JPH01104729A - Method for smelting co crust - Google Patents

Method for smelting co crust

Info

Publication number
JPH01104729A
JPH01104729A JP62259811A JP25981187A JPH01104729A JP H01104729 A JPH01104729 A JP H01104729A JP 62259811 A JP62259811 A JP 62259811A JP 25981187 A JP25981187 A JP 25981187A JP H01104729 A JPH01104729 A JP H01104729A
Authority
JP
Japan
Prior art keywords
crust
mgo
leaching
solution
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62259811A
Other languages
Japanese (ja)
Other versions
JPH0328491B2 (en
Inventor
Shinkichi Koike
小池 伸吉
Hiroshi Hirai
宏 平井
Toshio Takakura
高倉 敏男
Hiroshi Shibata
柴田 紘
Ryuzo Wakamatsu
若松 隆三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Kinzoku KK
Pacific Metals Co Ltd
Original Assignee
Taiheiyo Kinzoku KK
Pacific Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Kinzoku KK, Pacific Metals Co Ltd filed Critical Taiheiyo Kinzoku KK
Priority to JP62259811A priority Critical patent/JPH01104729A/en
Publication of JPH01104729A publication Critical patent/JPH01104729A/en
Publication of JPH0328491B2 publication Critical patent/JPH0328491B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To easily recover high-purity Ni, Co, and Cu by applying two-stage leaching to Co crust by means of an aqueous solution of sulfurous acid, blowing air into the leach liquor and neutralize it with Ca(OH)2, and subjecting the above to two-stage treatment with MgO and then to treatment with NH4OH. CONSTITUTION:Mn content in Co crust is dissolved with an aqueous solution of sulfurous acid, and excess sulfurous acid content is consumed by the addition of Co crust. Fe in the resulting leach liquor is oxidized by air and neutralized with Ca(OH)2, by which Fe is separated. MgO is added to the resulting iron- removed liquor to raise pH and obtain hydroxides of Ni, Co, and Cu, and further, MgO is added to the filtrate to obtain hydroxides of Ni, Co, and Cu. These hydroxides are dissolved by means of (NH4)2CO3-containing aqueous NH4OH, and steam is blown into the resulting solution, by which NH4OH is recovered and basic carbonates of Ni, Co, and Cu is prepared. Subsequently, treating is applied by the conventional methods, by which Ni, Co, and Cu are recovered respectively. By this method, valuable metals, such as Ni, Co, and Cu, can be easily recovered in high purity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はCoクラストの製錬法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for smelting Co crust.

Coクラストは、マンガン団塊、海底熱水鉱床に続く第
3の深海底鉱物資源として最近、欧米諸国及び我国にお
いて急速に注目されてきている。C。
Co crust has recently been rapidly attracting attention in Western countries and Japan as the third deep-sea mineral resource following manganese nodules and submarine hydrothermal deposits. C.

クラストは水深800〜2400 mという比較的浅い
海底の比較的古い海山の斜面や平頂部の基盤居士に厚さ
数u〜lO数(1)で層状に分布しており、海山の約4
0%を覆っていると推定されている。−殻内なCoクラ
スト成分は、NiO,2〜0.8%、Co0.3〜1.
2%、 Cu0.03〜0.3%、Fe5〜20%、 
Mn18〜30%の範囲にあり、マンガン団塊に比べ特
にCo含有率が高く、その品質は陸上資源の10倍と極
めて高く、広域的かつ多量に存在していることが確認さ
れている。米国の調査では、太平洋における米国の20
0海里水域内だけでも我国のCo消費量の2万年分のC
oが同鉱床に含まれているといわれており、Co資源に
乏しい我国において非常に注目されてきている。
Crust is distributed in layers with a thickness of several u to lO (1) on the slopes and flat tops of relatively old seamounts on relatively shallow seabeds with depths of 800 to 2,400 m.
It is estimated that it covers 0%. - The Co crust components in the shell are NiO, 2-0.8%, Co 0.3-1.
2%, Cu0.03-0.3%, Fe5-20%,
The Mn content is in the range of 18 to 30%, and the Co content is particularly high compared to manganese nodules, and its quality is extremely high, 10 times that of terrestrial resources, and it has been confirmed that it exists in large quantities over a wide area. A US study found that 20% of the US
Just within the 0 nautical mile zone, 20,000 years worth of CO is consumed in Japan.
Co is said to be contained in the same deposit, and it has been attracting a lot of attention in Japan, which is poor in Co resources.

(従来の技術) Coクラストの製錬技術については、いかに経済的な製
錬法を確立するかがポイントと考えられている。Coク
ラストの製錬法は、大別して、乾式製錬法と湿式製錬法
に分類される。
(Prior Art) Regarding the smelting technology of Co crust, it is considered that the key point is how to establish an economical smelting method. Co-crust smelting methods are broadly classified into pyrometallurgical smelting and hydrometallurgical smelting.

