液し、細
い反応チューブ中で両液がより広い表面積をもって液−
液接触し、充分に混合させれるようにして反応率を上げ
ること。
(a) Sample solution and reagent solution are alternately fed in minute amounts, and both solutions have a larger surface area in a narrow reaction tube.
To increase the reaction rate by making liquid contact and mixing sufficiently.

(b)試薬溶液の流量と試料溶液の流量を一定とし、か
つ反応温度を一定にすることによって反応率を一定とす
ること。
(b) Keeping the reaction rate constant by keeping the flow rates of the reagent solution and sample solution constant and the reaction temperature constant.

そのため、本発明法では試料溶液と試薬溶液とをそれぞ
れ独立したフローラインを経由させ、しかる後に両液を
それぞれ交互に微量の所定量づつを混合フローラインへ
送液して混合−反応させるのである。
Therefore, in the method of the present invention, the sample solution and the reagent solution are passed through independent flow lines, and then a small predetermined amount of each solution is alternately sent to the mixing flow line for mixing and reaction. .

また、旧記混合フローラインの少なくとも一部は所定温
度を保持するために恒温槽を通過させることによって反
応率を一定とし、しかもフローセルの後部にはバックプ
レッシャーコイルを接続することにより気泡の発生を防
止すると共に脈流の少ない流れを得ることができる。
In addition, at least a portion of the old mixing flow line passes through a constant temperature bath to maintain a predetermined temperature to maintain a constant reaction rate, and a back pressure coil is connected to the rear of the flow cell to prevent the generation of bubbles. At the same time, a flow with less pulsation can be obtained.

試料溶液と試薬溶液の送液量はできる限り少ない方が好
ましいが、送液用のポンプの流が、精度。
Although it is preferable to keep the amount of sample solution and reagent solution as small as possible, the accuracy of the flow rate of the pump for liquid delivery is important.

試薬及び試料溶液の粘性9反応チューブの内径の精度等
の諸要因から、おのずからフローラインの内径や送液量
の最適範囲が限定される。
Due to various factors such as the viscosity of reagents and sample solutions 9 and the accuracy of the inner diameter of the reaction tube, the inner diameter of the flow line and the optimal range of the amount of liquid to be fed are naturally limited.

即ち、フローラインのチューブ内径が0.25e++s
未満ではチューブ内1−tと溶液の流れ抵抗が高くなり
、かつ内圧が高くなるのみならず、試料溶液と試薬溶液
との混合が不充分となる。また内径が1.0mmを越え
るとチューブ内の流れ抵抗が低下し、同時に内圧も低く
なるので、装置の製作ならびに取扱い操作は容易になる
が、必要以上の試薬や試料を消費することとなってコス
ト高となる。
That is, the inner diameter of the flow line tube is 0.25e++s
If it is less than 1-t, not only will the flow resistance between the inside of the tube 1-t and the solution become high, and the internal pressure will become high, but also the sample solution and reagent solution will not be sufficiently mixed. Furthermore, if the inner diameter exceeds 1.0 mm, the flow resistance inside the tube will decrease, and at the same time the internal pressure will also decrease, making it easier to manufacture and handle the device, but this may result in the consumption of more reagents and samples than necessary. The cost will be high.

また一方、チューブ内径を決めればおのずから最a波量
もある範囲に限定され、特に高精度で微縫液を交互に混
合・反応ラインへ送液し、反応率を高くかつ一定に保持
するためには、■バッチ送液量が1.25JL1未満で
は送液精度が悪く、また20終見を越えると試薬溶液と
試料溶液との混合が不充分となる虞れがある。
On the other hand, once the inner diameter of the tube is determined, the maximum amount of A-waves is naturally limited to a certain range.In particular, it is necessary to alternately feed the fine sewing liquid to the mixing/reaction line with high precision and to maintain a high and constant reaction rate. (2) If the batch liquid feeding amount is less than 1.25 JL1, the liquid feeding accuracy will be poor, and if it exceeds 20 JL1, there is a risk that the mixing of the reagent solution and sample solution will be insufficient.

