JPH01103929A - Production of thermal shock resistant glass - Google Patents

Production of thermal shock resistant glass

Info

Publication number
JPH01103929A
JPH01103929A JP26089787A JP26089787A JPH01103929A JP H01103929 A JPH01103929 A JP H01103929A JP 26089787 A JP26089787 A JP 26089787A JP 26089787 A JP26089787 A JP 26089787A JP H01103929 A JPH01103929 A JP H01103929A
Authority
JP
Japan
Prior art keywords
powder
weight
thermal shock
glass
lio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26089787A
Other languages
Japanese (ja)
Other versions
JPH0433745B2 (en
Inventor
Kazuhiko Jinnai
和彦 陣内
Kunio Kimura
邦夫 木村
Hiroshi Tateyama
博 立山
Masakatsu Ijichi
伊地知 正勝
Hironori Hamazaki
浜崎 廣教
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IJICHI SHIYUKEIJIYOU KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
IJICHI SHIYUKEIJIYOU KK
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IJICHI SHIYUKEIJIYOU KK, Agency of Industrial Science and Technology filed Critical IJICHI SHIYUKEIJIYOU KK
Priority to JP26089787A priority Critical patent/JPH01103929A/en
Publication of JPH01103929A publication Critical patent/JPH01103929A/en
Publication of JPH0433745B2 publication Critical patent/JPH0433745B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain glass having satisfactory strength and thermal shock resistance and well usable as the material of various daily necessaries such as cups by heat treating a powdery mixture of a volcanic glassy deposit as the principal starting material with specified m.p. reducing agents at a relatively low temp. CONSTITUTION:A powdery mixture consisting of 4-8wt.% LiO2 powder, 0.5-2wt.% Na2O powder and the balance volcanic glassy deposit powder or 3-5wt.% LiO2 powder, 10-13wt.% B2O3 powder and the balance volcanic glassy deposit powder is melted by heating to <=1,350 deg.C and subjected to strain relief treatment at 450-550 deg.C.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は天然に大量に存在する割には、あまり利用され
ていないシラスで代表される火山ガラス質堆積物を有効
に活用し、比較的低温域に於ける処理で十分な耐熱衝撃
性を有するガラスを得る方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention makes effective use of volcanic glassy deposits represented by whitebait, which is naturally abundant but rarely used. The present invention relates to a method for obtaining glass having sufficient thermal shock resistance through treatment at low temperatures.

〈従来の技術〉 火山ガラス質゛堆積物を原料として、ガラスを造る方法
については、例えば特公昭54−17338号公報や特
開昭6’l−191541号公報にその例が示されてい
るが、前者は耐アルカリ性ガラスの製造法という限られ
た分野に関するものであり、又後者は溶融温度が最低で
も1400℃と高い為に生産効率が悪いという問題があ
る。
<Prior art> Examples of methods for producing glass using volcanic glassy deposits as raw materials are shown in, for example, Japanese Patent Publication No. 17338/1982 and Japanese Patent Application Laid-open No. 1915/1983. The former relates to a limited field of manufacturing methods for alkali-resistant glass, and the latter has a problem of poor production efficiency due to its high melting temperature of at least 1400°C.

〈発明が解決しようとする問題点〉 本発明は、火山ガラス質堆積物を主原料とし比較的に低
い温度域での処理で強度及び耐熱衝撃性の点ではコツプ
等の各種日用品材料として十分に対応が出来るガラスを
得る事が可能な方法を提供することを目的とするもので
ある。
<Problems to be Solved by the Invention> The present invention uses volcanic glassy deposits as the main raw material, and can be processed at relatively low temperatures to provide sufficient strength and thermal shock resistance as materials for various daily necessities such as pots. The purpose of this invention is to provide a method by which glass can be obtained.

く問題点を解決する為の手段〉 上記本発明の目的は、次の手段を採用する事により達成
出来る。即ちLiO2粉末4〜8重量%、NazO粉末
0粉末0垂〜2 積物粉末から成る組成の混合粉末を、1350℃以下の
温度に加熱溶融し、次いで450〜550℃の温度下で
歪除去処理を施すことを特徴とする耐熱衝撃性ガラスの
製造方法(以下第1発明という)、並びにL102粉末
3〜5重景%、B2O3粉末lO〜13重量%、残部が
火山ガラス質堆積物粉末から成る組成の混合粉末を、1
350℃以下の温度に加熱溶融し、次いで450〜55
0℃の温度下で歪除去処理を施すことを特徴とする耐熱
衝撃性ガラスの製造方法(以下第2発明という)である
Means for Solving the Problems> The above object of the present invention can be achieved by adopting the following means. That is, a mixed powder having a composition of 4 to 8% by weight of LiO2 powder, 0 to 2% by weight of NazO powder, and 0 to 2% by weight of NazO powder is heated and melted at a temperature of 1350°C or less, and then subjected to strain removal treatment at a temperature of 450 to 550°C. A method for producing thermal shock resistant glass (hereinafter referred to as the first invention), comprising 3 to 5 weight percent of L102 powder, 10 to 13 weight percent of B2O3 powder, and the balance consisting of volcanic glassy deposit powder. Mixed powder of composition 1
Melt by heating to a temperature of 350°C or less, then 450 to 55
This is a method for producing thermal shock resistant glass (hereinafter referred to as the second invention), characterized in that strain removal treatment is performed at a temperature of 0°C.

く作用〉 火山ガラス質堆積物は、下記第1表で示す様な組成を有
し、それ自体としては融点が1800℃以上と非常に高
融点物質である。従ってこの火山ガラス質堆積物単味で
はガラス原料には適さないが、これに融点低下剤的効用
を有するソーダ灰等を適量混合すれば、融点を下げる事
は出来る。しかしこの様にソーダ灰等を混合し融点を下
げたとしても得られる混合物は非常に大きな熱膨張率を
有しガラスとしては実用に供し得ない。
Effect> The volcanic glassy deposit has a composition as shown in Table 1 below, and is itself a very high melting point substance with a melting point of 1800° C. or higher. Therefore, this volcanic glassy deposit alone is not suitable as a raw material for glass, but if an appropriate amount of soda ash or the like, which has a melting point lowering effect, is mixed with it, the melting point can be lowered. However, even if the melting point is lowered by mixing soda ash or the like in this way, the resulting mixture has a very large coefficient of thermal expansion and cannot be used practically as glass.

しかるに本発明の様にLiO2とNa2Oを、あるいは
Li0zとB2O3を併用する事により融点を下げる事
が出来ると共に、熱膨張率も小さく抑える事が出来るの
である。即ち、第1発明にあってはLi01とNazO
とを併用するものであり、B1O2及びNazOはいず
れも火山ガラス質堆積物の融点を低下させる作用がある
が、LiO2の方が熱膨張率を小とする作用が大である
のでNanoは出来るだけ少量に留め、融点低下が現わ
れる最低量の05重量%から過度に融点が下がり粘性が
小となり過ぎて製品を造る際の作業性が悪くなる限度の
2重量%までとした。
However, by using LiO2 and Na2O or Li0z and B2O3 together as in the present invention, the melting point can be lowered and the coefficient of thermal expansion can also be kept low. That is, in the first invention, Li01 and NazO
Both B1O2 and NazO have the effect of lowering the melting point of volcanic glassy deposits, but LiO2 has a greater effect of reducing the coefficient of thermal expansion, so Nano is used as much as possible. The amount was kept at a small amount, ranging from 05% by weight, which is the minimum amount at which a decrease in the melting point appears, to 2% by weight, which is the limit at which the melting point decreases too much, the viscosity becomes too low, and the workability during manufacturing the product deteriorates.

又L102は4重量%未満では融点の低下がさほど見ら
れないし、逆に8重量%を越えるとやはり粘性が低下し
過ぎるので4〜8重景重量した。
Further, when L102 is less than 4% by weight, the melting point does not decrease much, and when it exceeds 8% by weight, the viscosity decreases too much, so the weight was 4 to 8 times higher.

又第2発明にあっては、LiO2とB2O3とを併用す
るものであり、ここで用いるB2O3は融点を低下させ
しむると共に熱膨張率をも低下するので、その双方とも
の効果が顕著に現われる10重量%以上用いる様にし、
あまり多過ぎると曲げ強さが低下する傾向があるし、粘
性が下がり過ぎて作業性が悪くなるので13重量%まで
とした。又LiO2はB2O3の量とも関連があり、こ
の第2発明では8203がある程度多量に用いられ、該
B2O3により融点低下は相当に進行せしめられるので
、LiO2の量は第1発明に比し少量でもよく、融点や
作業性を左右する粘性を考慮して3〜5重量%とじた。
In addition, in the second invention, LiO2 and B2O3 are used together, and since B2O3 used here lowers the melting point and also lowers the coefficient of thermal expansion, the effects of both are noticeable. Make sure to use 10% by weight or more,
If the amount is too large, the bending strength tends to decrease and the viscosity decreases too much, resulting in poor workability, so the amount is limited to 13% by weight. In addition, LiO2 is also related to the amount of B2O3, and in this second invention, 8203 is used in a relatively large amount, and the melting point decrease is considerably promoted by the B2O3, so the amount of LiO2 may be smaller than in the first invention. The content was set at 3 to 5% by weight, taking into consideration the melting point and viscosity that affects workability.

なお本第1発明及び第2発明のいずれにあっても、従来
からよく知られている清澄剤を用いる事もあるのは勿論
である、詳しくは溶融の際の容器として白金製容器を用
いれば、特に清澄剤を使わなくてもよいが、アルミナ製
容器を用いる場合には、溶融の際に該アルミナ製容器の
成分が徐々に溶出しガラス原料中へ溶は込み、その為に
該原料の融点が徐々に高まりその為に粘性が大となりガ
ラス原料中に生起した気泡が抜は出し難く、最終製品に
も残留する事があるので、この弊害をなくす為に亜ヒ酸
やアンチモン等のiWR剤を全重量の03%以下の範囲
で使用するのである。
In both the first and second inventions, it is of course possible to use a well-known fining agent. Specifically, if a platinum container is used as the container for melting, In particular, it is not necessary to use a fining agent, but if an alumina container is used, the components of the alumina container will gradually dissolve and dissolve into the glass raw material during melting, which will cause the raw material to dissolve. As the melting point gradually increases, the viscosity increases and the bubbles generated in the glass raw material are difficult to remove and may remain in the final product. The amount of the agent used is 0.3% or less of the total weight.

以上の様な配合の原料を用いる事により、本発明の原料
である混合粉末は、通常市販されているコツプ等の日用
品を製造する際に適用されている1350℃でも十分に
溶融が可能となり、該溶融状原料を引き続き450〜5
50℃で歪除去処理を施した後徐冷すると強度的にも安
定したガラスが得られる。
By using the raw materials with the above-mentioned composition, the mixed powder that is the raw material of the present invention can be sufficiently melted at 1350 ° C, which is normally applied when manufacturing daily necessities such as pots on the market. The molten raw material was then heated to 450~5
If the strain is removed at 50°C and then slowly cooled, a glass with stable strength can be obtained.

〈実施例〉 以下本発明をその実施例を示し乍ら詳述する。<Example> Hereinafter, the present invention will be described in detail while showing examples thereof.

災血透上 第1表に示す組成の鹿児島県垂水市新城産のシラス(−
5mm)90重量%、LiO2粉末8重量%、Nan。
Shirasu (-
5mm) 90% by weight, LiO2 powder 8% by weight, Nan.

粉末2重量%を混合し、混合粉末を得た。この混合粉末
の組成も第1表に併記する。
2% by weight of the powders were mixed to obtain a mixed powder. The composition of this mixed powder is also listed in Table 1.