乾式製錬法は、Coクラストを還元剤、塩化剤等の添加
剤と一諸に耐火炉内に装入し、電気エネルギー或いは燃
料エネルギーによって高温或いは溶融状態としその時の
物理的、′化学的性質の差を利用して各種金属を分離回
収しようとするものであるが、必ずしも全ての金属の間
で分離回収に利用できるものでないと言われている。C
oクラストは物理的、化学的、鉱物的に非常に複雑であ
り、また各種の金属を含有しているという特徴があり、
乾式製錬法だけで含有金属を全て分離精製することは不
可能と考えられている。又、乾式製錬法には、省エネル
ギーや設備費等の観点で解決すべき問題がまだ残されて
いる。。
In the pyrometallurgical method, Co crust is charged into a refractory furnace together with additives such as reducing agents and chlorinating agents, and is heated to a high temperature or molten state using electrical energy or fuel energy, and its physical and chemical properties are then controlled. Although this method attempts to separate and recover various metals by utilizing the differences in the C
o The crust is physically, chemically, and mineralogically very complex, and is characterized by containing various metals.
It is considered impossible to separate and refine all the contained metals using only the pyrometallurgical method. In addition, the pyrometallurgy method still has problems that need to be solved from the viewpoints of energy conservation and equipment costs. .

一方、湿式製錬法は、Coクラストを酸或いはアルカリ
によって直接浸出し、各金属を沈澱法、溶媒抽出法、イ
オン交換法、電解法等を単独或は組み合わせ実施するこ
とによって精製分離し目的とする金属を回収するもので
ある。現在、調査研究されている主な湿式製錬法として
は、硫酸浸出法、塩酸浸出法、アンモニア浸出法が挙げ
られる。
On the other hand, in the hydrometallurgical method, Co crust is directly leached with acid or alkali, and each metal is purified and separated by precipitation, solvent extraction, ion exchange, electrolysis, etc., either singly or in combination. The purpose is to recover the metals that are The main hydrometallurgical methods currently being researched include sulfuric acid leaching, hydrochloric acid leaching, and ammonia leaching.

硫酸浸出法は、硫酸が安価な試薬であるため国内のみな
らず各国で研究がなされている。沸点以下(常温から沸
点まで)の硫酸浸出法は、COの浸出率が低いことが問
題点として挙げられている。
The sulfuric acid leaching method is being researched not only in Japan but also in other countries because sulfuric acid is an inexpensive reagent. A problem with the sulfuric acid leaching method below the boiling point (from normal temperature to the boiling point) is that the leaching rate of CO is low.

一方、高温加圧下での硫酸浸出法では、Fe、 Mnの
溶解を抑制しながら、Coの浸出率をCu、 Niと一
緒に高めることが可能であるが、Coクラスト中の粘土
鉱物やCa、 Mg系鉱物の溶解に硫酸の大半が消費さ
れ、しかも硫酸のリサイクルが困難な事から硫酸消費量
が大きくなる欠点が示されている。又、乾燥、還元等の
設備は不要であるが、高温、高圧反応であるため、耐食
性の設備の投資が大きな問題として残されている。
On the other hand, in the sulfuric acid leaching method under high temperature and pressure, it is possible to increase the leaching rate of Co together with Cu and Ni while suppressing the dissolution of Fe and Mn. Most of the sulfuric acid is consumed in dissolving Mg-based minerals, and it is difficult to recycle the sulfuric acid, resulting in a large amount of sulfuric acid consumption. Further, although drying, reduction equipment, etc. are not required, investment in corrosion-resistant equipment remains a major problem since the reaction is at high temperature and high pressure.

塩酸浸出法の特徴は、塩酸濃度の高いところで、Ni、
 Co、 Cuの他にFe、 Mn等のすべての金属が
浸出されることにあると言われている。現在、特に回収
したい金属であるNil Co、 Cu以外の金属も浸
出するため、塩酸の消費量が大きい欠点がある。又、塩
酸浸出法は、高温、高圧を必要としないものの90℃程
度の加温が必要であり、塩素ガスの回収利用対策及び耐
食性の設備等が必要となる。
The characteristics of the hydrochloric acid leaching method are that Ni, Ni,
It is said that in addition to Co and Cu, all metals such as Fe and Mn are leached out. Currently, metals other than Nil Co and Cu, which are the metals that are particularly desired to be recovered, are also leached out, so there is a drawback that the amount of hydrochloric acid consumed is large. Furthermore, although the hydrochloric acid leaching method does not require high temperature or high pressure, it does require heating to about 90° C., and requires measures to recover and utilize chlorine gas and corrosion-resistant equipment.

アンモニア浸出法において、アンモニア及びアンモニウ
ム塩のみではCoクラスト中のNil Cot Cu等
の有価金属を高浸出率に回収で、きないことが示されて
いる。このため、−酸化炭素の様な還元剤の使用、Cu
(II)イオンの触媒作用を利用したCuprion法
と呼称される方法により高浸出率を得る様に検討されて
いる。アンモニアは循環が可能で設備が非腐食性である
等の多くの長所を持っていると考えられているが、Ni
、 Cuの浸出率が90%以上と高いのに対し、COの
浸出率が約50%と低いのが欠点として考えられている
In the ammonia leaching method, it has been shown that valuable metals such as Nil Cot Cu in Co crust cannot be recovered at a high leaching rate using only ammonia and ammonium salt. For this reason - the use of reducing agents such as carbon oxide, Cu
(II) Studies have been made to obtain a high leaching rate by a method called the Cuprion method, which utilizes the catalytic action of ions. Ammonia is considered to have many advantages such as being recyclable and non-corrosive to equipment, but Ni
Although the leaching rate of Cu is high at 90% or more, the leaching rate of CO is low at about 50%, which is considered to be a drawback.

一方、本発明に採用した亜硫酸水によるCoクラストの
還元浸出法の特徴として、常温常圧の反応であること、
浸出速度が速いこと、Ni、 Co、 Cuの浸出率が
高(Feの浸出率が低いこと、設備の耐食性に特別の配
慮は必要なくステンレスやFRP等の反応容器が使用で
きることが挙げられる。
On the other hand, the characteristics of the reduction leaching method of Co crust using sulfite water adopted in the present invention are that the reaction is carried out at room temperature and pressure;
The leaching rate is fast, the leaching rate of Ni, Co, and Cu is high (the leaching rate of Fe is low), and there is no need to take special consideration to the corrosion resistance of the equipment, and reaction vessels such as stainless steel and FRP can be used.

Coクラスト中の有価金属成分であるNi、 Co、 
Cuは、Coクラスト中に平均で各約0.5.0.7%
及び0、2%含まれている。この様に比較的含有量が低
いため通常の方法で処理した場合、工業的に使用できる
ような高濃度の精製液を得ることが非常に困難であり、
以後の工程で効率よ< 、Nil Co、 Cuを製造
することが困難と考えられる。
Ni, Co, which are valuable metal components in Co crust,
Cu is on average approximately 0.5% and 0.7% each in the Co crust.
and 0.2%. Due to this relatively low content, it is extremely difficult to obtain a purified liquid with a high concentration that can be used industrially when processed using normal methods.
It is considered difficult to efficiently produce Nil Co and Cu in subsequent steps.

(発明が解決しようとする問題点) 本発明の目的の1つは、Coクラストから亜硫酸浸出法
をベースとして順次精製分離し、高純度のNi、 Co
、 Cuを製造する完全な方法を提供することである。
(Problems to be Solved by the Invention) One of the objects of the present invention is to sequentially purify and separate Co crust based on a sulfite leaching method to obtain high-purity Ni and Co.
, to provide a complete method for producing Cu.

本発明のさらに別の目的は、Coクラスト中に含まれる
Ni、 Co、 Cu以外の金属を化学的に安定した公
害源とならない様な形態で分離し廃棄するか或いは保管
する方法を提供するものである。
Still another object of the present invention is to provide a method for separating, disposing of, or storing metals other than Ni, Co, and Cu contained in Co crust in a chemically stable form that does not become a pollution source. It is.

(問題点を解決するための手段) 本発明の方法を第1図の工程表に基づいて以下に説明す
る。
(Means for Solving the Problems) The method of the present invention will be explained below based on the process chart shown in FIG.

(11浸出工程においては100メツシユ以下に粉砕し
たCoクラストを亜硫酸水を用いて常温で10〜30分
間浸出する。この時、Coクラストは二段で浸出する。
(In the leaching step 11, the Co crust crushed into 100 meshes or less is leached using sulfurous acid water at room temperature for 10 to 30 minutes. At this time, the Co crust is leached in two stages.

一段目の浸出工程では、反応促進及び各金属の浸出率を
高めるためCoクラスト中のMn分を亜硫酸水で溶解す
るに必要な化学当量の1.2〜2.5倍の亜硫酸水を添
加し浸出する。亜硫酸水が1.2当量未満の場合は、N
t、 Co+ Cuの浸出率が悪く、また反応速度も遅
い。又亜硫酸水が2.5当量を超えると以下の処理工程
が複雑になる。二段目の浸出工程では、一段目の浸出濾
液中に残存する過剰の亜硫酸分を消費する目的で薪規の
Coクラストを添加し浸出する。この時、このCo’ク
ラストは完全に浸出されないため一段目の浸出工程へ戻
す。一段目の浸出残渣中には、主に未溶解のFe分とM
n分が残る。
In the first leaching process, 1.2 to 2.5 times the chemical equivalent of sulfite water is added to dissolve the Mn content in the Co crust in order to promote the reaction and increase the leaching rate of each metal. leach. If the amount of sulfite water is less than 1.2 equivalents, N
The leaching rate of t, Co+Cu is poor, and the reaction rate is also slow. Furthermore, if the amount of sulfite water exceeds 2.5 equivalents, the following treatment steps will become complicated. In the second leaching step, a Co crust of firewood is added and leached in order to consume the excess sulfite remaining in the first leaching filtrate. At this time, this Co' crust is not completely leached out, so it is returned to the first leaching process. The leaching residue from the first stage mainly contains undissolved Fe and M.
n minutes remain.

(2)酸化工程においては、空気吹込みにより浸出液中
のFe(If)イオンをFe(III)イオンに酸化し
、同時に亜硫酸塩を硫酸塩に完全に転化する。これは、
Feを次工程においてCa (Off) tで中和しF
e(011)sとして分離可能にすること及び亜硫酸塩
を硫酸塩に転化することにより以下のプロセスで安定的
にNi、 Co、 Cuを分離回収できる様にするため
に行う。
(2) In the oxidation step, Fe(If) ions in the leachate are oxidized to Fe(III) ions by air blowing, and at the same time, sulfites are completely converted to sulfates. this is,
In the next step, Fe is neutralized with Ca (Off) t and F
This is done in order to be able to stably separate and recover Ni, Co, and Cu in the following process by making them separable as e(011)s and converting sulfite to sulfate.

(3)  Ca (OH) 2による中和工程において
は、空気酸化した液をPH2,2〜4.0の範囲になる
様にCa (0)1) zによって中和する。これによ
り液中のFe分は水酸化第二鉄として沈澱分離可能とな
る。又、前工程で生成された遊離の硫酸が消費され次工
程のMgO中和工程におけるMgO消費量が低減される
(3) In the neutralization step with Ca (OH) 2, the air-oxidized liquid is neutralized with Ca (0) 1) z so that the pH is in the range of 2 to 4.0. As a result, the Fe content in the liquid can be precipitated and separated as ferric hydroxide. Furthermore, the free sulfuric acid produced in the previous step is consumed, and the amount of MgO consumed in the next MgO neutralization step is reduced.

(41MgO中和(−段)工程においては、除鉄後の液
にMgOを添加しpH7,8〜8.5に高めNi。
(41 In the MgO neutralization (-stage) step, MgO is added to the liquid after iron removal to raise the pH to 7.8 to 8.5 and Ni.

Co、 Cuを水酸化物とし沈澱分離する。Co and Cu are converted into hydroxides and separated by precipitation.

(51MgO中和(二段)工程においては、MgO中和
(−段)工程からの濾液にMgOを加え、pHを8.7
〜9.3に高め、液中に残存する有価金属成分を水酸化
物沈澱として回収し浸出工程(二段)へ戻す。一部は系
外に分離し貯蔵する。この時の濾液は硫酸マグネシウム
であり、海洋投棄が可能である。
(51 In the MgO neutralization (two-stage) step, MgO is added to the filtrate from the MgO neutralization (-stage) step, and the pH is adjusted to 8.7.
9.3, and the valuable metal components remaining in the liquid are recovered as hydroxide precipitate and returned to the leaching process (second stage). A portion is separated and stored outside the system. The filtrate at this time is magnesium sulfate and can be dumped into the ocean.

MgOで二段中和する最も大きな理由は、Ni。The biggest reason for two-stage neutralization with MgO is Ni.

Co、 Cu等の有価金属の廃液への損失を抑え、さら
にMgOの第一段目の水酸化物沈澱への混入を最小限に
抑え、次工程でのアンモニア溶解工程における(NHn
) *CO3の消費量を低減するために実施する。
It suppresses the loss of valuable metals such as Co and Cu to the waste liquid, and also minimizes the mixing of MgO into the hydroxide precipitate in the first stage.
) *Implemented to reduce CO3 consumption.

(6)アンモニア溶解工程においては、MgOの中和(
−段)で得られる含Ni、 Co、 Cu水酸化物沈澱
を20〜100g/j!のアンモニア水と50〜150
g/lの(NHn)zcO3を含む溶液で溶解し、Ni
、 Co及びCuアンモニウム錯塩を得る。一方、水酸
化物沈澱中に混入してくるMg、 Mnは炭酸マグネシ
ウム及び炭酸マンガンとして沈澱分離する。この沈澱物
は、浸出工程(二段)へ戻される。又、一部は系外に分
離し保管する。
(6) In the ammonia dissolution step, MgO neutralization (
20 to 100 g/j of Ni-containing, Co, and Cu hydroxide precipitates obtained in Step 1)! of ammonia water and 50-150
Ni dissolved in a solution containing g/l (NHn)zcO3
, to obtain a Co and Cu ammonium complex salt. On the other hand, Mg and Mn mixed into the hydroxide precipitation are precipitated and separated as magnesium carbonate and manganese carbonate. This precipitate is returned to the leaching process (stage 2). Also, some of it is separated and stored outside the system.

(7)  アンモニア回収及び塩基性炭酸塩回収工程に
おいては、Ni、 Co及びCuを含むアンモニウム錯
塩にスチームを吹き込み、アンモニアを回収すると同時
にNi、 Co及びCuの混合塩基性炭酸塩を得る。回
収したアンモニア水は水酸化物沈澱の溶解用に循環する
(7) In the ammonia recovery and basic carbonate recovery steps, steam is blown into the ammonium complex salt containing Ni, Co and Cu to recover ammonia and at the same time obtain a mixed basic carbonate of Ni, Co and Cu. The recovered aqueous ammonia is circulated for dissolving hydroxide precipitates.

以後の工程は常法でいろいろ考えられるが、例えば以下
の方法で実施する。
Although various conventional methods can be considered for the subsequent steps, for example, they are carried out by the following method.

(8)塩基性炭酸塩の硫酸溶解工程においては、Ni、
 Co及びCuを含む塩基性の炭酸塩を新規の硫酸或い
は脱Cu電解工程で溶解し、硫酸ニッケル、硫酸コバル
ト及び硫酸銅混合液を得る。
(8) In the step of dissolving basic carbonate in sulfuric acid, Ni,
A basic carbonate containing Co and Cu is dissolved using a new sulfuric acid or Cu removal electrolytic process to obtain a mixed solution of nickel sulfate, cobalt sulfate, and copper sulfate.

(9)脱Cu電解工程においては、Ca分のみを分離す
るため0.5〜1.5vの低電圧で電解し電解Ca粉を
得る。このときの陽極材には、含PtTi電極、陰極材
にはC板を使用する。この電解Ca粉は、純度が99.
9%の高純度品である。
(9) In the Cu-removal electrolytic step, in order to separate only the Ca component, electrolysis is performed at a low voltage of 0.5 to 1.5 V to obtain electrolytic Ca powder. At this time, a PtTi-containing electrode is used as the anode material, and a C plate is used as the cathode material. This electrolytic Ca powder has a purity of 99.
It is a high purity product of 9%.

