JPH01102921A - Manufacture of film - Google Patents

Manufacture of film

Info

Publication number
JPH01102921A
JPH01102921A JP62260876A JP26087687A JPH01102921A JP H01102921 A JPH01102921 A JP H01102921A JP 62260876 A JP62260876 A JP 62260876A JP 26087687 A JP26087687 A JP 26087687A JP H01102921 A JPH01102921 A JP H01102921A
Authority
JP
Japan
Prior art keywords
film
space
resonance
reaction chamber
resonance space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62260876A
Other languages
Japanese (ja)
Other versions
JP2662688B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Kunio Suzuki
邦夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62260876A priority Critical patent/JP2662688B2/en
Publication of JPH01102921A publication Critical patent/JPH01102921A/en
Application granted granted Critical
Publication of JP2662688B2 publication Critical patent/JP2662688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To remove a film formed on a wall part and a powder applied to the wall part inside a reaction chamber and a resonance space by a method wherein the inner wall of a film formation apparatus by means of electron cyclotron resonance is etched by using the electron cyclotron resonance before and after formation of the film. CONSTITUTION:A film is formed by using an electron cyclotron resonance type plasma CVD apparatus while a pressure inside a reaction chamber 1 and a resonance space is set at 1X10<-3>-1X10<-4>Torr; after that, nitrogen fluoride (NF3 as a representative) is supplied through a line 18; an etching operation is executed at a pressure of 1X10<-2>-1Torr which is more than the pressure during formation of the film. Microwaves from an oscillator 3 are supplied to the resonance space 2 through a quartz window 29; a magnetic field is impressed by air-core coils 5, 5'. The etching operation is to be concentrated on the film applied inside the resonance space and inside the reaction chamber in accordance with a kind and an applied degree of the film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子サイクロトロン共鳴を利用した被膜作製方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a film using electron cyclotron resonance.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

従来、電子サイクロトロン共鳴を用いて被膜を形成させ
る場合、共鳴空間を構成する壁部及び反応室内壁部に被
膜が形成されてしまったり、または粉末が被着してしま
っていた。しかしこの内壁に形成される被膜または粉末
は容易に離脱しやすくそのため離脱した被膜または粉末
は飛翔して基板上にも被着し、スノーフレーク等を作り
、結果として形成さ゛れる被膜にピンホールを作る等の
欠点があった。
Conventionally, when forming a film using electron cyclotron resonance, the film was formed on the walls constituting the resonance space and the inner wall of the reaction chamber, or the powder adhered thereto. However, the coating or powder formed on this inner wall easily separates, so the detached coating or powder flies off and adheres to the substrate, creating snowflakes, etc., and as a result, pinholes are formed in the formed coating. There were other drawbacks.

そのため上記のような被膜を用いて半導体装置を作製し
た場合非常に特性の悪い半導体装置となってしまってい
た。
Therefore, when a semiconductor device is manufactured using the above film, the resultant semiconductor device has extremely poor characteristics.

本発明は反応室及び共鳴空間内壁部に形成された被膜や
被着した粉末を取り除くことを目的として成されたもの
である。
The present invention has been made for the purpose of removing coatings formed on the inner walls of the reaction chamber and the resonance space and powder adhered thereto.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は膜形成すべき基板を設けた反応室と活性化すべ
き気体を活性化させプラズマ状態にさせる共鳴空間とを
有する電子サイクロトロン共鳴を用いた被膜形成装置に
おいて、被膜の形成前後において、被膜形成圧力以上の
圧力状態で電子サイクロトロン共鳴を用いて、反応室及
び共鳴空間の内壁に付着した被膜または粉体をエツチン
グすることを特徴とする半導体装置作製方法により、反
応室およ、び共鳴空間内の壁部に形成された被膜や被着
した粉末を取り除くことのできるものである。
The present invention provides a film forming apparatus using electron cyclotron resonance, which has a reaction chamber provided with a substrate on which a film is to be formed and a resonance space in which a gas to be activated is activated into a plasma state. The inside of the reaction chamber and the resonance space is etched by a semiconductor device manufacturing method characterized by etching the film or powder attached to the inner walls of the reaction chamber and the resonance space using electron cyclotron resonance at a pressure higher than the pressure. It is possible to remove the coating formed on the wall of the wall and the powder adhering to it.