上記混合粉末を白金皿に入れ、酸化性雰囲気の電気炉内
で、1350℃、1時間加熱溶融したものを水中へ投入
し、取出して乾燥し、これを微粉砕して白金皿へ入れ再
び電気炉で1350℃で30分間溶融した。この溶融状
物を予め500℃に保持した別の電気炉内に収容された
蓋付カーボンケース内へ注入した。該カーボンケースは
、鋼製蓋付容器内に設置され、周辺にはカーボン粉を詰
めておいた。
The above mixed powder was placed in a platinum dish, heated and melted at 1350℃ for 1 hour in an electric furnace with an oxidizing atmosphere, then poured into water, taken out and dried, pulverized, placed in a platinum dish and heated again. It was melted in a furnace at 1350°C for 30 minutes. This molten material was injected into a carbon case with a lid that was housed in another electric furnace that had been previously maintained at 500°C. The carbon case was placed inside a steel container with a lid, and the surrounding area was filled with carbon powder.

この様なカーボンケース中にて1時間保持し歪を除き徐
冷した。得られたガラスブロックを、切断、rff摩(
SiC粉3000# ) L、て5 X 5 X 15
(mm)の試料を作り、その熱膨張係数、eK化開始温
度、転移点及び曲げ強度を測定した。それら測定結果は
下記第2表に示す通りであった。
It was kept in such a carbon case for 1 hour to remove strain and slowly cool. The obtained glass block was cut and subjected to RFF polishing (
SiC powder 3000#) L, 5 x 5 x 15
(mm) samples were prepared, and their thermal expansion coefficient, eK initiation temperature, transition point, and bending strength were measured. The measurement results were as shown in Table 2 below.

第2表 又上記第1表に示す混合粉末を用い、上述と同様の方法
にて溶融後、コツプを試作し、歪除去処理の後に、JI
S−32030に規定される方法に準拠し、耐熱衝撃性
試験を行った。即ちそのコツプを電気炉で120±8℃
で30分間保持した後、冷水中に投入し1分間放置して
取出しtこ結果、ヒビや割れはなく、天火用耐熱ガラス
として適格であると判断出来た。なおJIS規格では0
〜300℃の熱膨張係数は、65X 10  以下とさ
れているが、この実施例の場合では88X 10  で
も天火用耐熱ガラスとして十分に合格していた。
Using the mixed powder shown in Table 2 or Table 1 above, a prototype was made after melting in the same manner as described above, and after strain removal treatment, JI
A thermal shock resistance test was conducted in accordance with the method specified in S-32030. That is, heat the pot to 120±8℃ in an electric furnace.
After holding the glass for 30 minutes, it was placed in cold water, left for 1 minute, and then taken out.As a result, there were no cracks or breaks, and it was determined that the glass was suitable for use as heat-resistant glass for skylights. In addition, according to the JIS standard, 0
The coefficient of thermal expansion at temperatures between 300° C. and 300° C. is said to be 65×10 or less, but in this example, even a value of 88×10 was sufficient to pass the test as a heat-resistant glass for an overhead fire.

l礼1− 上記実施例1で用いたのと同じシラス(−5mm)84
87重量%、LiO2粉末3.77重重量、B2O3粉
末1136重量%を混合し、下記第3表に示す組成の混
合粉末を得た。
1-Same whitebait (-5mm) 84 as used in Example 1 above
87% by weight of LiO2 powder, 3.77% by weight of LiO2 powder, and 1136% by weight of B2O3 powder to obtain a mixed powder having the composition shown in Table 3 below.

なおこの実施例2での混合粉末の組成は、シラス自体が
有するNanoの量に対し、加えるB2O3の量がNa
no: R103= 1 :  5が全混合物の熱膨張
係数が最も小となるという事実に沿い、シラスを全量の
大体85重量%位用いるという前提も立ってBzo3の
量を決めた為に上述の如く細かい数量となりたものであ
る。
The composition of the mixed powder in Example 2 is that the amount of B2O3 added is Na compared to the amount of Nano that Shirasu itself has.
In line with the fact that no: R103 = 1:5 has the smallest coefficient of thermal expansion of the entire mixture, the amount of Bzo3 was determined based on the premise that about 85% by weight of whitebait would be used of the total amount, so the amount of Bzo3 was determined as described above. This is a detailed quantity.

この様な混合粉末を、上記実施例1て述べたのと同様の
方法で溶融、歪除去処理をし、切断、研磨(2000#
) I、、5X5X15(制n)の試料を作り、下記第
4表に示す如き各種物性を測定した。
Such a mixed powder was melted and strain-removed in the same manner as described in Example 1 above, and then cut and polished (2000 #
) Samples of 5×5×15 (size n) were prepared, and various physical properties as shown in Table 4 below were measured.

又上記第3表に示す混合粉末を用い、上述と同様の方法
にて溶融後、コツプを試作し、歪除去処理の後にJIS
−32030に規定される方法に準拠し、耐熱衝撃性試
験を行った。即ちそのコツプを電気炉で120±8℃で
30分間保持した後、冷水中に投入し、1分間保持した
ところ何ら異常は検出されなかった。更に直下用として
150±10℃で30分間保持した後、冷水中に投入し
1分間放置して取出した結果でもヒビや割れはなく直火
用耐熱ガラスとして適格であると判断出来た。
In addition, using the mixed powder shown in Table 3 above, a prototype was made by melting it in the same manner as described above, and after strain removal treatment, it was rated according to the JIS standard.
A thermal shock resistance test was carried out in accordance with the method specified in JP-32030. That is, after holding the pot at 120±8°C in an electric furnace for 30 minutes, it was placed in cold water and held for 1 minute, and no abnormality was detected. Furthermore, after holding the glass at 150±10°C for 30 minutes for direct use, it was placed in cold water and left for 1 minute before being taken out. There were no cracks or breaks, and it was determined that the glass was suitable for use as heat-resistant glass for direct fire use.

なお上記実施例1及び実施例2のガラスと比較する上で
の参考として市販コツプ用ガラス及びパイレックスガラ
スについて、の熱膨張係数と曲げ強度を示すと、下記第
5表の如くである。
As a reference for comparison with the glasses of Examples 1 and 2, the thermal expansion coefficients and bending strengths of commercially available glasses for pots and Pyrex glasses are shown in Table 5 below.

〈発明の効果〉 以上述べて来た如く、本発明によれば、天然に大量に存
在し未利用資源の1種たる人山ガラス質堆積物を、有効
に活用し、それまではある特殊な用途及び又はそれを溶
融するのに非常な高温を必要としていたのを通常のガラ
ス製日用品の製造で汎用される1350℃という低温で
十分溶融が可能であり、生産効率を大幅に向上する事が
出来る。そして得られるガラスはその熱膨張率や強度の
点でも従来品と比し遜色はなく十分な耐熱衝撃性を具備
しているものである。
<Effects of the Invention> As described above, according to the present invention, it is possible to effectively utilize man-made glassy deposits, which are a type of unused resource that exists in large quantities in nature, and Instead of requiring extremely high temperatures for its purpose and/or melting, it can now be melted at a low temperature of 1,350°C, which is commonly used in the manufacture of ordinary glass daily necessities, greatly improving production efficiency. I can do it. The resulting glass is comparable to conventional products in terms of thermal expansion coefficient and strength, and has sufficient thermal shock resistance.

特許出願人 工業技術院長(他1名) 復代理人  有 吉  教 晴Patent applicant: Director of the Agency of Industrial Science and Technology (1 other person) Sub-Agent: Haru Yukichi

Claims (1)

【特許請求の範囲】 1、LiO_2粉末4〜8重量%、Na_2O粉末0.
5〜2重量%、残部が火山ガラス質堆積物粉末から成る
組成の混合粉末を、1350℃以下の温度に加熱溶融し
、次いで450〜550℃の温度下で歪除去処理を施す
ことを特徴とする耐熱衝撃性ガラスの製造方法。 2、LiO_2粉末3〜5重量%、B_2O_3粉末1
0〜13重量%、残部が火山ガラス質堆積物粉末から成
る組成の混合粉末を、1350℃以下の温度に加熱溶融
し、次いで450〜550℃の温度下で歪除去処理を施
すことを特徴とする耐熱衝撃性ガラスの製造方法。
[Claims] 1. LiO_2 powder 4-8% by weight, Na_2O powder 0.
A mixed powder having a composition of 5 to 2% by weight and the balance consisting of volcanic glassy deposit powder is heated and melted at a temperature of 1350°C or less, and then subjected to strain removal treatment at a temperature of 450 to 550°C. A method for producing thermal shock resistant glass. 2. LiO_2 powder 3-5% by weight, B_2O_3 powder 1
A mixed powder having a composition of 0 to 13% by weight and the balance consisting of volcanic glassy deposit powder is heated and melted at a temperature of 1350°C or less, and then subjected to strain removal treatment at a temperature of 450 to 550°C. A method for producing thermal shock resistant glass.
JP26089787A 1987-10-15 1987-10-15 Production of thermal shock resistant glass Granted JPH01103929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26089787A JPH01103929A (en) 1987-10-15 1987-10-15 Production of thermal shock resistant glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26089787A JPH01103929A (en) 1987-10-15 1987-10-15 Production of thermal shock resistant glass

Publications (2)

Publication Number Publication Date
JPH01103929A true JPH01103929A (en) 1989-04-21
JPH0433745B2 JPH0433745B2 (en) 1992-06-03

Family

ID=17354275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26089787A Granted JPH01103929A (en) 1987-10-15 1987-10-15 Production of thermal shock resistant glass

Country Status (1)

Country Link
JP (1) JPH01103929A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199299A1 (en) * 2017-04-28 2018-11-01 Agc株式会社 Glass plate and window

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199299A1 (en) * 2017-04-28 2018-11-01 Agc株式会社 Glass plate and window
CN110573466A (en) * 2017-04-28 2019-12-13 Agc株式会社 Glass panel and window
JPWO2018199299A1 (en) * 2017-04-28 2020-02-27 Agc株式会社 Glass plate and window
CN110573466B (en) * 2017-04-28 2022-06-24 Agc株式会社 Glass panel and window
JP2022111372A (en) * 2017-04-28 2022-07-29 Agc株式会社 Glass plate and window
US11634353B2 (en) 2017-04-28 2023-04-25 AGC Inc. Glass plate and window

Also Published As

Publication number Publication date
JPH0433745B2 (en) 1992-06-03

Similar Documents

Publication Publication Date Title
EP0222478B1 (en) Glass-ceramics containing cristobalite and potassium fluorrichterite
US2998675A (en) Glass body having a semicrystalline surface layer and method of making it
US3253975A (en) Glass body having a semicrystalline surface layer and method of making it
US4546006A (en) Method for strengthening porcelain tooth
US3331731A (en) Method of and article formed by sealing alumina ceramic to a metal with a sealant glass
JP3682888B2 (en) High zirconia electroformed brick
JPS63201034A (en) Production of crystallized glass having negative thermal expansion coefficient
JPH01103929A (en) Production of thermal shock resistant glass
US4649126A (en) Glass with anionic conductivity for fluorine
CALVERT et al. Liquidus Behavior in the Silica‐Rich Region of the System PbO‐SiO2
US4022627A (en) Crystallizable glasses and nephetine glass-ceramics containing ZrO2 and ZnO
US2919994A (en) Fused cast refractory
US3883358A (en) Copper aluminoborate glasses
EP0470695A2 (en) A glass composition, a method of manufacturing a glass composition and a method of manufacturing a fibre reinforced glass matrix composite
Priller et al. Strengthening of glass through surface crystallization of β-spodumene ss
JPS5924100B2 (en) Method for manufacturing crystallized glass using aluminum red mud as the main raw material
JPS6319459B2 (en)
JPS62128938A (en) Production of reinforced glass
JPS582234A (en) Aluminosilicate glass containing scandium oxide
JPH0157058B2 (en)
JPH0114182B2 (en)
CN118754462A (en) Chemical strengthening method for microcrystalline glass and chemically strengthened microcrystalline glass product
JPH04342437A (en) Ultraviolet ray transmitting glass
JPS61191541A (en) Preparation of thermal shock resistant shirasu glass
CN111333317A (en) High-potassium ultra-white glass and preparation method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term