従って、上記試料溶液と試薬溶液の独立したフローライ
ンの内径はそれぞれ0.25〜1.0mo+が好ましく
、また両液の混合フローラインへ交互に送液する清は1
.25〜208Llが好ましい。
Therefore, the inner diameter of the independent flow lines for the sample solution and the reagent solution is preferably 0.25 to 1.0 mo+, and the reagent solution to be alternately fed to the mixed flow line for both solutions is 1.
.. 25 to 208 Ll is preferred.

次に、本発明法の一実施例を図によって詳細に説明する
Next, one embodiment of the method of the present invention will be described in detail with reference to the drawings.

(ニ)実施例 第1図は本発明における流路図の一例を示すもので、第
2図は混合フローラインの送液状態を示したものである
(d) Example FIG. 1 shows an example of a flow path diagram in the present invention, and FIG. 2 shows a liquid feeding state of a mixing flow line.

上記の如く、本発明法はそれぞれ独立したフローライン
C3と02によって試料溶液C,/ と試薬溶液C,/
を混合フローライン中に第2図のように交互に微敬づつ
送液し、両液の接触面積を大きくして混合する。
As mentioned above, in the method of the present invention, the sample solution C,/ and the reagent solution C,/
The two liquids are fed into the mixing flow line alternately in small increments as shown in Figure 2, increasing the contact area of both liquids and mixing.

そのため使用するポンプPとしては、無脈流ダブルプラ
ンジャー型ポンプが適しており、試料溶液ラインC1用
プランジャーと試薬溶液ラインC2用プランジャーを同
期させずに、1ストローク当りの吐出液量を約5JLJ
lとなるように調部する。これは内径0.51■のテフ
ロンチューブの場合で液長約25■麿に相当する容積と
なる。また脈流のない定流量を得るためには、異相差ダ
ブルプランジャー型ポンプがよく、例えばストローク長
11111、ストローク吐出量的51L1、プランジャ
ー径2〜3IIII程度のものが望ましい。
Therefore, a non-pulsating flow double plunger type pump is suitable as the pump P to be used, and the amount of liquid discharged per stroke can be controlled without synchronizing the plunger for the sample solution line C1 and the plunger for the reagent solution line C2. Approximately 5JLJ
Check it so that it becomes l. In the case of a Teflon tube with an inner diameter of 0.51 cm, this volume corresponds to a liquid length of about 25 cm. Further, in order to obtain a constant flow rate without pulsation, a double plunger type pump with different phase difference is preferable, for example, a pump with a stroke length of 11111, a stroke discharge amount of 51L1, and a plunger diameter of about 2 to 3III is desirable.

図中Bは試料溶液ラインC1中に設けられた試料注入用
の六方注入バルブで、ここでキャリヤ液に試料Sが圧入
される。
B in the figure is a hexagonal injection valve for sample injection provided in the sample solution line C1, where the sample S is pressurized into the carrier liquid.

RCは反応コイルで、このコイル中で両液を混合させ反
応させる。この場合、該反応コイルRCは恒温槽HB内
に設置し、両液C,/と02′の反応温度を一定として
反応率を高めると共に反応率を一定に保持せしめるので
ある。
RC is a reaction coil in which both liquids are mixed and reacted. In this case, the reaction coil RC is installed in a constant temperature bath HB, and the reaction temperature of both liquids C,/ and 02' is kept constant to increase the reaction rate and to keep the reaction rate constant.

次に、混合フローライン中の上記反応コイルRC中で充
分に反応させた反応終了後液はフローセルFCに送液し
て吸光光度法等により測定し、その測定18をレコーダ
Rに記録する。
Next, the reaction solution that has been sufficiently reacted in the reaction coil RC in the mixing flow line is sent to the flow cell FC and measured by spectrophotometry or the like, and the measurement 18 is recorded on the recorder R.

一方、m足掻の液はバックプレッシャーコイルRPC(
例えば内径0.20〜0.50mm )を通L−’(ラ
イン外に廃棄する。この廃液Wは公害時IFの処理を行
なった後に放流する。
On the other hand, the liquid in the m-scrabble is transferred to the back pressure coil RPC (
For example, an inner diameter of 0.20 to 0.50 mm) is passed through L-' (wasted outside the line. This waste liquid W is discharged after being subjected to IF treatment at the time of pollution.