以下実施例により本発明の詳細な説明する。The present invention will be explained in detail below with reference to Examples.

〔実施例〕〔Example〕

第1図に本発明に用いられるサイクロトロン共鳴型プラ
ズマCVD装置の概要を示す。
FIG. 1 shows an outline of a cyclotron resonance type plasma CVD apparatus used in the present invention.

図面において、ステンレス反応容器(1“)は前方また
は後方にゲイト弁(図示せず)を介してロード室、アン
ロード室を設けている。そしてこのロード室より第1図
の反応容器内に筒状空間を構成する枠構造(四方をステ
ンレス金属また絶縁体の板で取り囲み活性状態の反応性
気体がこの外側の容器内壁にまで広がってフレークの発
生原因とならないようにする構造) (31) 、 (
31’ )を有する。さらにこの枠構造内に配設されて
いる基板ホルダ(10゛)及びその両面に主面に被膜形
成されるようにして基板(10)を対をなして設けてい
る。図面では10枚の基板を5つのホルダ(10’)に
配設している。
In the drawing, a stainless steel reaction vessel (1") has a loading chamber and an unloading chamber installed at the front or rear through a gate valve (not shown). From this loading chamber, a cylinder is inserted into the reaction vessel shown in Figure 1. A frame structure that constitutes a shaped space (a structure that is surrounded on all sides by stainless steel metal or insulating plates to prevent reactive gas in an active state from spreading to the inner wall of the outer container and causing flakes) (31), (
31'). Furthermore, a substrate holder (10') is disposed within this frame structure, and a substrate (10) is provided in pairs so that a coating is formed on the main surface of both sides of the substrate holder (10'). In the drawing, ten substrates are arranged in five holders (10').

そして容器(1゛)の筒状空間を反応空間(1)として
設けている。この容器(1°)の側部には、ハロゲンラ
ンプヒータ(7)を有する加熱室(7゛)を設けている
。石英窓(19)を通して赤外線を枠構造及び基板(l
O)に照射し加熱する。さらに必要に応じグロー放電を
も併設し得るため、この容器(1”)の内側の上部及び
下部に一対の網状電極(20)、(20’)を有せしめ
ここに高周波または直流電源(6)より13.56M+
12または直流の電界を加える。
The cylindrical space of the container (1') is provided as a reaction space (1). A heating chamber (7°) having a halogen lamp heater (7) is provided on the side of this container (1°). Infrared rays are transmitted through the quartz window (19) to the frame structure and the substrate (l
O) is irradiated and heated. Furthermore, in order to provide a glow discharge if necessary, a pair of mesh electrodes (20) and (20') are provided at the upper and lower parts of the inside of this container (1"), and a high frequency or DC power supply (6) is provided here. More than 13.56M+
12 or apply a direct current electric field.

またアルゴン等の非生成物気体(分解または反応をして
もそれ自体は気体しか生じない気体)は(18)より共
鳴空間(2)に供給される。この共鳴空間(2)はその
外側に空心コイル(ここではへルムホルツコイルとして
用いた)(5)、(5’)を配し磁場を加える。この内
側に冷却管(12)を配している。
In addition, a non-product gas such as argon (a gas that itself produces only a gas even if decomposed or reacted) is supplied to the resonance space (2) from (18). Outside this resonance space (2), air-core coils (here used as Helmholtz coils) (5) and (5') are arranged to apply a magnetic field. A cooling pipe (12) is arranged inside this.

同時にマイクロ波発振器(3)によりアナライザー(4
)を経て例えば2.45GHzのマイクロ波が石英窓(
29)より共鳴空間(2)に供給される。この空間では
共鳴を起こすべく非生成物気体としてアルゴンを(18
)より加える。そしてその質量、周波数により決められ
た磁場(例えば875ガウス)が空心コイル(5) 、
 (5’)により加えられる。
At the same time, the analyzer (4) is activated by the microwave oscillator (3).
), for example, a 2.45 GHz microwave is transmitted through a quartz window (
29) to the resonance space (2). In this space, argon (18
). Then, a magnetic field determined by its mass and frequency (e.g. 875 Gauss) is applied to the air-core coil (5),
(5') is added.

このため、アルゴンガスが励起して磁場によりピンチン
グすると同時に共鳴し、十分励起した後に反応空間(1
)へ電子および励起したアルゴンガスとして放出(21
)される。この共鳴空間(2)の出口には生成物気体が
ドーピング系(13)より(16)を経て複数のノズル
(17)より反応空間内に放出(22)される。その結
果、生成物気体(分解または反応をして固体を生成する
気体) (22)は電子および励起気体(21)により
励起され、活性化する。そしてこの活性化した気体が共
鳴空間(2)に逆流しないように絶縁物のホモジナイザ
(20)を設けて注意をした。加えて一対の電極(23
) 、 (23”)により生じた高周波電界が同時にこ
れら反応性気体に加えられる。
For this reason, the argon gas is excited and resonates at the same time as it is pinched by the magnetic field, and after being sufficiently excited, the reaction space (1
) is released as electrons and excited argon gas (21
) to be done. At the outlet of this resonance space (2), product gas is discharged (22) from the doping system (13) through (16) into the reaction space from a plurality of nozzles (17). As a result, the product gas (a gas that decomposes or reacts to produce a solid) (22) is excited and activated by the electrons and the excited gas (21). An insulating homogenizer (20) was provided to prevent this activated gas from flowing back into the resonance space (2). In addition, a pair of electrodes (23
), (23'') are simultaneously applied to these reactive gases.

その結果、共鳴空間(2)と反応空間上の間には実質的
にバッファ空間(30)を有し、反応空間全体に電子お
よび励起気体(21)が降り注ぐようにして放出させて
いる。
As a result, there is substantially a buffer space (30) between the resonance space (2) and the reaction space, and electrons and excited gas (21) are emitted so as to fall over the entire reaction space.

即ち共鳴空間と被形成面とが十分離れていても(一般的
には20〜80cm)反応性気体の励起状態を持続させ
ることができるように努めた。(サイクロトロン共鳴の
みを用いる場合は基板と共鳴空間端部との距離が5〜1
5cmと短く、被膜の厚さの不均一性を誘発する。) また反応性気体を十分反応空間(1)で広げ、かつサイ
クロトロンをさせるため、反応空間(1)。
That is, efforts were made to maintain the excited state of the reactive gas even if the resonance space and the formation surface are sufficiently far apart (generally 20 to 80 cm). (When using only cyclotron resonance, the distance between the substrate and the edge of the resonance space is 5 to 1
It is as short as 5 cm, causing non-uniformity in the thickness of the coating. ) Also, in order to sufficiently spread the reactive gas in the reaction space (1) and to generate a cyclotron, there is a reaction space (1).

共鳴空間(2)の圧力を1 xto−”〜I Xl0−
’torr例えば3 X 10− ’ torrとした
。この圧力はターボ分子ポンプ(14)を併用して排気
系(11)のコントロールパルプ(15)により真空ポ
ンプ(9)の排気量を調整して行った。
The pressure in the resonance space (2) is 1 xto-"~IXl0-
'torr, for example, 3 x 10-' torr. This pressure was achieved by adjusting the displacement of the vacuum pump (9) using the control pulp (15) of the exhaust system (11) in conjunction with the turbo molecular pump (14).

以上のような構成を有する電子サイクロトロン共鳴型プ
ラズマCVD装置により成膜を行った後、本発明の圧力
条件でエツチングを行なう。エツチングに用いたガスは
弗化窒素(NF、NF2、NF3等のエツチング用ガス
、代表的にはNF3)である。まず反応空間の圧力を被
膜形成時の圧力以上の圧力lXl0−”〜l torr
、本実施例ではO、1torrとした。そして第1図0
8)よりNF、を100〜400cc/分、例えば20
0cc/分で供給しマイクロ波は2.45GH2の周波
数のものを200〜800W例えば400Wの出力で供
給した。磁場(5)、(5°)の共鳴強度は875±1
00ガウスの範囲で共鳴するように調整した。反応室内
および共鳴空間内壁に被着あるいは形成する被膜は、被
膜の種類、成膜速度、成膜温度等によって厚さ、被膜の
程度が異なっており、また反応室内と共鳴空間内とにお
いても差があるため本発明のエツチングは、そのような
被膜の種類や被着の程度に応じて、共鳴空間内に被着し
た被膜に重点を置いて行ったり、反応室内に被着した被
膜に重点を置く等適宜行うのが良い。また共鳴空間内の
みをエツチングすることも可能である。
After film formation is performed using an electron cyclotron resonance type plasma CVD apparatus having the above-described configuration, etching is performed under the pressure conditions of the present invention. The gas used for etching is nitrogen fluoride (etching gas such as NF, NF2, NF3, etc., typically NF3). First, the pressure in the reaction space is set to a pressure higher than the pressure during film formation, lXl0-”~l torr.
, in this example, was set to O and 1 torr. And Figure 1 0
8) NF, from 100 to 400 cc/min, e.g. 20
The microwave was supplied at a rate of 0 cc/min, and a frequency of 2.45 GH2 was supplied with an output of 200 to 800 W, for example, 400 W. The resonance intensity of magnetic field (5), (5°) is 875±1
It was adjusted to resonate in the range of 0.00 Gauss. The thickness and extent of the coating deposited or formed on the inner walls of the reaction chamber and resonance space vary depending on the type of coating, coating speed, coating temperature, etc., and there are also differences between the reaction chamber and the resonance space. Therefore, depending on the type of film and the degree of adhesion, the etching of the present invention may be performed with emphasis on the film deposited within the resonance space, or with emphasis on the film deposited within the reaction chamber. It is better to do this as appropriate. It is also possible to etch only the inside of the resonance space.

以上のようなエツチングを被膜形成の前後に行えばよい
Etching as described above may be performed before and after film formation.

〔実施例2〕 本実施例は、第1図に示した電子サイクロトロン共鳴型
プラズマCvD装置を複数個接続して一体化し、マルチ
チャンバ方式としたものである。
[Embodiment 2] In this embodiment, a plurality of electron cyclotron resonance type plasma CvD apparatuses shown in FIG. 1 are connected and integrated to form a multi-chamber system.

このマルチチャンバ方式に関しては、本発明人の出願に
よる特許(ll5P 4.505.950  (198
5,3,19) 。
Regarding this multi-chamber system, a patent filed by the present inventor (II5P 4.505.950 (198
5, 3, 19).

USP 4,492.716 (19B5.1.8 )
 ’)にすでに明らかである。しかしこの実施例は特に
このマルチチャンバ方式とECR法とを一体化せしめ、
従来以上に優れたマルチチャンバ方式を得ることができ
た。
USP 4,492.716 (19B5.1.8)
') is already obvious. However, this embodiment specifically integrates this multi-chamber method and the ECR method,
We were able to obtain a multi-chamber system that is superior to conventional methods.

第2図に従い本発明を記す。The present invention will be described according to FIG.

第2図は系I、■、■、■、■を示す。ここではロード
室(系■、ビ)、第1の被膜例えばP型半導体形成用反
応系(系■)、第2の被膜例えばI型半導体形成用反応
室(系III)、第3の被膜例えばN型半導体形成用反
応系(系■)、アンロード系(系v、v’ >を有し、
複数の被膜の積層構造を有せしめるための被膜の作製例
である。そして例えばPIN接合を積層体として得るこ
とができる。
Figure 2 shows systems I, ■, ■, ■, ■. Here, a load chamber (systems ① and Ⅲ), a first coating, for example, a reaction system for forming a P-type semiconductor (system ①), a second coating, for example, a reaction chamber for forming an I-type semiconductor (system III), a third coating, for example, It has a reaction system for forming an N-type semiconductor (system ■), an unloading system (system v, v'>,
This is an example of producing a film to have a laminated structure of a plurality of films. For example, a PIN junction can be obtained as a laminate.

