JPH01105735A - Manufacture of fiber reinforced phenol resin molded object - Google Patents

Manufacture of fiber reinforced phenol resin molded object

Info

Publication number
JPH01105735A
JPH01105735A JP62264068A JP26406887A JPH01105735A JP H01105735 A JPH01105735 A JP H01105735A JP 62264068 A JP62264068 A JP 62264068A JP 26406887 A JP26406887 A JP 26406887A JP H01105735 A JPH01105735 A JP H01105735A
Authority
JP
Japan
Prior art keywords
aluminum
parts
weight
layer
phenol resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62264068A
Other languages
Japanese (ja)
Other versions
JPH0771841B2 (en
Inventor
Yoshiro Okino
沖野 義郎
Takeshi Makiyo
武 真清
Takashi Hashiba
橋場 喬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP62264068A priority Critical patent/JPH0771841B2/en
Publication of JPH01105735A publication Critical patent/JPH01105735A/en
Publication of JPH0771841B2 publication Critical patent/JPH0771841B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain the fiber reinforced phenol resin molded object passing the incombustibility standard of the Ministry of Transport, while ignition, flaming, carburetion and deformation in flame test do not occur by using a specified primer. CONSTITUTION:A gel coat layer is the material in which 50-100pts.wt. of aluminum hydrate is compounded with 100pts.wt. of unsaturated polyester resin. A primer layer is the material in which 50-100pts.wt. of aluminum hydrate is added to 100pts.wt. of vinyl ester resin, and further 10-40wt.% in the weight of aluminum to the total weight of a molded object of any one kind or more of aluminum powder, aluminum grain, aluminum fiber or the glass fiber coated with aluminum is compounded with said vinyl ester resin. As the phenol resin layer of a backing layer, the material in which 10-30pts.wt. of clay and 20-60 pts.wt. of semiaqueous plaster to 100pts.wt. of phenol resin are added to glass fiber base material, is used. After the gel coat layer, the primer layer and the backing layer have been successively laminated on a mold surface and cured, the molded object made of flame retardant fiber reinforced phenol resin is obtained by its mold release.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高度に難燃化させた繊維強化フェノール樹脂
成形物(以下、フェノールFRPという)の製造方法に
関し、特にダクト、スクラバー、耐食パイプ、壁、天井
、航空機部品、車輌部品、シェルタ−等の各種用途に有
用なものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing highly flame-retardant fiber-reinforced phenolic resin molded products (hereinafter referred to as phenol FRP), and in particular to ducts, scrubbers, and corrosion-resistant pipes. It is useful for various uses such as walls, ceilings, aircraft parts, vehicle parts, and shelters.

(従来の技術) 従来の不飽和ポリエステルゲルコート付フェノールFR
Pを難燃化するにさいして、ゲルコートには水酸化アル
ミニウム、フェノールFRPには焼石膏、クレー、水酸
化アルミニウム等の無機充填剤、更に二酸化アンチモン
、塩化パラフィンを添加する方法及びデカブロモジフェ
ニルを添加する方法がある。しかしこれらの組合せでは
、フェノール樹脂層からの熱によるガス発生のため、表
面のフクレ、ハジキによる変形、着火等が起り運輸省の
鉄道車両用材料燃焼試験(以下運輸省法とする)の「不
燃性」規格に合格する処方を見出すことができなかった
(Conventional technology) Conventional unsaturated polyester gel coated phenol FR
In order to make P flame retardant, there is a method of adding aluminum hydroxide to gel coat, an inorganic filler such as calcined gypsum, clay, aluminum hydroxide to phenol FRP, and a method of adding antimony dioxide and chlorinated paraffin, and a method of adding decabromodiphenyl. There is a way to add it. However, with these combinations, gas generation due to heat from the phenolic resin layer causes surface blistering, deformation due to repelling, ignition, etc. It was not possible to find a formulation that met the "sexual" standards.