一方、電解後液中には遊離の硫酸が生成するため塩基性
炭酸塩の溶解用に循環し使用する。
On the other hand, since free sulfuric acid is generated in the solution after electrolysis, it is circulated and used for dissolving basic carbonates.

QO)  Coの溶媒抽出、電解採取工程においては、
脱Cu液をアンモニア水でpH調整後、PC88A或い
はD21EHPAの様なリン酸系有機溶媒で溶媒抽出し
、続いてCo電電解液液ストリッピングし、得られた硫
酸コバルト液を電解し電解G。
QO) In the solvent extraction and electrowinning process of Co,
After adjusting the pH of the Cu-removed solution with aqueous ammonia, solvent extraction is carried out with a phosphoric acid-based organic solvent such as PC88A or D21EHPA, followed by stripping of the Co electrolyte solution, and the resulting cobalt sulfate solution is electrolyzed with G electrolysis.

を得る。この様にして得られたCo地金は99.9%以
上の高純度品である。Coの電解時の陽極材にはpb板
、陰極材にはステンレス板を使用する。
get. The Co metal thus obtained has a high purity of 99.9% or more. A PB plate is used as the anode material during Co electrolysis, and a stainless steel plate is used as the cathode material.

(11)  Niの溶媒抽出及び電解採取工程において
は、脱Cu液をアンモニア水でpH調整後、LIX64
N等のオキシム系の有機溶媒でNiを抽出し、続いてN
i電電解液液ストリッピングし、得られた硫酸ニッケル
液を電解し電解Niを得る。この様にして得られたNi
地金は99.9%以上の高純度品である。Ni電解時の
陽極にはpb板、陰極にはステンレス板或いはNi種板
を使用する。
(11) In the Ni solvent extraction and electrowinning process, after adjusting the pH of the Cu-removed solution with aqueous ammonia, LIX64
Ni is extracted with an oxime-based organic solvent such as N, and then N
i Electrolytic solution stripping is carried out, and the obtained nickel sulfate solution is electrolyzed to obtain electrolytic Ni. Ni obtained in this way
The metal is a high purity product of 99.9% or more. During Ni electrolysis, a PB plate is used as the anode, and a stainless steel plate or Ni seed plate is used as the cathode.

0シ アンモニア及び石膏回収工程においては、脱Ni
液中に含まれている硫酸アンモニウムからアンモニア分
を回収するため、Ca (OR) 2を添加し、スチー
ムで加熱することによりアンモニア水として回収し、各
アンモニアでのpH調整工程に循環する。一方アンモニ
ア分離後の移液を濾過分離し石膏と廃棄可能な濾液を得
る。
In the ammonia and gypsum recovery process, Ni removal
In order to recover the ammonia content from the ammonium sulfate contained in the liquid, Ca (OR) 2 is added and heated with steam to recover ammonia water, which is then circulated to each pH adjustment process using ammonia. On the other hand, the transferred liquid after ammonia separation is separated by filtration to obtain gypsum and a filtrate that can be disposed of.

本発明に従い、Coクラストを亜硫酸浸出法をベースと
して順次精製分離することにより高純度のNi、 Co
、 Cuを製造することが可能である。
According to the present invention, high-purity Ni, Co
, it is possible to produce Cu.

一方、Coクラスト中に含まれるNi、 Co、 Cu
以外の主な金属であるFe、 Mnは、各浸出残渣及び
、或いはFe(OH)z、  MnC0=に分離される
。これらは、化学的に安定であり、公害源とならない様
に廃棄或いは貯蔵できる形態の物質である。
On the other hand, Ni, Co, and Cu contained in the Co crust
The main metals other than Fe and Mn are separated into each leaching residue and/or Fe(OH)z and MnC0=. These are substances that are chemically stable and can be disposed of or stored without becoming a source of pollution.

(実施例) Mn 14.6%、Fe8.40%、Co0.34%、
 Ni0.34%、Cu0.064の組成を持つCoク
ラストを100メツシユ以下に粉砕し、このCoクラス
ト中のMnを溶解するに必要な化学当量の2倍に相当す
る亜硫酸水を用いてスラリー濃度10%、温度18℃で
10分間−段浸出した。続いて得られた浸出液中の亜硫
酸分を消費するに十分なCoクラストを添加し同様な条
件で二段目の浸出をし、Fe2.5g/β、 Mn13
、Og/ 1 、 CuO,06g/ l 、 Co0
.31g/ 12 、 Ni0.32g/ 12 。
(Example) Mn 14.6%, Fe8.40%, Co0.34%,
A Co crust with a composition of 0.34% Ni and 0.064 Cu was ground to 100 meshes or less, and a slurry concentration of 10 was prepared using sulfite water equivalent to twice the chemical equivalent of the amount required to dissolve the Mn in the Co crust. %, stage leaching for 10 minutes at a temperature of 18°C. Subsequently, enough Co crust was added to consume the sulfite content in the obtained leachate, and a second stage of leaching was carried out under the same conditions to obtain Fe2.5g/β, Mn13.
, Og/1, CuO,06g/l, Co0
.. 31g/12, Ni0.32g/12.

亜硫酸濃度60g/lの浸出液を得た。A leachate with a sulfite concentration of 60 g/l was obtained.

この浸出液中のFe”°イオンをFe3+イオンに、又
亜硫酸イオンを硫酸イオンに酸化するに必要な化学当量
の5倍に相当する空気量を4時間にわたり吹込みFe”
2.5 g/ l 、 Mn13.0g/ l 、 C
u0.06g/ l 。
An amount of air equivalent to five times the chemical equivalent required to oxidize Fe"° ions in this leachate to Fe3+ ions and sulfite ions to sulfate ions was blown into the leachate for 4 hours.
2.5 g/l, Mn13.0g/l, C
u0.06g/l.

Co0.31g/ l 、 Ni0.32g/ l 、
硫酸イオン90g#!ρ酸化液を得た。この時の酸化温
度は60℃以上とした。
Co0.31g/l, Ni0.32g/l,
Sulfate ion 90g#! A ρ oxidation solution was obtained. The oxidation temperature at this time was 60°C or higher.

この酸化液を温度18℃でCa (OH) tを用いて
pH3,5まで中和した後、濾過分離しMn13.0g
/ 12 、 CuO,06g/ j! 、Co0.3
18/ l 、 Ni0.32g/ II 、 S04
”−0,03g/lの濾液とFe (OH) 3沈澱を
得た。
This oxidized solution was neutralized to pH 3.5 using Ca (OH) t at a temperature of 18°C, and then separated by filtration to obtain 13.0 g of Mn.
/ 12, CuO, 06g/j! , Co0.3
18/l, Ni0.32g/II, S04
A filtrate and Fe (OH) 3 precipitate of -0.03 g/l were obtained.

この除鉄液に温度30℃でMgOを添加しpH8,2に
なるまで一段目を中和し、続いて濾過しCu (OH)
 zO89%、’ Co(Oil)z 4.9%、 N
1(Otl)z4.6%の沈澱物と、Co0.003 
g/ 12 、 Ni0.03g/ II 、 MgS
O434,Og/ IIの濾液を得た。
MgO was added to this iron removal solution at a temperature of 30°C to neutralize it in the first stage until the pH reached 8.2, and then it was filtered to remove Cu (OH).
zO89%, 'Co(Oil)z 4.9%, N
1(Otl)z4.6% precipitate and Co0.003
g/12, Ni0.03g/II, MgS
A filtrate of O434, Og/II was obtained.

MgO中和後の濾液を30℃でMgOを用いてpH9,
0で二段目の中和をし、続いて濾過しCo(OH)zO
,005%、 N1(OR)zl、0%、 Mg07.
1%の沈澱物を得た。この沈澱物は浸出(二段)工程ヘ
リターンする。−方、得られた濾液中の成分はMg5O
*54.0 g/ 1であり、この液は希釈し海洋投棄
可能である。尚、沈澱物の一部は系外に分離する。
The filtrate after MgO neutralization was adjusted to pH 9 using MgO at 30°C.
Perform the second stage of neutralization at 0, followed by filtration and Co(OH)zO
,005%, N1(OR)zl, 0%, Mg07.
A 1% precipitate was obtained. This precipitate is returned to the leaching (two-stage) step. - On the other hand, the component in the obtained filtrate is Mg5O
*54.0 g/1, and this liquid can be diluted and dumped into the ocean. Incidentally, a part of the precipitate is separated out of the system.

MgO中和(−段)沈澱物を温度30℃、遊離NH33
0g/ A 、 (NH*)zco:tloog/ l
の液でスラリー濃度10%になる様に調整し2時間溶解
後、濾過しNi 2.1g/l、 Co2.8g/L 
CuO,5g/12. NHd30g/CCO+”−1
0,6g/ j!の液を得た。一方、MnCO3,Mg
C0:+を主成分とする未溶解残渣は浸出(二段)工程
ヘリターンする。
MgO neutralization (- stage) The precipitate was heated at a temperature of 30°C with free NH33
0g/A, (NH*)zco:tloog/l
The slurry was adjusted to a concentration of 10% with a solution of
CuO, 5g/12. NHd30g/CCO+”-1
0.6g/j! A liquid was obtained. On the other hand, MnCO3, Mg
The undissolved residue containing C0:+ as the main component is returned to the leaching (two-stage) step.

又、一部は系外に分離し保管する。Also, some of it is separated and stored outside the system.

このアンモニア溶解液にスチームを吹込み90℃以上で
3時間加温することにより、130g#!のアンモニア
水とNi25.6%、 Co25.6%、 Cu4..
7%を含む塩基性炭酸塩を得た。この時回収したアンモ
ニア水は、Ni、 Co、 Cuの水酸化物沈澱の溶解
用に循環する。このNi、 Co、 Cuの塩基性炭酸
塩を温度18℃で、Ni、 Co、 Cuを溶解するに
必要な化学当量に相当する硫酸で1時間溶解しNi27
g/J。
By blowing steam into this ammonia solution and heating it at 90°C or higher for 3 hours, 130g#! of ammonia water and Ni25.6%, Co25.6%, Cu4. ..
A basic carbonate containing 7% was obtained. The ammonia water recovered at this time is circulated for dissolving Ni, Co, and Cu hydroxide precipitates. This basic carbonate of Ni, Co, and Cu was dissolved at a temperature of 18°C for 1 hour with sulfuric acid equivalent to the chemical equivalent required to dissolve Ni, Co, and Cu to form Ni27.
g/J.

Co27g/l、Cu5g/lの溶液を得た。A solution containing 27 g/l of Co and 5 g/l of Cu was obtained.

Ni、 Co及びCuを含む混合液を以下の条件で電解
し純度99.9%の電解Ca粉を得た。
A mixed solution containing Ni, Co and Cu was electrolyzed under the following conditions to obtain electrolytic Ca powder with a purity of 99.9%.

Cu電解条件:陽極材 Ti電極  電解液Ni27g
/ 1陰極材  C板     Co27g/ 1電圧
1.OV   Cu 5g/ 1 電流密度300A/m” 電解温度 50℃ pH1,0 脱Cu後の液組成、はNi27g/l、 Co27g/
CCu0.001 gelであった。
Cu electrolysis conditions: Anode material Ti electrode Electrolyte Ni 27g
/ 1 Cathode material C plate Co27g / 1 Voltage 1. OV Cu 5g/1 Current density 300A/m” Electrolysis temperature 50°C pH 1.0 Liquid composition after removing Cu: Ni27g/l, Co27g/
CCu0.001 gel.

脱Cu後の含Ni、 Co硫酸液をアンモニアでpH調
整後、溶媒抽出し脱Co液を得た。又、含Go有機溶媒
をCo電電解液液ストリッピングしCo電解液とし、続
いで電解採取し純度99.9%の電解COを得た。
The pH of the Ni- and Co-containing sulfuric acid solution after removing Cu was adjusted with ammonia and then extracted with a solvent to obtain a Co-free solution. Further, the Go-containing organic solvent was stripped with a Co electrolyte solution to obtain a Co electrolyte solution, and then electrowinning was performed to obtain electrolytic CO with a purity of 99.9%.

この時のCoの溶媒抽出条件及び電解条件を以下に示す
The solvent extraction conditions and electrolytic conditions for Co at this time are shown below.

Goo媒抽出条件:抽出剤 PC88A希釈剤 n−パ
ラフィン ストリッピング液 Co電電解液 液H調整     NH4011 抽出pH5,5 逆抽出pH3,3 温度  60℃ Co電解条件:Co液濃度   75g/ Il電解温
度    60℃ 電流密度    200A/m” アノード    pb板 カソード    ステンレス板 脱Co後の含Ni硫酸液をアンモニアでpH3F]整後
溶媒抽出し脱CO液を得、さらに含Ni有機溶媒をNi
電電解液液ストリッピングしNi電解液とし、続いて電
解採取し純度99.9%の電解Niを得た。このときの
Niの溶媒抽出条件及び電解条件を以下に示す。
Goo medium extraction conditions: Extractant PC88A diluent N-paraffin stripping solution Co electrolyte solution H adjustment NH4011 Extraction pH 5.5 Back extraction pH 3.3 Temperature 60°C Co electrolysis conditions: Co solution concentration 75g/Il electrolysis temperature 60°C Current density 200A/m” Anode PB plate Cathode Stainless steel plate The Ni-containing sulfuric acid solution after removing Co was adjusted to pH 3F with ammonia, then solvent extracted to obtain a CO-free solution, and the Ni-containing organic solvent was added to the Ni-containing organic solvent.
The electrolytic solution was stripped to obtain a Ni electrolytic solution, and then electrowinning was performed to obtain electrolytic Ni with a purity of 99.9%. The solvent extraction conditions and electrolytic conditions for Ni at this time are shown below.

Niの溶媒抽出条件:抽出剤   LIX64N希釈剤
   n−パラフィン ストリッピング液 Ni電電解液 液H調整   NH4OH 抽出pH8,0 逆抽出p)I   2.5 Ni電 解 条 件:Ni液濃度  75g/ 1電流
密度  200A/m” アノ−F  pb板 カソード  ステンレス板 脱Ni後の液にCa (OH) zを添加し続いてスチ
ームを吹込み90℃以上に3時間加熱することにより1
30g/j2のアンモニア水と、アンモニア分離後の残
液を濾過分離し石膏を得た。この時、回収したアンモニ
ア水はCo及びNi溶媒抽出工程へ循環する。
Solvent extraction conditions for Ni: Extractant LIX64N diluent N-paraffin stripping solution Ni electrolyte solution H adjustment NH4OH Extraction pH 8.0 Reverse extraction p) I 2.5 Ni electrolysis conditions: Ni solution concentration 75 g/1 current Density 200A/m" Ano-F PB plate cathode Stainless steel plate 1
30g/j2 of ammonia water and the residual liquid after ammonia separation were separated by filtration to obtain gypsum. At this time, the recovered ammonia water is circulated to the Co and Ni solvent extraction step.

(発明の効果) 以上の様に、本発明の方法によればCoクラストからN
i、 Co及びCuの有価金属を高純度で、かつ容易に
回収でき、さらにそれ以外の金属については、化学的に
安定した公害源とならない様な形態で分離し、°廃棄酸
いは保管可能である。
(Effects of the Invention) As described above, according to the method of the present invention, N
i. Valuable metals such as Co and Cu can be recovered with high purity and easily, and other metals can be separated in a form that is chemically stable and does not become a pollution source, and waste acid can be stored. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法のフローシートの一例を示す。 FIG. 1 shows an example of a flow sheet for the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  Coクラスト中のMn分を溶解するに必要な化学当量
に対して過剰の亜硫酸水によりCoクラストを浸出する
一段目の浸出工程、続いて一段目の浸出液中の過剰の亜
硫酸分を消費する量のCoクラストを添加し浸出する二
段目の浸出工程、こうして得られた浸出液中に含まれる
Feを第二鉄塩に、又亜硫酸塩を硫酸塩に空気で酸化す
る工程、この溶液をCa(OH)_2で中和しFeを分
離し除鉄液を得る工程、除鉄液にMgOを加えpHを高
めNi、Co、Cuの水酸化物を得る一段目のMgO中
和工程、一段目のMgO中和工程からの濾液にさらにM
gOを加え一段目中和工程より高いpHでNi、Co、
Cuの水酸化物を得る二段目のMgO中和工程、一段目
のMgO中和工程で得られた水酸化物を炭酸アンモニウ
ムを含むアンモニア水で溶解する工程、このNi、Co
、Cuのアンモニア溶解液にスチームを吹込みアンモニ
アを回収すると同時にNi、Co、Cuの塩基性炭酸塩
を得る工程、以後、常法により処理してNi、Co、C
uをそれぞれ分離回収することを特徴とするCoクラス
トの製錬法。
The first leaching process involves leaching the Co crust with sulfite water in excess of the chemical equivalent required to dissolve the Mn content in the Co crust, followed by the leaching process in which the excess sulfite content in the first leaching solution is consumed. A second leaching step in which Co crust is added and leached; a step in which Fe contained in the leachate thus obtained is oxidized into ferric salts and sulfite into sulfates; and this solution is oxidized with Ca(OH). )_2 to separate Fe and obtain an iron removal solution, the first MgO neutralization step to add MgO to the iron removal solution to increase the pH and obtain Ni, Co, and Cu hydroxides, the first MgO The filtrate from the neutralization step is further enriched with M.
Ni, Co,
A second MgO neutralization step to obtain Cu hydroxide, a step of dissolving the hydroxide obtained in the first MgO neutralization step with aqueous ammonia containing ammonium carbonate, and this Ni, Co
, a step of blowing steam into an ammonia solution of Cu to recover ammonia and at the same time obtaining basic carbonates of Ni, Co, and Cu; thereafter, processing by a conventional method to obtain Ni, Co, and C;
A method for smelting and refining Co crust, characterized by separating and recovering u.
JP62259811A 1987-10-16 1987-10-16 Method for smelting co crust Granted JPH01104729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62259811A JPH01104729A (en) 1987-10-16 1987-10-16 Method for smelting co crust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62259811A JPH01104729A (en) 1987-10-16 1987-10-16 Method for smelting co crust

Publications (2)

Publication Number Publication Date
JPH01104729A true JPH01104729A (en) 1989-04-21
JPH0328491B2 JPH0328491B2 (en) 1991-04-19

Family

ID=17339330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62259811A Granted JPH01104729A (en) 1987-10-16 1987-10-16 Method for smelting co crust

Country Status (1)

Country Link
JP (1) JPH01104729A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014015647A (en) * 2012-07-06 2014-01-30 Jx Nippon Mining & Metals Corp Method for recovering cobalt
JP2014029008A (en) * 2012-07-06 2014-02-13 Jx Nippon Mining & Metals Corp Method for recovering cobalt

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014015647A (en) * 2012-07-06 2014-01-30 Jx Nippon Mining & Metals Corp Method for recovering cobalt
JP2014029008A (en) * 2012-07-06 2014-02-13 Jx Nippon Mining & Metals Corp Method for recovering cobalt

Also Published As

Publication number Publication date
JPH0328491B2 (en) 1991-04-19

Similar Documents

Publication Publication Date Title
CN109072335B (en) Treatment method of lithium ion battery waste
CN111278998A (en) Method for recovering cobalt, lithium and other metals from spent lithium-based batteries and other feeds
KR100727720B1 (en) Method for leaching nickeliferous laterite ores
JP2003514109A5 (en)
CN113215409A (en) Treatment method of lithium ion battery waste
MXPA00005341A (en) A method of purifying acid leaching solution.
US4123499A (en) Recovering metal values from marine manganese nodules
NO149822B (en) METAL ANODE FOR ELECTROLYCLE CELLS WITH Aqueous ELECTROLYTES AND PROCEDURES FOR PRODUCING THEREOF
KR20200059191A (en) Methods for the production of cobalt and related oxides from various feed materials
CN113088705B (en) Method for preparing cobalt salt by low-cost resource treatment of cobalt intermediate and waste battery materials
WO2023000847A1 (en) Nickel-iron wet treatment method and application thereof
CN110923462A (en) Resourceful treatment method for white smoke
CA1053913A (en) Leaching a copper-nickel concentrates
CN111471862B (en) Treatment method of laterite-nickel ore pickle liquor
KR102460255B1 (en) Purification method of cobalt chloride aqueous solution
CN108199106B (en) Recovery process of waste materials in production process of nickel-cobalt-manganese ternary precursor
JP4631818B2 (en) Method for hydrometallizing nickel oxide ore
US3959097A (en) Selenium rejection during acid leaching of matte
JP4215547B2 (en) Cobalt recovery method
US3795596A (en) Method for selectively leaching metal values from ocean floor nodules
US6159356A (en) Process for the production of high purity copper metal from primary or secondary sulphides
US3787301A (en) Electrolytic method for producing high-purity nickel from nickel oxide ores
JPH01104729A (en) Method for smelting co crust
CN107312944A (en) Utilize the method for asymmetric capacitor type Ni-MH battery recovering rare earth
CN114058847A (en) Iron removal method for chlorine leachate of nickel concentrate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees