JPH01107001A - Load response controller for pulverized coal firing boiler - Google Patents

Load response controller for pulverized coal firing boiler

Info

Publication number
JPH01107001A
JPH01107001A JP26392787A JP26392787A JPH01107001A JP H01107001 A JPH01107001 A JP H01107001A JP 26392787 A JP26392787 A JP 26392787A JP 26392787 A JP26392787 A JP 26392787A JP H01107001 A JPH01107001 A JP H01107001A
Authority
JP
Japan
Prior art keywords
boiler
primary air
time constant
signal
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26392787A
Other languages
Japanese (ja)
Inventor
Takayo Kawase
川瀬 隆世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP26392787A priority Critical patent/JPH01107001A/en
Publication of JPH01107001A publication Critical patent/JPH01107001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE: To assure always a high load responding characteristic by a method wherein means for measuring a boiler load responding characteristic is arranged at a fine powder coal combustion boiler for a thermoelectric power plant and a delay in responding operation is adapted by correcting a supplying amount of primary air in respect to a fine powder coal machine. CONSTITUTION: As a major steam pressure, a pressure time constant of a boiler during variation in load is calculated by a pressure time constant measuring device 30. The calculated time constant is stored in an analogue memory 6 in advance. This stored time constant is outputted to a function generating device 7 and a correction characteristic is adjusted in such a way that a supplying amount of primary air is increased in the case that the pressure time constant is increased. A correction signal adjusted in this way is outputted from the function generating device 7 as a primary air flow rate command correcting signal S4 so as to correct a primary air flow rate signal S2. This primary air flow rate is applied as a damper opening degree signal S3 by a subtractor 11, this becomes damper opening degree signals S3a, S3b outputted through a PI adjusting device 12 and a polarity converter 13, a degree of opening of each of the dampers is adjusted to cause the primary air flow rate to be adapted for the signal S2 and then the primary air temperature is adjusted to its set value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微粉炭を燃料とするボイラに微粉炭を供給する
系統を制御する装置に係り、特にボイラのに対する負荷
に迅速かつ適正に対応するように構成した制御装置に関
する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a device for controlling a system for supplying pulverized coal to a boiler that uses pulverized coal as fuel, and in particular to a device that quickly and appropriately responds to the load on the boiler. The present invention relates to a control device configured as follows.

〔従来の技術〕[Conventional technology]

火力発電所用の大型ボイラ等事業所用のボイラでは、そ
の使用燃料が石油系燃料から石炭へと積極的に切り換え
られている。この場合、石炭を微粉化して燃焼性制御性
を向上させるようにしているが、貯留しである微粉炭を
順次燃焼させる方法は、制御性は良好であるが貯留中の
微粉炭の発火等を防止する手段を講じる必要がある等の
ためあまり実施されておらず、通常は微粉炭機(ミル)
で粉砕した微粉炭を直接ボイラに供給するダイレクト燃
焼方式が採用されている。このダイレクト燃焼方式では
安全性は高い反面、微粉炭機を含む微粉炭供給系統の負
荷応答性が直接ボイラの負荷応答性を左右することにな
るため、微粉炭供給系統の負荷応答性を高く保持する必
要がある。
BACKGROUND OF THE INVENTION Boilers for business use, such as large boilers for thermal power plants, are actively switching the fuel used from petroleum-based fuels to coal. In this case, the coal is pulverized to improve combustibility controllability, but the method of sequentially burning the stored pulverized coal provides good controllability but may cause problems such as ignition of the stored pulverized coal. It is not often implemented because it is necessary to take measures to prevent it, and it is usually carried out using a pulverizer (mill).
A direct combustion method is adopted in which pulverized coal is supplied directly to the boiler. Although this direct combustion method is highly safe, the load response of the pulverized coal supply system, including the pulverizer, directly affects the load response of the boiler, so the load response of the pulverized coal supply system is maintained at a high level. There is a need to.

第5図はダイレクト燃焼方式の微粉炭供給系統を示す。Figure 5 shows a direct combustion type pulverized coal supply system.

図中、給炭機19から供給された石炭は微粉炭機18に
供給されて粉砕され、この微粉炭機19に供給された熱
空気により分級される。所定の粒掻取下に粉砕された微
小な石炭はこの熱空気を一次空気として、ボイラ20の
バーナ26に供給され燃焼する。一方一次空気フアン1
4により供給された空気の一部は、ボイラの燃焼排ガス
等を熱源とする燃焼空気予熱機15において加熱されて
加熱空気となり、この燃焼空気予熱機15をバイパスし
た冷空気と混合さる。この場合各ダンパ16と17を調
節することにより所定の温度と流量をもって熱空気(−
次空気)として微粉炭機19に流入する。
In the figure, coal supplied from a coal feeder 19 is supplied to a pulverizer 18 and pulverized, and is classified by hot air supplied to the pulverizer 19. The fine coal pulverized with predetermined grain scraping is supplied to the burner 26 of the boiler 20 and burned using this hot air as primary air. On the other hand, primary air fan 1
A part of the air supplied by 4 is heated to become heated air in a combustion air preheater 15 whose heat source is combustion exhaust gas from a boiler, and mixed with cold air that has bypassed this combustion air preheater 15. In this case, by adjusting each damper 16 and 17, the hot air (-
The coal flows into the pulverizer 19 as air).

またボイラ系統では、微粉炭の燃焼熱により発生した蒸
気をタービン21に供給することにより発電などの仕事
を行わせ、しかる後に復水器24で水に戻されてボイラ
給水としてボイラに供給することにより給水がボイラを
介して循環流動している。なお符号22は主蒸気圧力計
、23はタービン加減弁、25は給水ポンプを示す。
In addition, in the boiler system, steam generated by the combustion heat of pulverized coal is supplied to the turbine 21 to perform work such as power generation, and is then returned to water in the condenser 24 and supplied to the boiler as boiler feed water. The feed water circulates through the boiler. Note that 22 is a main steam pressure gauge, 23 is a turbine control valve, and 25 is a water supply pump.

以上の装置において、微粉炭供給系統に対する一次空気
の流量指令は炭量供給指令に対応してプログラムされる
が、このプログラムは固定的に運用されるため、−旦設
定されると以後の状況の変化に対応することができず問
題があった。即ち、微粉炭器は運転時間め経過と共に粉
砕部の摩耗等□により粉砕能力が徐々に低下し、また粉
砕対象たる石炭の種類が変化することによって微粉炭機
の動特性が変化し、これによっても粉砕能力が変動する
。従来の装置はこの点に対する配慮かなされていないた
め、ボイラ負荷に対する応答が悪くなり、制御性が低下
する事態が生じている。
In the above equipment, the primary air flow rate command for the pulverized coal supply system is programmed in accordance with the coal amount supply command, but since this program is operated fixedly, once it is set, the subsequent situation will be changed. There was a problem with not being able to respond to changes. In other words, the pulverizing capacity of the coal pulverizer gradually decreases as the operating time elapses due to wear of the pulverizing part, etc., and the dynamic characteristics of the coal pulverizer change as the type of coal to be pulverized changes. The crushing capacity also fluctuates. Conventional systems do not take this point into consideration, resulting in poor response to boiler loads and poor controllability.

以上の問題に対する対策として従来からボイラに対する
負荷デマンド信号を微分することにより先行制御を行う
ようにして、微粉炭供給系統の負荷応答性の低さを補う
方法が採用されているが、微分の対象となるべき信号が
常に変動しているため、微分動作が追いつかないという
問題がある。
As a countermeasure to the above problem, a conventional method has been adopted in which advance control is performed by differentiating the load demand signal for the boiler to compensate for the low load response of the pulverized coal supply system. Since the signal that should be used is constantly changing, there is a problem that the differential operation cannot keep up.

また対象信号が短時間に一次的に変動しても反応し、不
必要な微分動作を行ってしまう等、制御上の問題があっ
て前述の問題を抜本的に解決する事はできなかった。
Furthermore, there are control problems, such as reacting to linear fluctuations in the target signal in a short period of time and performing unnecessary differential operations, and it has not been possible to fundamentally solve the above-mentioned problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述した問題点を解決すべく構成したものであ
り、ボイラに対して微粉炭を供給する系統に対し、ボイ
ラ時定数を測定することによりボイラの負荷応答性を測
定する手段と、−次空気を増加させることによって微粉
炭供給を急速に増加させる手段を設け、ボイラ負荷に対
応して微粉炭供給量を適正に保持するようにした制御装
置である。
The present invention is configured to solve the above-mentioned problems, and includes means for measuring the load response of the boiler by measuring the boiler time constant for a system that supplies pulverized coal to the boiler; This control device is provided with means for rapidly increasing the supply of pulverized coal by increasing the amount of air, and maintains the amount of pulverized coal supplied appropriately in response to the boiler load.

〔作用〕[Effect]

微粉炭供給を受けるボイラの蒸気圧力変化の時定数また
は設定蒸気圧力に対する実測蒸気圧力の偏差を補正値と
する手段によりボイラに対する負荷指令から算出した燃
料供給指令に対応する一次空気流量指令信号をこの補正
値により補正する。
The primary air flow rate command signal corresponding to the fuel supply command calculated from the load command to the boiler is calculated by using the time constant of steam pressure change of the boiler receiving pulverized coal supply or the deviation of the measured steam pressure from the set steam pressure as the correction value. Correct using the correction value.

即ち、この補正値に基づき一次空気の供給量を増加する
ことによりボイラに対する微粉炭の供給量を急速に増加
させ、負荷応答の遅れ分を補うようにする。
That is, by increasing the supply amount of primary air based on this correction value, the supply amount of pulverized coal to the boiler is rapidly increased to compensate for the delay in load response.

〔実施例〕〔Example〕

以下本発明の実施例を図面を参考に具体的に説明する。 Embodiments of the present invention will be specifically described below with reference to the drawings.

第1図において、ボイラの主蒸気圧力と主蒸気圧力設定
値とが減算器1に出力され、設定値に対する実際の主蒸
気圧力の偏差がPI設定器2を経て加算器3に出力され
、ボイラの負荷指令と加算されて燃焼量指令となる。こ
の燃焼量指令と全燃料流量は減算器4に出力され、PI
調節器5を経てミルマスク信号S1となり、各微粉炭器
に対する給炭量指令として用いられる。
In FIG. 1, the main steam pressure of the boiler and the main steam pressure set value are output to a subtracter 1, and the deviation of the actual main steam pressure from the set value is output to the adder 3 via the PI setting device 2, and the boiler main steam pressure is output to the subtracter 1. is added to the load command to obtain the combustion amount command. This combustion amount command and total fuel flow rate are output to the subtractor 4, and the PI
It passes through the regulator 5 and becomes a mill mask signal S1, which is used as a coal feed amount command for each pulverizer.

一方このミルマスク信号S1は掛は算器8に出力され、
更に高選択器9、信号発生器10により一次空気流量指
令信号S2を作成する。
On the other hand, this mill mask signal S1 is output to the multiplier 8,
Furthermore, a high selector 9 and a signal generator 10 generate a primary air flow rate command signal S2.

また、前記主蒸気圧力は圧力時定数測定器(その機能の
詳細は後述する)30により負荷変動時のボイラの圧力
時定数を求め、求めた時定数はアナログメモリー6に記
憶させておく。またこの時定数は適宜更新されるように
なっており、ボイラの運転の現状に合わせるようにしで
ある。アナログメモリー6に記憶された時定数は関数発
生器7に出力され、第3図に示すように圧力時定数が増
加する場合には一次空気供給量(ゲイン)も増加させる
よう補正特性が調節される。このように補正特性を調節
された補正信号が関数発生器7から一次空気流量指令補
正信号S4として出力され、前記−次空気流量信号S2
を補正する。またこの流量信号に基づいて調節される一
次空気流量は、減算器11において一次空気流量信号S
2に基づきダンパ開度信号S3とされ、PI調節器12
を経て熱空気ダンパの開度を調節する熱空気ダンパ開度
信号S3aと、極性変換器13を経て出力される冷空気
ダンパ開度信号S3bとなり、各々のダンパの開度を調
節することにより一次空気流量を一次空気流量指令信号
S2に対応させると共に、その−次空気温度を設定値に
調節する。
Further, for the main steam pressure, the pressure time constant of the boiler during load fluctuation is determined using a pressure time constant measuring device 30 (details of its function will be described later), and the determined time constant is stored in the analog memory 6. Further, this time constant is updated as appropriate to match the current state of boiler operation. The time constant stored in the analog memory 6 is output to the function generator 7, and as shown in FIG. 3, when the pressure time constant increases, the correction characteristic is adjusted so that the primary air supply amount (gain) also increases. Ru. The correction signal whose correction characteristics are adjusted in this way is output from the function generator 7 as the primary air flow rate command correction signal S4, and the -order air flow rate signal S2 is outputted from the function generator 7 as the primary air flow rate command correction signal S4.
Correct. Further, the primary air flow rate adjusted based on this flow rate signal is determined by the primary air flow rate signal S in the subtracter 11.
2 is used as the damper opening signal S3, and the PI controller 12
The hot air damper opening signal S3a that adjusts the opening of the hot air damper is output through the polarity converter 13, and the cold air damper opening signal S3b is outputted through the polarity converter 13. By adjusting the opening of each damper, the primary The air flow rate is made to correspond to the primary air flow rate command signal S2, and the secondary air temperature is adjusted to a set value.

ここで、微粉炭燃焼ボイラは微粉炭機の特性の変化(粉
砕部に於ける加圧力の変化、粉砕用ボール等粉砕部の摩
耗)や炭種の相違等により微粉炭供給能力が変化する。
Here, the pulverized coal supply capacity of the pulverized coal combustion boiler changes due to changes in the characteristics of the pulverized coal machine (changes in pressurizing force in the pulverizer, wear of the pulverizer such as pulverizer balls), differences in coal type, etc.

このためこの微粉炭を燃料とするボイラの主蒸気圧力の
応答性が変化し、ボイラ負荷に対する追従性が低下する
原因となっているわけである。この解決策として、ボイ
ラの主蒸気圧力の応答性(ボイラに対する負荷デマンド
に対応した主蒸気圧力の変化速度)が変化しているか否
かを前記圧力時定数により判断し、この結果に基づき微
粉炭機に対する一次空気流量を調節する。第4図はこの
一次空気流量補正の概念を示し、圧力時定数が大になっ
てる場合には前に設定していた一次空気流量の制御モデ
ルF1からF2に変化させる。これにより微粉炭機に対
する一次空気流量を増加させ、ボイラに対する微粉炭供
給量を短時間に上昇させてボイラの負荷応答性の低下を
補う。
For this reason, the responsiveness of the main steam pressure of a boiler that uses this pulverized coal as fuel changes, causing a drop in followability to the boiler load. As a solution to this problem, it is determined whether or not the responsiveness of the boiler's main steam pressure (the rate of change in the main steam pressure in response to the load demand for the boiler) is changing, and based on this result, the pulverized Adjust primary air flow to the machine. FIG. 4 shows the concept of this primary air flow rate correction, and when the pressure time constant becomes large, the previously set primary air flow rate control model F1 is changed to F2. As a result, the primary air flow rate to the pulverized coal machine is increased, and the amount of pulverized coal supplied to the boiler is increased in a short time, thereby compensating for the decrease in the load response of the boiler.

次に上述した圧力時定数測定器の機能及びその構成につ
いて具体的に説明する。
Next, the functions and configuration of the pressure time constant measuring device described above will be specifically explained.

第2図は給炭量のステップ上昇に対する主蒸気圧力応答
性を測定した結果を示す。ボイラに対する給炭量を増加
させると、ボイラのバーナ部にこの増加分が届くまでの
時間、増加した微粉炭により燃焼熱量が増加する時間、
ボイラの吸熱面が増加した熱量を吸収する時間等のため
、給炭量を増加しても主蒸気圧力が殆ど上昇しない時間
t1があり、その後増加した熱量により規定の圧力にま
で上昇する時間t2がある。ボイラの時定数Tはこれら
の時間t、とt2を合計したものである。
Figure 2 shows the results of measuring the main steam pressure response to a step increase in the amount of coal fed. When the amount of coal fed to the boiler is increased, the time it takes for this increased amount to reach the burner section of the boiler, the time for the amount of combustion heat to increase due to the increased pulverized coal,
There is a time t1 in which the main steam pressure hardly increases even if the amount of coal feed is increased due to the time for the heat absorbing surface of the boiler to absorb the increased heat amount, and then there is a time t2 in which the pressure rises to the specified level due to the increased heat amount. There is. The boiler time constant T is the sum of these times t and t2.

つまりボイラの時定数Tが大きければそれだけボイラの
負荷応答性が低いことを意味する。即ち、第1図に示す
圧力時定数測定機30はこの原理に基づき構成したもの
であり、微粉炭機に対する給炭量増加信号を受信した時
点からの主蒸気圧力の変化を測定することにより前記時
間t、及びt2を求め、更にこれらから時定数Tを求め
、これを関数発生器により一次空気増加量信号とし、こ
の−次空気増加信号を一次空気量指令信号S2の補正値
S4として使用する。
In other words, the larger the time constant T of the boiler, the lower the load response of the boiler. That is, the pressure time constant measuring device 30 shown in FIG. The time t and t2 are determined, and the time constant T is determined from these. This is used as a primary air increase amount signal by a function generator, and this -order air increase signal is used as a correction value S4 of the primary air amount command signal S2. .

第7図は本発明の他の実施例を示す。FIG. 7 shows another embodiment of the invention.

この実施例では、関数発生器7も含めて、設定時定数に
対する測定時定数の遅れ′分(偏差)を補正する石炭供
給量を算出し、かつこの補正石炭供給量に対応する一次
空気増加量を算出し、更にこの一次空気増加量を一次空
気供給指令信号の補正信号として用いるものである。な
お、図中符号27は加算器である。この実施例では主蒸
気圧力の偏差をパラメータとしているので、補正量は圧
力偏差に対応するため、容易に補正量を自動的に設定す
ることができる。
In this embodiment, the function generator 7 is used to calculate the coal supply amount to correct the delay (deviation) of the measurement time constant with respect to the set time constant, and the primary air increase amount corresponding to this corrected coal supply amount. This primary air increase amount is further used as a correction signal for the primary air supply command signal. Note that the reference numeral 27 in the figure is an adder. In this embodiment, since the main steam pressure deviation is used as a parameter, the correction amount corresponds to the pressure deviation, and therefore the correction amount can be easily set automatically.

〔効果〕〔effect〕

本発明は以上その構成を具体的に説明したように、ボイ
ラ負荷応答性を測定する手段を配置し、かつ負荷応答遅
れを、微粉炭機に対する一次空気供給量を補正すること
により対応するようにしたので、正確に測定したボイラ
の負荷応答性に基づき一次空気量を調節してボイラに対
する微粉炭供給量を短時間で変化させることができる。
As the configuration of the present invention has been specifically explained above, a means for measuring the boiler load response is arranged, and the load response delay is dealt with by correcting the primary air supply amount to the pulverizer. Therefore, the amount of pulverized coal supplied to the boiler can be changed in a short time by adjusting the amount of primary air based on the accurately measured load response of the boiler.

このため微粉炭の経年変化や炭種の変更等による粉砕能
力の低下等に関わらず高い常時負荷応答性を確保するこ
とができる。
For this reason, high constant load responsiveness can be ensured regardless of the deterioration of the crushing capacity due to aging of the pulverized coal or changes in the type of coal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す負荷応答制御装置
の制御系統図、第2図は給炭量に対するボイラ主蒸気圧
力時定数の関係を示す線図、第3図は主蒸気圧力時定数
と一次空気増加量(ゲイン)との関係を示す線図、第4
図は圧力時定数が相違する場合に於ける給炭量指令と一
次空気量との関係を示す線図、第5図は微粉炭燃焼ボイ
ラの燃料供給及び蒸気循環系統図、第6図は従来の制御
装置の制御系統図、第7図は本発明の別の実施例を示す
負荷応答制御装置の制御系統図である。 7・・・関数発生器  10・・・信号発生器11・・
・減算器  18・・・微粉炭機19・・・給炭機  
20・・・ボイラ26・・・バーナ  Sl・・・ミル
マスク信号S2・・・−次空気量指令信号 S3・・・ダンパ開度信号 S4・・・−次空気量補正信号
Fig. 1 is a control system diagram of a load response control device showing the first embodiment of the present invention, Fig. 2 is a diagram showing the relationship between the boiler main steam pressure time constant and the coal feed amount, and Fig. 3 is a diagram showing the relationship between the main steam pressure time constant and the main steam Diagram showing the relationship between pressure time constant and primary air increase amount (gain), 4th
The figure is a diagram showing the relationship between the coal feed amount command and the primary air amount when the pressure time constants are different. Figure 5 is a fuel supply and steam circulation system diagram of a pulverized coal combustion boiler. Figure 6 is a conventional diagram. FIG. 7 is a control system diagram of a load response control device showing another embodiment of the present invention. 7...Function generator 10...Signal generator 11...
・Subtractor 18...Pulverized coal machine 19...Coal feeding machine
20...Boiler 26...Burner Sl...Milmask signal S2...Next air amount command signal S3...Damper opening signal S4...Next air amount correction signal

Claims (1)

【特許請求の範囲】[Claims] ボイラに対する負荷指令信号とボイラの蒸気圧力信号と
により、微粉炭機からボイラに供給する微粉炭量を制御
する装置において、ボイラの圧力時定数を測定する手段
と、微粉炭機に対する一次空気量の増加により微粉炭供
給量の急速な増加を行う手段とを設け、測定したボイラ
の圧力時定数に対応して微粉炭急速増加用の一次空気流
量を、ボイラ負荷指令に対応する一次空気量の補正値と
して使用するよう構成したことを特徴とする微粉炭燃焼
ボイラの負荷応答制御装置。
A device for controlling the amount of pulverized coal supplied from a pulverizer to a boiler based on a load command signal to the boiler and a steam pressure signal of the boiler, which includes a means for measuring the pressure time constant of the boiler and a means for controlling the amount of primary air to the pulverizer. The primary air flow rate for rapidly increasing the pulverized coal is corrected in response to the measured boiler pressure time constant, and the primary air flow rate is corrected in response to the boiler load command. A load response control device for a pulverized coal combustion boiler, characterized in that it is configured to be used as a value.
JP26392787A 1987-10-21 1987-10-21 Load response controller for pulverized coal firing boiler Pending JPH01107001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26392787A JPH01107001A (en) 1987-10-21 1987-10-21 Load response controller for pulverized coal firing boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26392787A JPH01107001A (en) 1987-10-21 1987-10-21 Load response controller for pulverized coal firing boiler

Publications (1)

Publication Number Publication Date
JPH01107001A true JPH01107001A (en) 1989-04-24

Family

ID=17396195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26392787A Pending JPH01107001A (en) 1987-10-21 1987-10-21 Load response controller for pulverized coal firing boiler

Country Status (1)

Country Link
JP (1) JPH01107001A (en)

Similar Documents

Publication Publication Date Title
US5626085A (en) Control of staged combustion, low NOx firing systems with single or multiple levels of overfire air
CN105927976B (en) A kind of Directed Energy Balance Coordinated Control control system for large-size circulating fluidized bed unit
CN205842637U (en) A kind of Directed Energy Balance Coordinated Control control system for large-size circulating fluidized bed unit
US4064699A (en) Boiler control providing improved operation with fuels having variable heating values
CN109882833B (en) Steam temperature control method for load-variable process of secondary reheating thermal power generating unit
CN112650169B (en) Generator set main parameter control system based on enthalpy value and fuel online heat value calculation
US4582026A (en) Feed-forward type automatic control system
US4049971A (en) Output regulator for a thermal power-producing plant
US3306044A (en) Regulating system for reducing the effect of heat fluctuations on forced-flow steam boilers in power plants
JPH01107001A (en) Load response controller for pulverized coal firing boiler
JP4637943B2 (en) Control method of pressurized fluidized bed boiler
JPS6133362Y2 (en)
GB1183615A (en) An Electromechanical Control System for an Automated Vapour Generator Furnace
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
Kim et al. Optimization of calorie compensation of fuel coal for power plant control
JPH0361090B2 (en)
CN113739195B (en) Method, device, equipment and medium for controlling separated coal feeding amount
CN116466575A (en) Coal-biomass coupling power generation fuel control method and device
SU848893A1 (en) Method of automatic controlling of fuel feed into supercritical pressure steam generator
JPS60263014A (en) Combustion controlling method
JPS588902A (en) Controller for coal burning thermoelectric power plant
Fomenko et al. Experience Gained from Shifting the 225 MW Power Units at the Cherepet State-Owned District Power Plant Equipped with TPE-223 Drum Boilers for Operation in the Sliding Pressure Mode
KR20220094159A (en) Control device and control method
SU1002728A1 (en) System for automatic control of burning process in steam generator sectionized fire box
CN115681943A (en) Automatic combustion control system for three kinds of coal gas power generation boiler