(発明が解決しようとする問題点) そこで本発明者らはフェノールFRPの上記の欠点を削
除し運輸省法「不燃性」規格に合格するため、鋭意研究
した結果、特定のプライマーを使用することによって燃
焼試験において、着火、着炎、炭化、変形がなく、運輸
省法「不燃性」規格に合格する繊維強化フェノール樹脂
成形物の製造方法を完成した。
(Problems to be Solved by the Invention) Therefore, in order to eliminate the above-mentioned drawbacks of phenol FRP and pass the Ministry of Transport's "non-flammability" standard, the inventors of the present invention conducted extensive research and found that a specific primer was used. We have completed a method for manufacturing fiber-reinforced phenolic resin moldings that does not ignite, flame, carbonize, or deform in combustion tests, and passes the Ministry of Transportation's ``nonflammability'' standards.

(問題点を解決するための手段) 即ち、本発明はゲルコート層として不飽和ポリエステル
樹脂100重量部に対し、水酸化アルミニウム50〜1
00重量部を配合したものを使用する。
(Means for Solving the Problems) That is, the present invention uses 50 to 1 part of aluminum hydroxide as a gel coat layer to 100 parts by weight of unsaturated polyester resin.
00 parts by weight is used.

又本発明で使用するプライマー層とは、フェノールFR
Pとの密着と燃焼時の熱拡散と熱伝導を加味し、ビニル
エステル樹脂100重量部に水酸化アルミニウム50〜
100重量部添加し更にアルミ粉末、アルミ粒、アルミ
繊維、又はアルミコートガラス繊維の何れか1種以上を
成形物全量に対しアルミ重量で10〜40重量%配合し
たものを使用する。又裏打ち層のフェノール樹脂層には
、ガラス繊維基材にフェノール樹脂100重量部に対し
てクレーを10〜30重景部と貴簡石膏を20〜60重
量部添加したものを使用する。かくして前記各ゲルコー
ト層、プライマー層及び裏打ち層を型面上に順次積層硬
化させた後、脱型することによって高度に難燃化された
繊維強化フェノール樹脂成形物が得られ、運輸省法「不
燃性」規格に合格した。
The primer layer used in the present invention is phenol FR.
Considering adhesion with P and heat diffusion and conduction during combustion, 50~50~ of aluminum hydroxide is added to 100 parts by weight of vinyl ester resin.
100 parts by weight is added, and one or more of aluminum powder, aluminum grains, aluminum fibers, or aluminum-coated glass fibers is added in an amount of 10 to 40% by weight of aluminum based on the total amount of the molded product. For the phenolic resin layer of the backing layer, use is made of a glass fiber base material to which 10 to 30 parts by weight of clay and 20 to 60 parts by weight of gypsum are added to 100 parts by weight of phenol resin. In this way, the gel coat layer, primer layer, and backing layer are sequentially laminated and cured on the mold surface, and then removed from the mold to obtain a highly flame-retardant fiber-reinforced phenolic resin molded product, which meets the Ministry of Transport's "Nonflammable" standards. passed the gender standard.

(作 用) 本発明において使用されるフェノール樹脂は、フェノー
ル類1モルとアルデヒド類0.3〜3.0モルをアルカ
リ性触媒の存在下で反応して得られるレゾール型フェノ
ール樹脂初期縮金物である。この縮合物は酸で部分中和
されてもよい。又脱水し水を適当な溶剤で置換してもよ
い。フェノール類としてはフェノールおよび、その同族
体のクレゾール、キシレノール、アルキルフェノール等
があげられる。アルデヒド類としてホルムアルデヒド、
アセトアルデヒドおよびフルフラール等があげられる。
(Function) The phenol resin used in the present invention is a resol type phenol resin precondensation product obtained by reacting 1 mole of phenols and 0.3 to 3.0 moles of aldehydes in the presence of an alkaline catalyst. . This condensate may be partially neutralized with an acid. Alternatively, the water may be replaced with a suitable solvent after dehydration. Examples of phenols include phenol and its homologs such as cresol, xylenol, and alkylphenol. Formaldehyde as an aldehyde,
Examples include acetaldehyde and furfural.

本発明に使用されるビニルエステル樹脂は、エポキシ樹
脂と不飽和モノカルボン酸との反応によって得られるも
の、又は不飽和モノカルボン酸の1部を飽和カルボン酸
若しくはその誘導体で置換反応させた変性物などであり
、一般に市販されている。そのなかでノンワックス空気
硬化型のものが塗膜が硬く、接着がよく、特にフェノー
ル樹脂との密着がよいので好適である。
The vinyl ester resin used in the present invention is obtained by reacting an epoxy resin with an unsaturated monocarboxylic acid, or a modified product obtained by substituting a part of an unsaturated monocarboxylic acid with a saturated carboxylic acid or a derivative thereof. etc., and are generally commercially available. Among these, non-wax air-curing types are preferred because they have a hard coating film, good adhesion, and particularly good adhesion to phenol resins.

また、本発明で用いられる不飽和ポリエステル樹脂は、
不飽和多塩基酸および必要に応じて飽和多塩基酸と多価
アルコールとを反応させて得られるものであり、広く市
販されている。そのなかで飽和多塩基酸としてイソフタ
ル酸を用いた所謂イソ系のものがゲルコートとして特に
好適である。
In addition, the unsaturated polyester resin used in the present invention is
It is obtained by reacting an unsaturated polybasic acid and, if necessary, a saturated polybasic acid with a polyhydric alcohol, and is widely commercially available. Among these, so-called iso-based materials using isophthalic acid as a saturated polybasic acid are particularly suitable as gel coats.

プライマー層には、燃焼時の熱の拡散がよく。The primer layer has good heat diffusion during combustion.

熱伝導がよいアルミ粉末、アルミ粒、更に表面のフクレ
、ハジキ現象を防止するためアルミ繊維、アルミコート
ガラス繊維が配合される。
Aluminum powder and aluminum grains have good thermal conductivity, and aluminum fibers and aluminum coated glass fibers are blended to prevent surface blistering and repellency.

本発明で用いられるアルミ粉末は粒径100μI以下の
もの、アルミ粒はアルミ地金を溶融衣きつけて製造した
粒径100〜1000μmのもの、共に純度99%以上
のものが好適である。また、アルミ繊維は、溶融アリミ
から直接紡糸を行ったもので繊維径70〜250μm程
度であり、マット状、(不)連続繊維、短繊維、不織布
の形状で市販されている。さらに、アルミコートガラス
繊維とはEガラス(15μ径)にアルミを40重量%溶
溶融着させた比重2.6程度のものである。アルミ量と
しては全成形物中10〜40重世%を占める必要がある
。10%より少量であると熱拡散が不十分であり、40
%より多量ではプライマーの密着性が劣り、作業性も悪
くなる。また重量も増加するので好゛ましくない。プラ
イマー層及びゲルコート層には、難燃性を向上させるた
め水酸化アルミニウムが樹脂100重量部当りそれぞれ
50〜100重量部配合される。50重量部より少量で
は粱燃効果が充分でなく、100重量部より多量では表
面強度が低下し、密着が悪くなる。
Preferably, the aluminum powder used in the present invention has a particle size of 100 .mu.I or less, and the aluminum grains have a particle size of 100 to 1000 .mu.m produced by melting and coating an aluminum base metal, and both have a purity of 99% or more. Aluminum fibers are directly spun from molten aluminium, have a fiber diameter of about 70 to 250 μm, and are commercially available in the form of mats, (dis)continuous fibers, short fibers, and nonwoven fabrics. Further, the aluminum coated glass fiber is made by melting and bonding 40% by weight of aluminum to E glass (15μ diameter) and has a specific gravity of about 2.6. The amount of aluminum needs to account for 10 to 40 weight percent of the total molded product. If the amount is less than 10%, heat diffusion will be insufficient;
If the amount is more than %, the adhesion of the primer will be poor and the workability will be poor. Moreover, the weight also increases, which is undesirable. The primer layer and gel coat layer each contain 50 to 100 parts by weight of aluminum hydroxide per 100 parts by weight of the resin to improve flame retardancy. If the amount is less than 50 parts by weight, the combustion effect will not be sufficient, and if the amount is more than 100 parts by weight, the surface strength will decrease and adhesion will deteriorate.

フェノールFRPの裏打ち層にはフィラーとしてクレー
、半水石膏の組合せで使用するのが望ましく、特に半水
石膏を使用するとフェノール樹脂中の水と反応し燃焼時
のハジキ防止になる。燃焼時のハジキ、作業性等からフ
ェノール樹脂100重電部に対してクレーを10〜30
重量部、半水石膏を20〜60重量部組み合わせるのが
望ましい。
It is desirable to use a combination of clay and gypsum hemihydrate as fillers in the backing layer of phenolic FRP. In particular, when gypsum hemihydrate is used, it reacts with the water in the phenol resin and prevents repelling during combustion. Due to repellency during combustion, workability, etc., 10 to 30 parts of clay should be added to 100 parts of phenolic resin.
It is desirable to combine 20 to 60 parts by weight of gypsum hemihydrate.

本発明の成形物はハンドレイアップ法、スプレィアップ
法、マツチドダイ法、真空バック法の公知の成形方法で
成形可能である。
The molded product of the present invention can be molded by a known molding method such as a hand lay-up method, a spray-up method, a mated die method, or a vacuum bag method.

成形温度は、硬化剤量、硬化サイクル、成形方法によっ
て相違はあるが、常温から90℃の範囲で任意に選択で
き必要によっては60〜120℃で後硬化を行うことも
できる。
Although the molding temperature varies depending on the amount of curing agent, curing cycle, and molding method, it can be arbitrarily selected from room temperature to 90°C, and if necessary, post-curing can be performed at 60 to 120°C.

本発明において使用する繊維補強材としては、先に述べ
たアルミ粉末、アルミ粒、アルミ繊維、アルミコートガ
ラス繊維と下記に示す補強材とを組み合わせて使用する
。繊強材としては、ガラスチョツプドストランドマット
、ガラスクロス、ガラスロービング、コンティニュアス
マット、サーフェイスマット等のガラス繊維、炭素繊維
、ウィスカー等の無機繊維、アラミド繊維のごとき有機
繊維があげられる。
As the fiber reinforcing material used in the present invention, the above-mentioned aluminum powder, aluminum particles, aluminum fiber, aluminum coated glass fiber and the reinforcing material shown below are used in combination. Examples of the fiber reinforcing material include glass fibers such as chopped strand mats, glass cloths, glass rovings, continuous mats, and surface mats, inorganic fibers such as carbon fibers and whiskers, and organic fibers such as aramid fibers.

(実施例) 以下実施例により本発明をさらに詳しく説明する。(Example) The present invention will be explained in more detail with reference to Examples below.

実施例1〜4、比較例1〜3 〔実施例1〕 ゲルコート層として第1表記載の処方で不飽和ポリエス
テル樹脂を塗布し、硬化させた。プライマー層としてビ
ニルエステル樹脂100部、水酸化アルミニウム60部
、アルミ粒168部(全成形物に対し17.2%)を混
合し、ゲルコート層の上に塗布硬化させ、その上にフェ
ノール樹脂200部、クレー67部、半水石コウ100
部、硬化剤30部を混合し、ガラスマット(450g/
a#) 250X250mm 2層(100部)を積層
し、加熱硬化させ、厚さ5mmの平板を成形し燃焼試験
を実施した。結果を第1表に示す。
Examples 1 to 4, Comparative Examples 1 to 3 [Example 1] An unsaturated polyester resin was applied as a gel coat layer according to the formulation shown in Table 1, and cured. As a primer layer, 100 parts of vinyl ester resin, 60 parts of aluminum hydroxide, and 168 parts of aluminum particles (17.2% based on the total molded product) were mixed, coated and cured on the gel coat layer, and 200 parts of phenol resin was added on top of it. , 67 parts of clay, 100 parts of Hanmizu stone
30 parts of hardening agent and glass mat (450g/
a#) Two layers (100 parts) of 250 x 250 mm were laminated, heated and cured, and a flat plate with a thickness of 5 mm was formed and a combustion test was conducted. The results are shown in Table 1.

〔実施例2〜6〕 実施例1と同よう積層成形し、燃焼試験を実施した。[Examples 2 to 6] Laminate molding was carried out in the same manner as in Example 1, and a combustion test was conducted.

配合、燃焼試験結果を第1表に示す。The formulation and combustion test results are shown in Table 1.

〔比較例1〕 不飽和ポリエステル樹脂100部に対して水酸化アルミ
ニウム30部を添加したゲルコートをガラス板の上に塗
布し硬化させた。その上にフェノール樹脂200部にク
レーを20部、焼石コラ40部、硬化剤30部からなる
混合物を含浸したガラスマット(450g/ボ) 25
0 X 250mm 2層を積層し、加熱硬化させ、厚
さ5m+nの平板を成形し、燃焼試験を実施した。結果
を第1表に示す。
[Comparative Example 1] A gel coat prepared by adding 30 parts of aluminum hydroxide to 100 parts of unsaturated polyester resin was applied onto a glass plate and cured. Glass mat (450g/box) impregnated with a mixture of 200 parts of phenolic resin, 20 parts of clay, 40 parts of baked stone kola, and 30 parts of hardening agent 25
Two layers of 0 x 250 mm were laminated and cured by heating to form a flat plate with a thickness of 5 m+n, and a combustion test was conducted. The results are shown in Table 1.

〔比較例2〜3〕 比較例1と同様の方法で、但し第1表記載の処方で、不
飽和ポリエステル樹脂のゲルコート及びプライマー層を
ガラス板の上にそれぞれ塗布し硬化させた。次いで、裏
打ち層としてフェノールFRP層を第1表記載の処方で
実施した。結果を第1表に示す。
[Comparative Examples 2 to 3] In the same manner as in Comparative Example 1, but using the formulations shown in Table 1, a gel coat and a primer layer of unsaturated polyester resin were respectively applied onto a glass plate and cured. Next, a phenol FRP layer was formed as a backing layer according to the formulation shown in Table 1. The results are shown in Table 1.

(発明の効果) 第1表の結果から明らかな如く、本発明に係る配合処方
によれば、運輸省法「不燃性」規格に合格するものが得
られた。用途としては鉄道車両関係、特に新幹線の洗面
ユニット、トイレユニットに使用可能である。
(Effects of the Invention) As is clear from the results in Table 1, according to the formulation according to the present invention, a product that passed the "nonflammability" standard of the Ministry of Transport was obtained. It can be used in railway vehicles, especially Shinkansen washbasin units and toilet units.

Claims (1)

【特許請求の範囲】 型面に、 (A)不飽和ポリエステル樹脂100重量部に対し水酸
化アルミニウム50〜100重量部を配合したゲルコー
ト層、 (B)エポキシ樹脂と不飽和モノカルボン酸との反応に
よって得られるビニルエステル樹脂100重量部に水酸
化アルミニウム50〜100重量部及びアルミ粉末、ア
ルミ粒、アルミ繊維又はアルミコートガラス繊維の何れ
か1種以上を成形物全量に対し10〜40重量%配合し
たプライマー層、及び (C)ガラス繊維基材に、フェノール樹脂100重量部
、クレー10〜30重量部及び半水石膏を20〜60重
量部からなるフェノール樹脂組成物を含浸させた裏打ち
層 を型で順次積層硬化させた後脱型することを特徴とする
繊維強化フェノール樹脂成形物の製造方法。
[Claims] On the mold surface, (A) a gel coat layer containing 50 to 100 parts by weight of aluminum hydroxide to 100 parts by weight of an unsaturated polyester resin, (B) a reaction between an epoxy resin and an unsaturated monocarboxylic acid. 50 to 100 parts by weight of aluminum hydroxide and 10 to 40 parts by weight of any one or more of aluminum powder, aluminum grains, aluminum fibers, or aluminum coated glass fibers are blended into 100 parts by weight of the vinyl ester resin obtained by the method. A backing layer is formed by impregnating the primer layer and (C) a glass fiber base material with a phenolic resin composition consisting of 100 parts by weight of phenolic resin, 10 to 30 parts by weight of clay, and 20 to 60 parts by weight of gypsum hemihydrate. A method for producing a fiber-reinforced phenolic resin molded product, which comprises sequentially laminating and curing the molded product, and then removing the mold.
JP62264068A 1987-10-20 1987-10-20 Method for producing fiber-reinforced phenolic resin molding Expired - Lifetime JPH0771841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62264068A JPH0771841B2 (en) 1987-10-20 1987-10-20 Method for producing fiber-reinforced phenolic resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62264068A JPH0771841B2 (en) 1987-10-20 1987-10-20 Method for producing fiber-reinforced phenolic resin molding

Publications (2)

Publication Number Publication Date
JPH01105735A true JPH01105735A (en) 1989-04-24
JPH0771841B2 JPH0771841B2 (en) 1995-08-02

Family

ID=17398073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62264068A Expired - Lifetime JPH0771841B2 (en) 1987-10-20 1987-10-20 Method for producing fiber-reinforced phenolic resin molding

Country Status (1)

Country Link
JP (1) JPH0771841B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2376660A (en) * 2001-04-03 2002-12-24 Structural Polymer Systems Ltd Bonding material for bonding a first moulding material to a further moulding material
JP2013035194A (en) * 2011-08-08 2013-02-21 New Chemical Inc Rtm molding method and frp molding thereby
JP2020069654A (en) * 2018-10-29 2020-05-07 東罐マテリアル・テクノロジー株式会社 Reinforced plastic molded product with gel coat
US10987638B2 (en) 2015-06-19 2021-04-27 W. L. Gore & Associates, Inc. Asymmetric polytetrafluoroethylene composite having a macro-textured surface and method for making the same
CN115180836A (en) * 2022-07-11 2022-10-14 南通金鹏玻纤制品有限公司 Flame-retardant glass fiber cloth and production process thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064846A (en) * 1983-09-21 1985-04-13 大日本インキ化学工業株式会社 Fiber reinforced phenol resin molded shape
JPS6230104A (en) * 1985-04-19 1987-02-09 Nippon Erasutomaa Kk Novel conjugated diene polymer, production and composition thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064846A (en) * 1983-09-21 1985-04-13 大日本インキ化学工業株式会社 Fiber reinforced phenol resin molded shape
JPS6230104A (en) * 1985-04-19 1987-02-09 Nippon Erasutomaa Kk Novel conjugated diene polymer, production and composition thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2376660A (en) * 2001-04-03 2002-12-24 Structural Polymer Systems Ltd Bonding material for bonding a first moulding material to a further moulding material
JP2013035194A (en) * 2011-08-08 2013-02-21 New Chemical Inc Rtm molding method and frp molding thereby
US10987638B2 (en) 2015-06-19 2021-04-27 W. L. Gore & Associates, Inc. Asymmetric polytetrafluoroethylene composite having a macro-textured surface and method for making the same
JP2020069654A (en) * 2018-10-29 2020-05-07 東罐マテリアル・テクノロジー株式会社 Reinforced plastic molded product with gel coat
CN115180836A (en) * 2022-07-11 2022-10-14 南通金鹏玻纤制品有限公司 Flame-retardant glass fiber cloth and production process thereof

Also Published As

Publication number Publication date
JPH0771841B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
US6899837B2 (en) Inorganic matrix compositions, composites and process of making the same
JP3380858B2 (en) Manufacturing method of inorganic moldings
EP0384077B1 (en) Process for the preparation of reinforced plastics based on a resorcinol-modified phenolic resin
US2610957A (en) Interbonded fibrous glass
JPH01105735A (en) Manufacture of fiber reinforced phenol resin molded object
JPH10204276A (en) Flame resistant unsaturated polyester resin
JP3463923B2 (en) Method for producing cosmetic inorganic moldings
JP2002012649A (en) Epoxy resin composition, sheet molding compound and molded product
JP3147182B2 (en) Curable prepreg and molded product obtained by curing the same
JPH10219021A (en) Uncured synthetic resin foamed particle aggregate, its production, light-weight molding product, its production, light-weight composite material, its production and intermediate for producing the composite material
JP2568799B2 (en) Method for producing fiber-reinforced phenolic resin molded product
JP3442704B2 (en) Inorganic molding and method for producing the same
JP3477401B2 (en) Method for producing cosmetic inorganic moldings
JPS6230104B2 (en)
JP2526619B2 (en) Phenol foam composite with gel coat
KR920002236B1 (en) Material for producing fiber-reinforced thermosetting resin molding
JPH10237185A (en) Production of molded product of fiber-reinforced phenolic resin
JP2000015719A (en) Manufacture of composite board
JPH0214191B2 (en)
JP2002201081A (en) Lightweight inorganic compact and method of manufacturing it
Qureshi Phenolic resins
JP3328201B2 (en) Inorganic molding
JP2002036483A (en) Decorative inorganic molding and its production method
JPS6375039A (en) Production of fiber-reinforced phenolic resin molded article
JPS58149939A (en) Fresin composition