上記バックプレッシャーコイルRPCは全フローライン
中での気泡の発生を防止すると共に、脈流のない安定し
た定常流を得るのに役立つのである。
The back pressure coil RPC prevents the generation of bubbles in the entire flow line and is useful for obtaining a stable steady flow without pulsation.

一般的に、フローライン中を脈流のない状態に保つため
に、ペリスタ−型ポンプが用いられる場合もあるが、こ
の型のポンプは耐久性に劣るので、上記の如くプランジ
ャー型ポンプの方が好ましい。
Generally, a pelister type pump is sometimes used to maintain a pulsating flow in the flow line, but this type of pump has poor durability, so a plunger type pump is preferred as described above. is preferred.

なお、本発明は、フローインジェクション分析法のみで
なく、他の多くのフローライン分析法に適用できること
は勿論である。
Note that the present invention is of course applicable not only to the flow injection analysis method but also to many other flow line analysis methods.

(ホ)発明の効果 本発明によれば、FIAの反応率を100%に無限に近
付けられ、しかも反応率を定常的に一定に保つことがで
きるので、極めて高精度の分析を迅速に行なうことがで
き、余計な試薬等も使わないで済むので経済的である等
の利点を有する。
(e) Effects of the Invention According to the present invention, the reaction rate of FIA can be brought infinitely close to 100%, and the reaction rate can be constantly kept constant, so analysis with extremely high precision can be performed quickly. It has advantages such as being economical because it does not require the use of unnecessary reagents, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法に基づく流路図の一例であり、f52
図は本発明法における混合フローライン中の液層状態図
を示す説明図である。 符号説明 C3−試料溶液ライン C2−試薬溶液ラインC,/ 
−試料溶液 C9′−試薬溶液P−無脈流ダプルプラン
ジャーポンプ S−試料 B−六方注入バルブ M−ミキシングジヨイ
ント RC−反応セル FC−フローセルR−レコーダ
 W−廃液 HB−恒温槽特 許 出 願 人 同和鉱
業株式会社代  理  人  弁理士  浅  賀  
−夫    ′同   弁理士 浅 賀 −樹
FIG. 1 is an example of a flow path diagram based on the method of the present invention.
The figure is an explanatory diagram showing a liquid layer state diagram in a mixing flow line in the method of the present invention. Code explanation C3-sample solution line C2-reagent solution line C,/
- Sample solution C9' - Reagent solution P - Non-pulsating flow double plunger pump S - Sample B - Six-way injection valve M - Mixing joint RC - Reaction cell FC - Flow cell R - Recorder W - Waste liquid HB - Constant temperature bath patent Applicant Dowa Mining Co., Ltd. Representative Patent Attorney Asaga
-Husband: patent attorney Asaga - Itsuki

Claims (4)

【特許請求の範囲】[Claims] (1)試料溶液と試薬溶液とをそれぞれ独立したフロー
ラインを経由させ、しかる後に両液をそれぞれ交互に所
定量づつ混合フローラインへ送液して混合・反応させる
ことを特徴とするフローインジェクション分析法。
(1) Flow injection analysis characterized by passing a sample solution and a reagent solution through independent flow lines, and then alternately feeding a predetermined amount of both solutions to a mixing flow line for mixing and reaction. Law.
(2)前記試料溶液と試薬溶液のフローラインの内径が
それぞれ0.25〜1.0mmであり、かつ交互に送液
される前記両液の所定量がいずれも1.25〜20μl
である特許請求の範囲第1項記載のフローインジェクシ
ョン分析法。
(2) The inner diameters of the flow lines for the sample solution and the reagent solution are each 0.25 to 1.0 mm, and the predetermined amounts of the two solutions that are alternately fed are both 1.25 to 20 μl.
A flow injection analysis method according to claim 1.
(3)前記混合フローラインの少なくとも一部が恒温槽
内を通過する特許請求の範囲第1項又は第2項記載のフ
ローインジェクション分析法。
(3) The flow injection analysis method according to claim 1 or 2, wherein at least a portion of the mixed flow line passes through a constant temperature bath.
(4)前記混合フローラインの末端部に設けられるフロ
ーセルの後部にバックプレッシャーコイルを接続してフ
ローラインの内圧を調整する特許請求の範囲第1項、第
2項又は第3項記載のフローインジェクション分析法。
(4) The flow injection according to claim 1, 2 or 3, wherein a back pressure coil is connected to the rear part of a flow cell provided at the end of the mixing flow line to adjust the internal pressure of the flow line. Analysis method.
JP62265054A 1987-10-20 1987-10-20 Flow injection analysis method Expired - Fee Related JPH0616053B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62265054A JPH0616053B2 (en) 1987-10-20 1987-10-20 Flow injection analysis method
SE8801366A SE503661C2 (en) 1987-10-20 1988-04-13 Methods for flow injection analysis and therefore adapted spectrophotometric flow cell
GB8809273A GB2211293B (en) 1987-10-20 1988-04-20 Flow injection analysis method and apparatus thereof
DE19883820196 DE3820196A1 (en) 1987-10-20 1988-06-14 METHOD AND DEVICE FOR CARRYING OUT THE FLOW INJECTION ANALYSIS
CA000573714A CA1321080C (en) 1987-10-20 1988-08-03 Flow injection analysis method and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62265054A JPH0616053B2 (en) 1987-10-20 1987-10-20 Flow injection analysis method

Publications (2)

Publication Number Publication Date
JPH01107158A true JPH01107158A (en) 1989-04-25
JPH0616053B2 JPH0616053B2 (en) 1994-03-02

Family

ID=17411940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62265054A Expired - Fee Related JPH0616053B2 (en) 1987-10-20 1987-10-20 Flow injection analysis method

Country Status (1)

Country Link
JP (1) JPH0616053B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464064A (en) * 1990-07-02 1992-02-28 Sanuki Kogyo Kk Flow injection analyser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636053A (en) * 1979-08-28 1981-04-09 Bifok Ab Method of continuous flowing analysis
JPS593336A (en) * 1982-06-30 1984-01-10 Yasuyo Takahata Reaction measuring device
JPS5977360A (en) * 1982-10-26 1984-05-02 Shimadzu Corp Liquid feeder for analysis
JPS62143263U (en) * 1986-03-04 1987-09-09

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636053A (en) * 1979-08-28 1981-04-09 Bifok Ab Method of continuous flowing analysis
JPS593336A (en) * 1982-06-30 1984-01-10 Yasuyo Takahata Reaction measuring device
JPS5977360A (en) * 1982-10-26 1984-05-02 Shimadzu Corp Liquid feeder for analysis
JPS62143263U (en) * 1986-03-04 1987-09-09

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464064A (en) * 1990-07-02 1992-02-28 Sanuki Kogyo Kk Flow injection analyser

Also Published As

Publication number Publication date
JPH0616053B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
Trojanowicz et al. Recent advances in flow injection analysis
EP0047130B1 (en) Flow analysis
US4486097A (en) Flow analysis
Rocks et al. FLow-injection analysis: a new approach to quantitative measurements in clinical chemistry.
US2899280A (en) Method of fluid analysis
JPS5887464A (en) Automatic analyzing method of continuous flow system
CN101021529A (en) High-flux detection system of multianalyte simultaneous detection and electrochemical immunoanalytical method
EP0468516B1 (en) Sample liquid dilution system for analytical measurements
US4610544A (en) Flow analysis
EP1368643B1 (en) Continuous flow titration
GB2312750A (en) Differential pH measurement apparatus
US5849592A (en) Carrierless sequential injection analysis
JPH01107158A (en) Flow injection analyzing method
US4582687A (en) Apparatus for flow analysis
Rocks et al. Automatic analysers in clinical biochemistry
CA1321080C (en) Flow injection analysis method and apparatus thereof
Fehér et al. Determination of the prostaglandin F 2α content of pharmaceutical preparations with triangle programmed bromimetric titration in flowing solutions
Grabowska et al. Determination of creatinine in clinical samples based on flow-through microsystem
Abicht Controlled dynamic titrator
Riley et al. Controlled-dispersion flow analysis: Flow-injection analysis applied to clinical chemistry
Muller Automatic colorimetric analyzer eliminates need for many analytical procedures
JPS6130745A (en) Compounding device for sample of chemical solution
JPS6171355A (en) Analyzing method of phosphoric acid
JPS5847261A (en) Method and device for analyzing liquid sample
JPS5860259A (en) Continuous determination

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees