JPH0110402Y2 - - Google Patents

Info

Publication number
JPH0110402Y2
JPH0110402Y2 JP1985145191U JP14519185U JPH0110402Y2 JP H0110402 Y2 JPH0110402 Y2 JP H0110402Y2 JP 1985145191 U JP1985145191 U JP 1985145191U JP 14519185 U JP14519185 U JP 14519185U JP H0110402 Y2 JPH0110402 Y2 JP H0110402Y2
Authority
JP
Japan
Prior art keywords
seat
valve
air supply
valve seat
insert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985145191U
Other languages
Japanese (ja)
Other versions
JPS61130721U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985145191U priority Critical patent/JPH0110402Y2/ja
Publication of JPS61130721U publication Critical patent/JPS61130721U/ja
Application granted granted Critical
Publication of JPH0110402Y2 publication Critical patent/JPH0110402Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【考案の詳細な説明】 本考案は内燃機関のシリンダヘツドの給気ポー
トの性能改善に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improving the performance of an air intake port in a cylinder head of an internal combustion engine.

第1図は従来の給気ポート全体を示す断面図、
第2図は第1図の弁座及び弁部を拡大して示す断
面図、第3図は第2図の−矢視断面図であ
る。
Figure 1 is a sectional view showing the entire conventional air supply port.
2 is an enlarged cross-sectional view showing the valve seat and valve portion of FIG. 1, and FIG. 3 is a cross-sectional view taken along the - arrow in FIG. 2.

図において、01は給気弁、02は給気弁座イ
ンサート、021はシート部、022は弁座イン
サート内面、03は給気通路、031は弁座のイ
ンサート上部の給気通路内面、04はシリンダで
ある。
In the figure, 01 is the air supply valve, 02 is the air supply valve seat insert, 021 is the seat, 022 is the inner surface of the valve seat insert, 03 is the air supply passage, 031 is the inner surface of the air supply passage above the insert of the valve seat, and 04 is the air supply passage. It is a cylinder.

給気通路03からシリンダ04内へ空気あるい
は混合気が入る場合、給気弁01の中心まわりの
旋回成分を持ちながら給気弁座インサート上部内
面022に沿つて給気弁01上から流れ込む。従
つて、給気弁01及び給気弁座インサート02は
単にシートの役割りだけでなく、給気弁01が開
いた時には、流れのガイドの役割りを果してい
る。
When air or air-fuel mixture enters the cylinder 04 from the air supply passage 03, it flows from above the air intake valve 01 along the upper inner surface 022 of the air intake valve seat insert while having a swirling component around the center of the air intake valve 01. Therefore, the air supply valve 01 and the air supply valve seat insert 02 not only function as a seat, but also act as a flow guide when the air supply valve 01 is opened.

内燃機関において、比出力を向上させるにはシ
リンダ内へいかに多くの空気あるいは混合気を入
れることができるかという点にかかつている。
In an internal combustion engine, improving the specific output depends on how much air or mixture can be admitted into the cylinder.

しかし、従来の給気弁座インサート内面は、第
2図の022で示すような形状で、比較的単純な
形をしており、弁座シート角、即ちシート部02
1の傾斜角、とは殆んど関係なく、面積的な関係
から決定されている。そのため、第2図、第3図
に示すように、シリンダ内へ空気が流入する時
に、流れに剥離Aを生じ、圧力損失を生じてい
る。これが一つの大きな要因となつて、給気抵抗
が増大し、体積効率が悪いという欠点を生じせし
めている。
However, the inner surface of the conventional intake valve seat insert has a relatively simple shape as shown by 022 in FIG.
It has little to do with the inclination angle of 1, and is determined based on the area relationship. Therefore, as shown in FIGS. 2 and 3, when air flows into the cylinder, separation A occurs in the flow, resulting in pressure loss. This is one of the major factors, resulting in increased air supply resistance and poor volumetric efficiency.

本考案の目的は上記の点に着目し、比出力を大
きくし体積効率の良い機関を得るため、給気系の
流れを改善できるシリンダヘツドの給気ポートの
構造を提供することであり、その特徴とするとこ
ろは、給気弁座インサートシート上部及びその上
部の給気通路内面を給気弁軸心を中心とする単葉
双曲面に形成し、さらにその形状を弁座シート角
と関連せしめたことである。
The purpose of this invention is to focus on the above points and provide a structure for the air supply port of the cylinder head that can improve the flow of the air supply system in order to increase the specific output and obtain an engine with good volumetric efficiency. The main feature is that the upper part of the intake valve insert seat and the inner surface of the intake passage above it are formed into a monoplane hyperboloid centered on the intake valve axis, and the shape is related to the valve seat angle. That's true.

この場合は、給気弁中心と単葉双曲面のスロー
ト部とを結ぶ線に垂直な直線が流線とり、シリン
ダ内に空気が流入する時に剥離が生じない。
In this case, a straight line perpendicular to the line connecting the center of the intake valve and the throat portion of the monoplane hyperboloid forms a streamline, and no separation occurs when air flows into the cylinder.

本考案は内燃機関、特に4サイクルデイーゼル
機関、4サイクル火花点火機関における給気通路
の抵抗の低減による体積効率の向上に広く適用で
きる。
The present invention can be widely applied to improving the volumetric efficiency of internal combustion engines, particularly 4-stroke diesel engines and 4-stroke spark ignition engines, by reducing the resistance of the air supply passage.

以下図面を参照して本考案による実施例につき
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

第4図は本考案による1実施例の弁座及び弁部
を示す断面図、第5図は第4図の−矢視断面
図、第6図ア,イは単葉双曲面の構成を示す説明
図、第7図はシート部上方の形状を示す説明図で
ある。
Fig. 4 is a cross-sectional view showing the valve seat and valve portion of one embodiment of the present invention, Fig. 5 is a cross-sectional view taken along the - arrow in Fig. 4, and Fig. 6 A and I are explanatory diagrams showing the configuration of a monoplane hyperboloid. 7 are explanatory diagrams showing the shape of the upper part of the seat part.

図において、1は給気弁、2は給気弁座インサ
ート、21は同弁座インサート2のシリンダ4側
に末拡がりに傾斜して形成されたシート部、22
は同シート部21に続いて形成された本考案によ
る弁座インサート内面、3は給気通路、31は本
考案による弁座インサート上部(即ち、給気流れ
の上流側で弁座インサートに接続する)の給気通
路内面である。
In the figure, 1 is an air intake valve, 2 is an air intake valve seat insert, 21 is a seat portion of the valve seat insert 2 formed on the side of the cylinder 4 so as to be inclined toward the cylinder 4 side, and 22
3 is the inner surface of the valve seat insert of the present invention formed following the seat portion 21, 3 is the air supply passage, and 31 is the upper part of the valve seat insert of the present invention (i.e., connected to the valve seat insert on the upstream side of the air supply flow). ) is the inner surface of the air supply passage.

弁座インサート内面22と給気通路内面31で
形成される曲面は給気弁軸心1aを中心とする単
葉双曲面を形成し、弁座インサート内面22とシ
ート部21の連なる線と、給気弁軸心1aを含む
平面とが交る点Tでの接線の傾き角度が弁座シー
ト角、即ち弁座インサートシート部21の傾斜角
と等しくとつてある。
The curved surface formed by the valve seat insert inner surface 22 and the air supply passage inner surface 31 forms a monoplane hyperboloid surface centered on the air supply valve axis 1a, and the line connecting the valve seat insert inner surface 22 and the seat portion 21 and the air supply The inclination angle of the tangent at the point T intersecting the plane containing the valve axis 1a is set to be equal to the valve seat angle, that is, the inclination angle of the valve seat insert seat portion 21.

その形状は、第7図に模型的に示すように、単
葉双曲面のスロート径をDS、シート部上縁の径
をDIとして、弁軸1aをz軸とし、これに垂直
なスロート部を含む平面内にx軸、y軸をとり、
さらに同xy平面からシート部上縁までの高さを
1/2HSとし、上記xy平面を対称とする高さHS
とり、 x2+y2=(DS/2)2+(DI 2−DS 2/HS 2)z2 で表わされている。
As schematically shown in Fig. 7, its shape is as follows: the throat diameter of the monoplane hyperboloid is D S , the diameter of the upper edge of the seat part is D I , the valve shaft 1a is the z-axis, and the throat section perpendicular to this is the z-axis. Take the x-axis and y-axis in the plane containing
Further, let the height from the same xy plane to the upper edge of the seat part be 1/2 H S , and take the height H S symmetrical to the above xy plane, x 2 + y 2 = (D S /2) 2 + (D I 2 −D S 2 /H S 2 )z 2 .

弁座シート角θとシート部上部形状の関係は、 tanθ=DI・HS/DI 2−DS 2 と表わすことができる。 The relationship between the valve seat seat angle θ and the shape of the upper part of the seat portion can be expressed as tanθ=D I ·H S /D I 2 −D S 2 .

また、スロート径DSはシート部上縁径DIに対
し75%〜90%程度とする。
Further, the throat diameter D S is approximately 75% to 90% of the seat portion upper edge diameter D I.

弁座シート部を単葉双曲面とすることにより、
通常のシート内径よりも最小絞り径が小さくな
る。即ち、本考案による弁座インサートシート部
上縁径DIは通常のシート内径となり、通常の場
合には、これが弁開口の最大面積π/4(DI 2−dC 3) を決める。ここでdCは弁棒の外径である。
By making the valve seat part a monoplane hyperboloid,
The minimum aperture diameter is smaller than the normal seat inner diameter. That is, the diameter D I of the upper edge of the seat portion of the valve seat insert according to the present invention is the normal inner diameter of the seat, which normally determines the maximum area π/4 (D I 2 −d C 3 ) of the valve opening. where d C is the outer diameter of the valve stem.

これに対して本考案ではπ/4(DS 2−dC 2)と弁 開口最大面積が絞られることになるが、流れが剥
離することが無く抵抗が減じられるので、DS
DIが絞られすぎない範囲では、むしろ弁開口の
最大面積がπ/4(DI 2−dC 2)よりも有効面積を大 きくすることができる。即ち、第9図に示すよう
に、 DS/DI=0.90〜0.75で有効面積は極大値を持
つ。
In contrast, in the present invention, the maximum area of the valve opening is reduced to π/4 (D S 2 - d C 2 ), but the flow does not separate and the resistance is reduced, so D S /
As long as D I is not too narrow, the effective area can be made larger than the maximum area of the valve opening, which is π/4 (D I 2 −d C 2 ). That is, as shown in FIG. 9, the effective area has a maximum value when D S /D I =0.90 to 0.75.

即ち、DS/DI0.9では単葉双曲面の効果がなく、 DS/DI0.75では、絞り大となり、有効面積が減少 して μtπ/4(DS 2−dC 2)/μOπ/4(DI 2−dC 2≧1.0 が成立する範囲が、DS/DI=0.90〜75であり、臨界 的な意味合いを有する。 That is, when D S /D I is 0.9, there is no effect of the monoplane hyperboloid, and when D S /D I is 0.75, the aperture becomes large and the effective area decreases to μ t π/4 (D S 2 − d C 2 )/ The range in which μ O π/4 (D I 2 −d C 2 ≧1.0 holds true is D S /D I =0.90 to 75, which has a critical meaning.

なお、 μtは、単葉双曲面を用いた場合の、弁口部の流
量係数 μOは、通常の場合の、弁口部の流量係数 である。
Note that μ t is the flow coefficient of the valve orifice when a monoplane hyperboloid is used, and μ O is the flow coefficient of the valve orifice in the normal case.

上記構成の場合の作用、効果について述べる。 The functions and effects of the above configuration will be described.

空気あるいは混合気が給気通路3からシリンダ
4内へ入る場合、給気弁座インサート内面22に
沿つて給気弁1上から流れ込む。この時、給気弁
座インサート内面22とその上部の給気通路内面
31とによつて単葉双曲面が形成されており、し
かも弁座シート角と関連させられている。単葉双
曲面は、第6図に示すように、z軸に対し垂直な
x軸に垂直な平面内でz軸に平行な直線に対し角
度βをなす直線がz軸を中心に回転して得られる
曲面である。この時、弁座中心を通る断面内で、
第4図に示されるように弁座と給気通路内面と弁
の傘部外面とで先細ノズルが形成される。
When air or mixture enters the cylinder 4 from the air supply passage 3, it flows over the air supply valve 1 along the inner surface 22 of the air supply valve seat insert. At this time, a monoplane hyperboloid is formed by the air supply valve seat insert inner surface 22 and the air supply passage inner surface 31 above it, and is related to the valve seat seat angle. As shown in Figure 6, a monoplane hyperboloid is obtained by rotating a straight line around the z-axis at an angle β to a straight line parallel to the z-axis in a plane perpendicular to the x-axis and perpendicular to the z-axis. It is a curved surface that can be At this time, within the cross section passing through the center of the valve seat,
As shown in FIG. 4, a tapered nozzle is formed by the valve seat, the inner surface of the air supply passage, and the outer surface of the valve cap.

従つて、シリンダ内へ流れ出る空気の流線が、
給気弁1の中心とスロート部とを結ぶ線に垂直な
直線となるようにガイドされるため(第4図、第
5図参照)、弁座インサートシート部上方で剥離
を生じることなく、抵抗が少なくなる。
Therefore, the streamlines of air flowing into the cylinder are
Since it is guided in a straight line perpendicular to the line connecting the center of the air supply valve 1 and the throat part (see Figures 4 and 5), there is no resistance to peeling above the valve seat insert seat. becomes less.

また、スロート径DSを弁座インサートシート
部上縁径DIの90〜75%にすることにより、弁口
部面積を適正に保つことができ、面積が小さくな
ることによる抵抗の増加を防ぐことができる。
In addition, by setting the throat diameter D S to 90 to 75% of the upper edge diameter D I of the valve seat insert seat, the valve opening area can be maintained at an appropriate level, preventing an increase in resistance due to a smaller area. be able to.

第8図は給気ポートの定常流試験結果を示して
いる。縦軸は弁座インサートシート部上縁径DI
に対応する面積AI=πDI 2/4に対する流量係数
μσをとつている(μは弁開口面積AVに対する真
の流量係数、σ=AV/AI)。
FIG. 8 shows the steady flow test results of the air supply port. The vertical axis is the upper edge diameter of the valve seat insert seat D I
The flow coefficient μσ is calculated for the area A I =πD I 2 /4 corresponding to (μ is the true flow coefficient for the valve opening area A V , σ=A V /A I ).

ここで明らかなように本考案の形状を有する給
気ポートの流量係数は従来のものに比べて流量係
数が高い。
As is clear here, the flow coefficient of the air supply port having the shape of the present invention is higher than that of the conventional one.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の給気ポートの全体を示す断面
図、第2図は第1図の弁座及び弁部を拡大して示
す断面図、第3図は第2図の−矢視断面図、
第4図は本考案による1実施例の弁座及び弁部を
示す断面図、第5図は第4図の−矢視断面
図、第6図ア,イは単葉双曲面の構成を示す説明
図、第7図はシート部上方の形状を示す説明図、
第8図は弁リフトと流量係数との関係を示す線図
である。第9図はスロート径とシート部上縁径と
の比と給気通路の有効面積比との関係を示す線図
である。 1……給気弁、1a……給気弁軸心、2……給
気弁座インサート、21……シート部、22……
弁座インサート内面、3……給気通路、31……
給気通路内面、4……シリンダ。
Fig. 1 is a sectional view showing the entire conventional air supply port, Fig. 2 is an enlarged sectional view showing the valve seat and valve part of Fig. 1, and Fig. 3 is a sectional view taken along the - arrow in Fig. 2. ,
Fig. 4 is a cross-sectional view showing the valve seat and valve portion of one embodiment of the present invention, Fig. 5 is a cross-sectional view taken along the - arrow in Fig. 4, and Fig. 6 A and I are explanatory diagrams showing the configuration of a monoplane hyperboloid. FIG. 7 is an explanatory diagram showing the shape of the upper part of the seat part,
FIG. 8 is a diagram showing the relationship between valve lift and flow coefficient. FIG. 9 is a diagram showing the relationship between the ratio of the throat diameter to the upper edge diameter of the seat portion and the effective area ratio of the air supply passage. DESCRIPTION OF SYMBOLS 1... Air supply valve, 1a... Air supply valve axis, 2... Air supply valve seat insert, 21... Seat part, 22...
Inner surface of valve seat insert, 3... Air supply passage, 31...
Inner surface of air supply passage, 4... cylinder.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] シリンダへの開口側に末広がりに傾斜するシー
ト部と同シート部に続く内面とを有する給気弁座
インサートを設けたシリンダヘツドの給気ポート
において、上記給気弁座インサートの内面と同内
面に接続する給気通路の内面とを給気弁軸心まわ
りの単葉双曲面に形成すると共に、上記単葉双曲
面の上記シート部への接続部の傾斜角を上記シー
ト部の傾斜角と等しくし弁座中心を通る断面内で
弁座及び給気通路内面と弁の傘部外面とで先細の
ノズルを形成させ、かつ弁口のスロート径を弁座
インサートシート部上縁径の90〜75%にしたこと
を特徴とする内燃機関のシリンダヘツド。
In an air intake port of a cylinder head provided with an air intake valve seat insert having a seat part that is inclined to widen towards the opening side of the cylinder and an inner surface that continues to the seat part, the air intake valve seat insert has an inner surface that is the same as the inner surface of the air intake valve seat insert. The inner surface of the air supply passage to be connected is formed into a monoplane hyperboloid surface around the axis of the air supply valve, and the inclination angle of the connecting portion of the monoplane hyperboloid surface to the seat portion is made equal to the inclination angle of the seat portion. A tapered nozzle is formed by the valve seat, the inner surface of the air supply passage, and the outer surface of the valve umbrella within a cross section passing through the center of the seat, and the throat diameter of the valve opening is set to 90 to 75% of the diameter of the upper edge of the valve seat insert seat. A cylinder head for an internal combustion engine characterized by:
JP1985145191U 1985-09-25 1985-09-25 Expired JPH0110402Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985145191U JPH0110402Y2 (en) 1985-09-25 1985-09-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985145191U JPH0110402Y2 (en) 1985-09-25 1985-09-25

Publications (2)

Publication Number Publication Date
JPS61130721U JPS61130721U (en) 1986-08-15
JPH0110402Y2 true JPH0110402Y2 (en) 1989-03-24

Family

ID=30703449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985145191U Expired JPH0110402Y2 (en) 1985-09-25 1985-09-25

Country Status (1)

Country Link
JP (1) JPH0110402Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129241A (en) * 1974-05-22 1976-03-12 Unilever Nv

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129241A (en) * 1974-05-22 1976-03-12 Unilever Nv

Also Published As

Publication number Publication date
JPS61130721U (en) 1986-08-15

Similar Documents

Publication Publication Date Title
GB1436751A (en) Internal combustion engine with internal misture formation
JPH0110402Y2 (en)
JPS5849383Y2 (en) Intake port of direct injection internal combustion engine
JPS6319551Y2 (en)
JPH0429047Y2 (en)
JPS5847223Y2 (en) Intake port of direct injection internal combustion engine
JPS5852331Y2 (en) Intake port of direct injection internal combustion engine
JPS6115220Y2 (en)
JP3500942B2 (en) In-cylinder injection spark ignition engine
JPH0415942Y2 (en)
JPS5924851Y2 (en) Air supply path for internal combustion engines
JPS6030424A (en) Intake port of internal-combustion engine
JPH0415941Y2 (en)
JPH06299857A (en) Multivalve suction type engine
JPH0417779Y2 (en)
JPS5840261Y2 (en) Engine combustion chamber structure
JPS588719U (en) internal combustion engine intake port
JPS6029635Y2 (en) 2-cycle engine intake device
JPS6039456Y2 (en) cylinder head of internal combustion engine
JPS59184323U (en) Diesel engine pre-chamber structure
JPS6224789Y2 (en)
JPS6146306Y2 (en)
JPS58135319A (en) Air intake device for internal-combustion engine
JPS5836821Y2 (en) Intake port of direct injection diesel engine
JPS5967532U (en) Combustion chamber of swirl chamber type diesel engine