各県の室は(1’−1’)、(1”−1)、(1“−2
)、・・・(lo−5)、(1’−5”)をそれぞれ有
し、特に(1−2) 、 (1−3) 、 (1−4)
は反応空間を構成している。またロード側の空間として
(1−1’L (1−1)を有し、またアンロード側の
空間として(1−5) 、 (1−5’ ”)を有する
。ドーピング系(13−2) 、 (13−3) 、 
(13−4)を存する。さらに排気系(11)としてタ
ーボ分子ポンプ(14−1) 、 (14−2) 、・
・・(14−5)、真空ポンプ(9−1) 、 (9−
2) 、・・・(9−5)を有する。系(ビ)、(V’
)はロード、アンロード室であり、これらの図示は省略
している。
The rooms of each prefecture are (1'-1'), (1"-1), (1"-2
), ... (lo-5), (1'-5"), and especially (1-2), (1-3), (1-4)
constitutes the reaction space. It also has (1-1'L (1-1)) as a space on the loading side, and (1-5) and (1-5''') as spaces on the unloading side.Doping system (13-2 ), (13-3),
(13-4) exists. Furthermore, turbo molecular pumps (14-1), (14-2), ・
...(14-5), vacuum pump (9-1), (9-
2) , ... (9-5). System (B), (V'
) are loading and unloading chambers, which are omitted from illustration.

ECR用マイクロ波は系■、■、■の少なくとも1つこ
こではすべてに対しく8−2) 、 (8−3) 、 
(8−4) として設けられ、ヘルムボルツコイル(5
−2) 、 (5′−2)。
Microwaves for ECR include at least one of the systems ■, ■, and ■.8-2), (8-3),
(8-4) and Helmboltz coil (5
-2), (5'-2).

・・とじて加えられている。そして共鳴空間(2−2)
 。
... has been added as a closure. And resonance space (2-2)
.

(2−3) 、 (2−4)を有し、アルゴンガスまた
はこれと非生成物気体との混合ガス(18−2) 、 
(18−3) 、 (1B−4)として加えられている
(2-3), (2-4), argon gas or a mixed gas of this and a non-product gas (18-2),
(18-3) and (1B-4) are added.

それぞれのチャンバ(1−1)と(1−2)の間にはバ
ッファ空間(25−2)が設けられ、また(1−2)と
(1−3)との間にはバッファ空間(25−3)が、ま
た(1−3)と<1−4)との間にはバッファ空間(2
5−4)、さらに(1−4)と(1−5)との間にバッ
ファ空間(25−5)を有する。これらのバッファ空間
は基板(10)および基板ホルダ(筒状空間を構成する
枠構造体) (31)が所定のチャンバ(反応容器)に
て被膜形成後隣のチャンバへの移設を容品にし、また被
膜形成中において1つの空間の不純物、反応生成物が隣
の反応空間に混入しないよう気体の平均自由工程より巾
広とし、実質的にそれぞれの反応空間(1−1)、・・
・(1−5)を互いに離間させている。さらにロード室
(1−1”)とロードバッファ室<1−1)間のゲート
弁(25−1)、アンロードバッファ室(1−5)とア
ンロード室(1−5’)間のゲート弁(25−6)は基
板、基板ホルダのロード、アンロードの際、大気が反応
空間(l−2)・・・(1−4)に混入しないようにさ
せた。
A buffer space (25-2) is provided between each chamber (1-1) and (1-2), and a buffer space (25-2) is provided between each chamber (1-2) and (1-3). -3), and between (1-3) and <1-4) there is a buffer space (2
5-4), and further has a buffer space (25-5) between (1-4) and (1-5). In these buffer spaces, the substrate (10) and the substrate holder (frame structure constituting the cylindrical space) (31) can be transferred to the next chamber after forming a film in a predetermined chamber (reaction container). Also, in order to prevent impurities and reaction products in one space from mixing into the adjacent reaction space during film formation, the width is made wider than the mean free path of the gas, so that each reaction space (1-1),...
- (1-5) are spaced apart from each other. Furthermore, a gate valve (25-1) between the load chamber (1-1") and the load buffer chamber <1-1), a gate between the unload buffer chamber (1-5) and the unload chamber (1-5') The valve (25-6) prevented atmospheric air from entering the reaction spaces (1-2)...(1-4) during loading and unloading of substrates and substrate holders.

以上の装置の各チャンバに対して実施例1と同様にエツ
チングを行った後PIN型光電変換装置を作成した。
After etching each chamber of the above device in the same manner as in Example 1, a PIN type photoelectric conversion device was fabricated.

系■においてP型Si、CI−X  (0<X<1)の
非単結晶半導体を形成した。即ち反応空間、高さ30c
m、巾・奥行き各35cmを有し、反応容器の内寸法は
高さ40cm、巾・奥行き各50cm、基板(20cm
X30cm、10枚)を1バッチとする。さらにこの反
応空間の圧力を3×10−’torrとし、非生生物気
体として0ωよりアルゴンを200cc/分で供給した
。加えてHisi  (CH3)z /S i Ha 
= 1/ 7とし、B、)1./SiH,=5/100
0とし、(13−2)より80cc/分で供給した。
In system (2), a P-type Si, CI-X (0<X<1) non-single crystal semiconductor was formed. i.e. reaction space, height 30c
m, width and depth each 35 cm, and the inner dimensions of the reaction vessel are height 40 cm, width and depth each 50 cm, and a substrate (20 cm).
x30cm, 10 sheets) is considered as one batch. Further, the pressure in this reaction space was set to 3 x 10-'torr, and argon was supplied at 200 cc/min as a non-living gas at 0ω. In addition Hisi (CH3)z /S i Ha
= 1/7, B,)1. /SiH,=5/100
0 and was supplied from (13-2) at 80 cc/min.

初動の高周波エネルギは40Wの出力を用いて供給した
。マイクロ波は2.45GHzの周波数を有し、200
〜800Wの出力例えば300Wで供給した。
The initial high frequency energy was supplied using a power of 40W. Microwaves have a frequency of 2.45 GHz and 200
A power of ~800W was supplied, e.g. 300W.

磁場(5−2)、 (5’−2)の共鳴強度は875±
100ガウスの範囲で共鳴するように調整した。
The resonance intensity of the magnetic field (5-2) and (5'-2) is 875±
It was adjusted to resonate in the range of 100 Gauss.

基板0ωはガラス基板またはこの基板上に透明導電膜が
形成されたものを用いた。
As the substrate 0ω, a glass substrate or one on which a transparent conductive film was formed was used.

基板温度180°Cにし、光学的Eg=2.4eV電気
伝導度3 X 10−” (S c m−’)を得るこ
とができた。
The substrate temperature was set to 180° C., and an optical conductivity of 3×10−” (S cm−′) was obtained with an optical Eg of 2.4 eV.

系■において、■型の非単結晶半導体を形成した。即ち
アルゴンを共鳴空間に励起しく13−3)よりモノシラ
ンを80cc/分で供給した。マイクロ波出力が400
W、圧力3XIO−’torrの条件で実施した。
In system (1), a (2) type non-single crystal semiconductor was formed. That is, argon was excited into the resonance space, and monosilane was supplied from 13-3 at a rate of 80 cc/min. Microwave output is 400
The test was carried out under the following conditions: W, pressure 3XIO-'torr.

系■において、N型の微結晶化非単結晶半導体を形成し
た。即ちSiH4/Hz = 115〜1/40例えば
1/30、P11+/5i114=1/100とした。
In system (2), an N-type microcrystalline non-single crystal semiconductor was formed. That is, SiH4/Hz = 115 to 1/40, for example 1/30, and P11+/5i114 = 1/100.

ECR出力400W、圧力3 X 10− ’ tor
r、、基板温度250℃とした。すると光学的なEg=
1.65eV、電気伝導度50(Scm−’)を得るこ
とができた。特にECR方式においては、マイクロ波出
力を大きくしても基板に対するスパッタ効果がないため
、平均粒径が大きく100〜300人を存するより多結
晶化しやすく、結果として結晶化度もグロー放電プラズ
マCVD法において約50%であるものを70%にまで
高めることが可能となった。さらに希釈する水素の輩を
比較すると、グロー放電法とプラズマCvD法において
は5il14/H2=1ノ80〜1/300と大きく水
素で希釈したが、ECR法においてはSign/Hz 
=115〜1/40においても十分な微結晶構造を有す
る半導体を作ることができた。
ECR output 400W, pressure 3 x 10-' tor
r, the substrate temperature was 250°C. Then optical Eg=
An electrical conductivity of 1.65 eV and an electrical conductivity of 50 (Scm-') were obtained. In particular, in the ECR method, even if the microwave output is increased, there is no sputtering effect on the substrate, so the average grain size is large and it is easier to polycrystallize than the 100 to 300 particles, and as a result, the crystallinity is also lower than the glow discharge plasma CVD method. It has become possible to increase this from about 50% to 70%. Furthermore, when comparing the amount of hydrogen to be diluted, in the glow discharge method and the plasma CvD method, dilution with hydrogen was large at 5il14/H2 = 1 no 80 to 1/300, but in the ECR method, Sign/Hz
= 115 to 1/40, it was possible to produce a semiconductor having a sufficient microcrystalline structure.

以上のようにして得られた光電変換装置は被膜にピンホ
ール等がない均一な被膜を有しており。
The photoelectric conversion device obtained as described above has a uniform coating without pinholes or the like.

そのため変換効率12.9%(1,05cJ)  (開
放電圧0.92V短絡電流密度18.4mA/cd曲線
因子0.76)を存していた。
Therefore, the conversion efficiency was 12.9% (1.05 cJ) (open circuit voltage 0.92V short circuit current density 18.4 mA/cd fill factor 0.76).

本実施例においては、エツチングを光電変換装置作製前
に行ったが作製後に行っても良い。また被膜作製の都度
行っても良いしある程度反応室内及び共鳴空間内に被膜
が形成されてから行っても良い。
In this example, etching was performed before manufacturing the photoelectric conversion device, but it may be performed after manufacturing. Further, it may be carried out each time the coating is formed, or it may be carried out after the coating has been formed in the reaction chamber and the resonance space to some extent.

〔本発明の効果〕[Effects of the present invention]

以上の如く本発明の被膜作製方法によれば、電子サイク
ロトロン共鳴型プラズマCVD装置における反応室内及
び共鳴空間内壁に被着した被着物を被膜作製前に取り除
くことができるため、その被着物が粉体の如く大きな表
面積を有し、かつその粒界に界面単位が多数存在する塊
として被膜中に混在することを防ぎ、半導体の如き被膜
をミクロな面においても均質なアモルファス、セミアモ
ルファスまたはセミクリスタル構造を有する被膜とする
ことに有効であった。
As described above, according to the coating production method of the present invention, the deposits deposited on the inner walls of the reaction chamber and the resonance space in an electron cyclotron resonance plasma CVD apparatus can be removed before coating production, so that the deposits can be reduced to powder. It prevents the film from being mixed in the film as a lump with a large surface area and many interfacial units at its grain boundaries. This was effective in creating a film with

また本発明に用いた弗化窒素は、エツチング終了後も化
学的に安定な気体となるため、外部に放出させても実質
的に無公害である等の利点も有している。
Furthermore, the nitrogen fluoride used in the present invention remains a chemically stable gas even after etching, and therefore has the advantage that it is substantially non-polluting even when released to the outside.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明に用いたサイクロトロン共鳴型
プラズマCVD装置を示す。
1 and 2 show a cyclotron resonance type plasma CVD apparatus used in the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、膜形成すべき基板を設けた反応室と活性化すべき気
体を活性化させプラズマ状態にさせる共鳴空間とを有す
る電子サイクロトロン共鳴を用いた被膜形成装置におい
て、被膜の形成前後において、被膜形成圧力以上の圧力
状態で電子サイクロトロン共鳴を用いて、反応室及び共
鳴空間の内壁に付着した被膜または粉体をエッチングす
ることを特徴とする被膜作製方法。
1. In a film forming apparatus using electron cyclotron resonance, which has a reaction chamber equipped with a substrate on which a film is to be formed and a resonance space in which the gas to be activated is activated into a plasma state, the film forming pressure is adjusted before and after film formation. A method for producing a film, which comprises etching a film or powder attached to the inner walls of a reaction chamber and a resonance space using electron cyclotron resonance under the above pressure conditions.
JP62260876A 1987-10-16 1987-10-16 Coating method Expired - Fee Related JP2662688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62260876A JP2662688B2 (en) 1987-10-16 1987-10-16 Coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62260876A JP2662688B2 (en) 1987-10-16 1987-10-16 Coating method

Publications (2)

Publication Number Publication Date
JPH01102921A true JPH01102921A (en) 1989-04-20
JP2662688B2 JP2662688B2 (en) 1997-10-15

Family

ID=17353979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62260876A Expired - Fee Related JP2662688B2 (en) 1987-10-16 1987-10-16 Coating method

Country Status (1)

Country Link
JP (1) JP2662688B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125859A (en) * 1997-03-05 2000-10-03 Applied Materials, Inc. Method for improved cleaning of substrate processing systems
US6274058B1 (en) 1997-07-11 2001-08-14 Applied Materials, Inc. Remote plasma cleaning method for processing chambers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477573A (en) * 1977-11-10 1979-06-21 Sony Corp Operating method of plasma treating apparatus
JPS57134925A (en) * 1981-02-16 1982-08-20 Kokusai Electric Co Ltd Plasma cvd film producer
JPS59181530A (en) * 1983-03-31 1984-10-16 Komatsu Ltd Method and apparatus for cleaning semiconductor manufacturing equipment
JPS61247031A (en) * 1985-04-24 1986-11-04 Hitachi Ltd Plasma processor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477573A (en) * 1977-11-10 1979-06-21 Sony Corp Operating method of plasma treating apparatus
JPS57134925A (en) * 1981-02-16 1982-08-20 Kokusai Electric Co Ltd Plasma cvd film producer
JPS59181530A (en) * 1983-03-31 1984-10-16 Komatsu Ltd Method and apparatus for cleaning semiconductor manufacturing equipment
JPS61247031A (en) * 1985-04-24 1986-11-04 Hitachi Ltd Plasma processor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125859A (en) * 1997-03-05 2000-10-03 Applied Materials, Inc. Method for improved cleaning of substrate processing systems
US6274058B1 (en) 1997-07-11 2001-08-14 Applied Materials, Inc. Remote plasma cleaning method for processing chambers

Also Published As

Publication number Publication date
JP2662688B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
US6230650B1 (en) Microwave enhanced CVD system under magnetic field
US5512102A (en) Microwave enhanced CVD system under magnetic field
JP2635021B2 (en) Deposition film forming method and apparatus used for the same
US4760008A (en) Electrophotographic photosensitive members and methods for manufacturing the same using microwave radiation in magnetic field
JP2005005280A (en) Method for passivating semiconductor substrate
US6673722B1 (en) Microwave enhanced CVD system under magnetic field
KR920000591B1 (en) Microwave enhanced cvd system
US4910044A (en) Ultraviolet light emitting device and application thereof
JPH01102921A (en) Manufacture of film
Böhm et al. Ion‐induced secondary electron emission in SiH4 glow discharge, and temperature dependence of hydrogenated amorphous silicon deposition rate
JP3486590B2 (en) Deposition film forming equipment
JP2654433B2 (en) Silicon semiconductor fabrication method
JPH0790591A (en) Microwave plasma cvd system and formation of deposited film
JPH08506215A (en) Microwave excitation method for manufacturing high quality semiconductor materials
JPH01102922A (en) Apparatus for formation of film
JPH0766911B2 (en) Film forming method
JP3061811B2 (en) Fabrication method of non-single crystal thin film
JP2608456B2 (en) Thin film forming equipment
JP2001291882A (en) Method of manufacturing thin film
JP2564754B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JP3088703B2 (en) Method for manufacturing thin film semiconductor device
JP2890029B2 (en) Film forming apparatus and film forming method
JP2564538B2 (en) Semiconductor processing equipment
JPH0252422A (en) Manufacture of thin film and apparatus therefor
JPH05251356A (en) Formation method of film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees