JPH01102304A - Measuring method of length by charged beam and apparatus therefor - Google Patents

Measuring method of length by charged beam and apparatus therefor

Info

Publication number
JPH01102304A
JPH01102304A JP62259561A JP25956187A JPH01102304A JP H01102304 A JPH01102304 A JP H01102304A JP 62259561 A JP62259561 A JP 62259561A JP 25956187 A JP25956187 A JP 25956187A JP H01102304 A JPH01102304 A JP H01102304A
Authority
JP
Japan
Prior art keywords
secondary electron
pattern
sample
noise
charged beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62259561A
Other languages
Japanese (ja)
Inventor
Akira Kikuchi
章 菊池
Katsuyuki Harada
原田 勝征
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62259561A priority Critical patent/JPH01102304A/en
Publication of JPH01102304A publication Critical patent/JPH01102304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To enable the highly precise measurement of a pattern width with excellent reproducibility and thereby to improve a yield in manufacture of LSI devices, by measuring the acceleration voltage dependence characteristic of secondary electron noise inherent in a pattern material and by conducting measurement with an acceleration voltage corresponding to the minimum value thereof. CONSTITUTION:A minimum value extraction circuit 22 extracts the minimum value of secondary electron noise and an acceleration voltage corresponding thereto from the acceleration voltage dependence characteristic of the secondary electron noise inherent to a pattern material. A psophometer 23 is a means to measure the amount of the secondary electron noise, and the input thereof is AC-coupled to the output of a secondary electron detector 10 through a capacitor 24. By this construction, an acceleration to be a specified measuring precision is selected from the acceleration voltage dependence property of the amount of noise of secondary electrons 9 obtained by scanning the surface of a sample 7 having a pattern on the surface by a charged beam 8, and from the characteristic of dependence of the measuring precision of a pattern width on the amount of the secondary electron noise. Then, from a secondary electron waveform obtained by scanning the surface of the sample by this acceleration voltage, the pattern width on the surface of the sample can be calculated in a pattern width calculation circuit 17.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はLSI製造時のパタン検査等に適用される荷電
ビーム測長法およびその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a charged beam length measurement method and an apparatus therefor applied to pattern inspection during LSI manufacturing.

〔従来の技術〕[Conventional technology]

走査散電子顕微鏡(以下smと称する)に代表される荷
電ビーム装置は非接触かつ高分解能の表面観察手段とし
て幅広く用いられるようになってきた。この様な荷電ビ
ーム装置の大きな適用分野としてLSI製造時のパタン
検査手段であるパタン幅測定装置が考えられる。
BACKGROUND ART Charged beam devices represented by scanning scattering electron microscopes (hereinafter referred to as SM) have come to be widely used as non-contact and high-resolution surface observation means. A major field of application of such a charged beam device is considered to be a pattern width measuring device, which is a pattern inspection means during LSI manufacturing.

LSIは主として、論理動作等を司る能動素子部とLS
Iとしての機能を実現させるためにこれらを有機的に結
合する電極配線部とで構成され、各層がウニ八単位の一
括処理で形成される積層構造になっている。即ち、LS
Iは上記各層を形成する複数の工程を繰り返して製造さ
れる。従って、LSI製造完了時に目標とする電気的特
性と歩留りを確保するにはパタン形成工程(レジストの
露光、現像、エツチング等)完了毎にパタン検査を行う
ことが不可欠である。
LSI mainly consists of an active element section that controls logic operations, etc., and an LS
In order to realize the function of I, it is composed of an electrode wiring part that organically connects these parts, and has a laminated structure in which each layer is formed by batch processing of eight sea urchins. That is, L.S.
I is manufactured by repeating a plurality of steps for forming each layer. Therefore, in order to ensure the target electrical characteristics and yield upon completion of LSI manufacturing, it is essential to perform a pattern inspection every time the pattern formation process (resist exposure, development, etching, etc.) is completed.

この様なLSIのパタン検査では、試料にダメージを与
えずに高精度な表面観察ができることが要求されるため
、従来の光学顕微鏡の代わりに専らSEMが用いられる
ようになってきた。
In such LSI pattern inspection, since it is required to be able to observe the surface with high precision without damaging the sample, SEM has come to be used exclusively in place of the conventional optical microscope.

第7図はSEMを用いたパタン幅測定(以下測長)装置
の一般的構成を示す同図において、1は電子銃、2はコ
ンデンサレンズ、3は対物レンズ、4はアパーチャ、5
は偏向器、6はステージ、7はLSIデバイス等の測定
試料(以下試料と称する)、8は電子銃1から放出嘔れ
る゛電子ビーム、9は該電子ビームで試料7を照射した
とき該試料の表面から放出される二次電子、10は二次
′Cシ子検出器、11は電子銃1の直流電圧源、12.
13は各々コンデンサレンズ2.対物レンズ3を励磁す
る直流電流源、14は偏向器5を制御する走査回路、1
5はステージ6の移動を制御するステージ制御回路、1
6はコンソールで、これをマニュアルで操作することに
よシ、直流電圧源11を介し電子ビーム8の加速電圧を
設定し、直流4流源12゜13を介し各々コンデンサレ
ンズ2.対物レンズ3の励磁を調整して電子ビーム8の
ビーム電流値の設定と焦点合わせとをおこない、走査回
路14およびステージ制御回路15’i−介して電子ビ
ーム8の試料7の表面における電子ビームaの照射位置
と走査条件(方向2幅、速度)を設定する。1Tはパタ
ン幅算出回路、18は該パタン幅算出回路に設けられた
CRT等の表示器、19はパタン幅算出回路の制御装置
(日本学術振興会荷電粒子ビームの工業への応用第13
2委員会、第85回研究会資料、pl、1983年参照
)である。
Figure 7 shows the general configuration of a pattern width measurement (hereinafter referred to as length measurement) device using an SEM. In this figure, 1 is an electron gun, 2 is a condenser lens, 3 is an objective lens, 4 is an aperture, and 5
1 is a deflector, 6 is a stage, 7 is a measurement sample such as an LSI device (hereinafter referred to as a sample), 8 is an electron beam emitted from the electron gun 1, and 9 is a sample when the sample 7 is irradiated with the electron beam. 10 is a secondary 'C' detector, 11 is a DC voltage source for the electron gun 1, 12.
13 is a condenser lens 2. a direct current source that excites the objective lens 3; 14 a scanning circuit that controls the deflector 5;
5 is a stage control circuit that controls the movement of the stage 6;
Reference numeral 6 denotes a console, and by manually operating the console, the accelerating voltage of the electron beam 8 is set via a DC voltage source 11, and the accelerating voltage of the electron beam 8 is set via a DC voltage source 11, and each condenser lens 2. The excitation of the objective lens 3 is adjusted to set the beam current value of the electron beam 8 and to focus the electron beam 8. Set the irradiation position and scanning conditions (direction 2 width, speed). 1T is a pattern width calculation circuit, 18 is a display such as a CRT provided in the pattern width calculation circuit, and 19 is a control device for the pattern width calculation circuit (Japan Society for the Promotion of Science Industrial Application of Charged Particle Beams No. 13).
2 Committee, 85th Study Group Materials, pl, 1983).

次に第7図を用いてパタン測長の手順を説明する。まず
、コンソール16の操作により電子ビーム8で試料7の
表面、即ちLSIデバイス表面の同一パタン金繰り返し
走査させ、これによって放出される二次電子9を二次電
子検出器10を介してパタン幅算出回路1Tで該パタン
の形状に対応して変化しかつ加算平均化された二次電子
波形を蓄積する。該パタンの線幅は該二次電子波形で該
パタンのSEM像をCRT18上に表示し、パタンのエ
ツジにカーソルを合わせて、カーソル間の距離をパタン
幅算出回路17で算出するか、或いは閾値を指定し、そ
れと該二次電子波形の立ち上がり部分との交点及び立ち
下がり部分との交点を結ぶ線分を該パタンの線幅として
、これをパタン幅算出回路17で算出する(以下ライン
・プロファイル法と称する)。
Next, the procedure for pattern length measurement will be explained using FIG. First, by operating the console 16, the electron beam 8 repeatedly scans the same pattern on the surface of the sample 7, that is, the surface of the LSI device, and the secondary electrons 9 emitted thereby are used to calculate the pattern width through the secondary electron detector 10. A circuit 1T stores a secondary electron waveform that changes in accordance with the shape of the pattern and is averaged. The line width of the pattern can be determined by displaying an SEM image of the pattern using the secondary electron waveform on the CRT 18, placing a cursor on the edge of the pattern, and calculating the distance between the cursors by the pattern width calculation circuit 17, or by using a threshold value. is specified, and the line segment connecting the intersection with the rising part and the falling part of the secondary electron waveform is defined as the line width of the pattern, and this is calculated by the pattern width calculation circuit 17 (hereinafter referred to as line profile). law).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述したLSIのパタン寸法を測定する測長装置では、
微細なデータを大量に収集する必要があるため、高速か
つ高精度であることが要求される。
In the length measuring device mentioned above that measures the pattern dimensions of LSI,
Since it is necessary to collect large amounts of minute data, high speed and high accuracy are required.

このためには、単にシステム構成のみならず測定条件に
ついても上記の観点から最適化をはかることが望まれる
。測定条件には、(a)  荷電ビームの照射条件、伽
)二次電子波形の平滑化条件、(e)パタン幅算出条件
、があるが、測定精度の点からは−)と(b)が重要で
ある。〜)については、上記した加算平均の他、移動平
均、高速フーリエ変換等が知られており、その測定精度
への効果については、実験的に確認されている。これに
対し、(&)について、とりわけ測定対象となるパタン
材質への依存性が大きいと考えられる加速電圧条件につ
いてはパタン材質に応じて経験的に選定されているのが
現状であり、測定精度との定量的な関係は殆ど明らかに
されていなかった。このため、測定者の熟練度や測定対
象のパタン材質に依存して測定精度がばらつきLSIp
造時のパタン寸法管理の信頼度の点で問題があった。
To this end, it is desirable to optimize not only the system configuration but also the measurement conditions from the above viewpoint. Measurement conditions include (a) charged beam irradiation conditions, (a) secondary electron waveform smoothing conditions, and (e) pattern width calculation conditions, but from the viewpoint of measurement accuracy, -) and (b) are is important. ~), in addition to the above-mentioned averaging, moving average, fast Fourier transform, etc. are known, and their effects on measurement accuracy have been experimentally confirmed. On the other hand, regarding (&), the current situation is that the accelerating voltage conditions, which are considered to be highly dependent on the pattern material to be measured, are selected empirically depending on the pattern material, and the measurement accuracy Almost no quantitative relationship has been clarified. For this reason, measurement accuracy varies depending on the skill level of the measurer and the pattern material to be measured.
There was a problem with the reliability of pattern dimension management during manufacturing.

したがって本発明は、前述した従来の問題に鑑みてなさ
れたものであり、その目的は、再現性良く高精度なパタ
ン幅測定を可能にしてLSIデバイス製造における歩留
シを向上させることができる荷電ビーム測長法およびそ
の装置を提供することにある。
Therefore, the present invention has been made in view of the above-mentioned conventional problems, and its purpose is to improve the yield in LSI device manufacturing by making it possible to measure pattern widths with good reproducibility and high precision. An object of the present invention is to provide a beam length measurement method and a device thereof.

〔問題点を解決するための手段〕[Means for solving problems]

前述した問題点を解決するには、測定対象となるパタン
材質に応じて目標測定精度を満足する荷電ビームの加速
電圧を定量的に抽出する方法と手段があればよい。
In order to solve the above-mentioned problems, it is sufficient to have a method and means for quantitatively extracting the accelerating voltage of the charged beam that satisfies the target measurement accuracy according to the material of the pattern to be measured.

本発明による荷電ビーム測長法は、荷電ビームを試料表
面に走査して得られる二次電子波形に重畳する二次電子
雑音量が測定精度の支配的要因でありかつ該試料表面の
全収率(二次電子放出比と後方散乱係数の和〕に比例す
ることに着目してなされたもので、パタン材質固有の二
次電子雑音の加速電圧依存特性を測定してその最小直に
対応する加速電圧で測定して測長の高精度化を実現する
ことに最大の特徴を有する。
In the charged beam length measurement method according to the present invention, the amount of secondary electron noise superimposed on the secondary electron waveform obtained by scanning the sample surface with a charged beam is the dominant factor in measurement accuracy, and the total yield on the sample surface is (The sum of the secondary electron emission ratio and the backscattering coefficient) This was done by focusing on the fact that the secondary electron noise is proportional to the sum of the secondary electron emission ratio and the backscattering coefficient. The main feature is that it achieves high accuracy in length measurement by measuring with voltage.

本発明による荷電ビーム測長装置は、荷電ビームを加速
、収束及び偏向する手段と、該荷電ビームのビーム電流
を一定にして加速域圧を変化させる手段と、試料表面か
らの二次電子を収集する手段と、二次電子波形で試料表
面の形状’tN出する手段と、二次電子雑音量を測定す
る手段と、一定範囲で変化する一変数の関数の最小値を
算出する手段とを備えている。或いは二次電子雑音量を
測定する手段に書見て吸収電流を測定する手段を備えて
も良い。
The charged beam length measuring device according to the present invention includes means for accelerating, converging and deflecting the charged beam, means for changing the acceleration region pressure while keeping the beam current of the charged beam constant, and collecting secondary electrons from the sample surface. means for determining the shape of the sample surface using a secondary electron waveform, means for measuring the amount of secondary electron noise, and means for calculating the minimum value of a function of one variable that changes within a certain range. ing. Alternatively, means for measuring the absorbed current may be provided in addition to the means for measuring the amount of secondary electronic noise.

〔作用〕[Effect]

本発明においては、製造途中にあるLSIデバイスのパ
タン幅測定を間精度に実施できる。
In the present invention, it is possible to measure the pattern width of an LSI device that is in the process of being manufactured with great precision.

〔実施例〕〔Example〕

以下、図面を用いて本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明による荷電ビーム測長法の一実施例を説
明するための荷電ビーム装置の一実施例を示す構成図で
あシ、前述の図と同一部分には同一符号を付しである。
FIG. 1 is a block diagram showing an embodiment of a charged beam device for explaining an embodiment of the charged beam length measurement method according to the present invention, and the same parts as those in the previous figures are denoted by the same reference numerals. be.

同図において、21は計算機であり、この計算機21と
直流電圧源11とで電子ビーム8の加速電圧を変化させ
る手段を構成し、さらに直流電流源12と直流電流源1
3とで電子ビーム8のビーム電流を一定にする手段を構
成している。22はパタン材質固有の二次電子雑音の加
速電圧依存特性から二次電子雑音の最小値とこれに対応
する加速電圧を抽出する最小値抽出回路、23は二次電
子雑音量を測定する手段であるi前針で、その入力はコ
ンデンサ24を介し二次電子検出器10の出力と交流結
合している。計算機21は直流電圧源11の他、直流電
流源12゜直流電流源13.走査回路14.ステージ′
制御回路15.パタン幅算出回路1T及び最小値抽出回
路22と接続し、これらを一元的に制御するため制御信
号、データの送受とデータの加工、蓄積等の処理とを有
機的に実行する。
In the figure, 21 is a computer, and this computer 21 and a DC voltage source 11 constitute a means for changing the accelerating voltage of the electron beam 8, and a DC current source 12 and a DC current source 1
3 constitute means for keeping the beam current of the electron beam 8 constant. 22 is a minimum value extraction circuit for extracting the minimum value of secondary electron noise and the corresponding acceleration voltage from the accelerating voltage dependence characteristic of secondary electron noise specific to the pattern material; 23 is a means for measuring the amount of secondary electron noise; At a certain i-front needle, its input is AC coupled to the output of the secondary electron detector 10 via a capacitor 24. The computer 21 includes a DC voltage source 11, a DC current source 12, a DC current source 13. Scanning circuit 14. stage'
Control circuit 15. It is connected to the pattern width calculation circuit 1T and the minimum value extraction circuit 22, and in order to centrally control these, it organically executes processing such as transmission and reception of control signals and data, and data processing and storage.

第2図は本発明による荷電ビーム測長法の他の実施例を
説明するための荷電ビーム装置の構成図である。同図に
おいて、1〜22は第1図と同じものを示す。25は電
子ビームで試料7を照射し九時、アースから該試料へ流
れる吸収電流を測定する電流針である。
FIG. 2 is a block diagram of a charged beam device for explaining another embodiment of the charged beam length measurement method according to the present invention. In the figure, numerals 1 to 22 indicate the same parts as in FIG. 1. 25 is a current needle that irradiates the sample 7 with an electron beam and measures the absorbed current flowing from the ground to the sample at 9 o'clock.

第3図は測長の測定精度の二次電子雑音量依存特性を示
すものであり、同図において、30はSi上のホトレジ
ストAZパタン(パタン幅=1μm)、特性31はペア
S1のパタン(パタン幅=1μm)の実測例である。
FIG. 3 shows the dependence of the measurement accuracy on the amount of secondary electronic noise. In the figure, 30 is the photoresist AZ pattern on Si (pattern width = 1 μm), and characteristic 31 is the pattern of pair S1 ( This is an actual measurement example of pattern width = 1 μm).

第4図はパタン材質がMoの場合、第5図はパタン材質
が810zの場合の二次電子雑音量の二乗平均値と全収
率の加速電圧依存特性を示すものであり、同図において
、特性32および特性34は二次電子雑音量の二乗平均
値の加速電圧依存特性、特性33および特性35は全収
率の加速電圧依存特性の実測例である。
Fig. 4 shows the accelerating voltage dependence characteristics of the root mean square value of the secondary electron noise amount and the total yield when the pattern material is Mo, and Fig. 5 shows the accelerating voltage dependence of the total yield when the pattern material is 810z. Characteristics 32 and 34 are actual measurement examples of the accelerating voltage dependence characteristics of the root mean square value of the amount of secondary electron noise, and characteristics 33 and 35 are actual measurement examples of the accelerating voltage dependence characteristics of the total yield.

次に第1図と第3図〜第5図とを用いて二次電子雑音量
の加速電圧依存特性による荷電ビーム測長法の一実施例
を説明する。第1図において、計算機21から直流電圧
源11.直流電流源12゜直流電流源13.走査回路1
4.ステージ制御回路15.パタン幅算出回路1T及び
最小値抽出回路22へ電子ビーム8の照射条件信号、パ
タン幅算出条件等を送信し、加速電圧Vpを変化させて
電子ビーム8で試料7の表面の特定領域を走査する。こ
れと並行して該特定領域から放出される二次電子9を二
次電子検出器10で収集し、該二次電子の交流雑音成分
の二乗平均値n (以下nを二次電子雑音f[)をコン
デンサ24を介して雑音計23で測定する。
Next, an embodiment of the charged beam length measurement method based on the accelerating voltage dependence characteristic of the amount of secondary electron noise will be explained using FIG. 1 and FIGS. 3 to 5. In FIG. 1, a computer 21 is connected to a DC voltage source 11. DC current source 12° DC current source 13. Scanning circuit 1
4. Stage control circuit 15. The electron beam 8 irradiation condition signal, pattern width calculation conditions, etc. are transmitted to the pattern width calculation circuit 1T and the minimum value extraction circuit 22, and the acceleration voltage Vp is changed to scan a specific area on the surface of the sample 7 with the electron beam 8. . In parallel with this, the secondary electrons 9 emitted from the specific area are collected by the secondary electron detector 10, and the root mean square value n of the AC noise component of the secondary electrons (hereinafter n is the secondary electron noise f[ ) is measured by the noise meter 23 via the capacitor 24.

二次電子の交流雑音はホワイト・ノイズであるから、そ
の二乗平均値n は次式で与えられる〔雑音解析、宮脇
−男、p35、朝食書店(1967)]。
Since the alternating current noise of secondary electrons is white noise, its root mean square value n is given by the following formula [Noise Analysis, Miyawaki-O, p. 35, Breakfast Shoten (1967)].

n2=2+1・弓g@1B(1) ここで、eは電子の電荷、Igは二次電子検出器10で
収集される信号電流、jBは二次電子検出器1G、コン
デンサ24及び雑音計23で構成・される検出系の帯域
幅である。信号電流Igは第1図の試料7の特定領域か
らの二次電子量に比例するから、 n2= Kす(Vp)” Ip      (2)ここ
で、Kは試料7の表面材質に依存しない定数、ρ(Vp
)は電子ビーム8を加速電圧Vpで照射した時の試料T
の全収率である。即ちビーム電流Ipを一定にしたまま
加速電圧vpを変化させて二次電子雑音量の二乗平均値
n を測定すれば、パタン材質固有の全収率ρ(Vp)
に比例した加速電圧依存特性が得られる。
n2=2+1・bow g@1B (1) Here, e is the electron charge, Ig is the signal current collected by the secondary electron detector 10, and jB is the secondary electron detector 1G, the capacitor 24, and the noise meter 23. This is the bandwidth of the detection system composed of. Since the signal current Ig is proportional to the amount of secondary electrons from a specific region of sample 7 in Fig. 1, n2 = Ksu(Vp)'' Ip (2) Here, K is a constant that does not depend on the surface material of sample 7. , ρ(Vp
) is sample T when irradiated with electron beam 8 at accelerating voltage Vp.
The total yield is That is, if the acceleration voltage vp is varied while the beam current Ip is kept constant and the root mean square value n of the secondary electron noise amount is measured, the total yield ρ(Vp) specific to the pattern material can be calculated.
An accelerating voltage dependence characteristic proportional to is obtained.

第4図の特性32と第5図の特性34はこのようにして
測定した実測例である。加速電圧Vpが0.8kVから
2.5kVの範囲ではパタン材質がM。
Characteristic 32 in FIG. 4 and characteristic 34 in FIG. 5 are actual measurement examples measured in this manner. When the acceleration voltage Vp is in the range of 0.8 kV to 2.5 kV, the pattern material is M.

の場合、第4図から二次電子雑音量は加速電圧vpと共
に単調減少し、Vp = 2.5 kVで最小になる。
In the case of FIG. 4, the amount of secondary electronic noise decreases monotonically with the accelerating voltage vp, and becomes the minimum at Vp = 2.5 kV.

これに対し、8102の場合では、第5図から二次電子
雑音量は、VP=1kVで最小になる。
On the other hand, in the case of 8102, the amount of secondary electronic noise becomes minimum at VP=1 kV, as shown in FIG.

さて、M3図は前述したライン・プロファイル法でパタ
ン幅を測定し、その測定精度を繰り返し測定したパタン
幅測定値の標準偏差値σした時の測定精度σの二次電子
雑音量nへの依存特性を示す。特性30のS1上のホト
レジストAZパタンと特性31のベアS1のパタンの実
測例は、測定精度σはほぼ二次電子雑音量nの315乗
に比例して増大することを実証している。即ち、パタン
材質がNoではVp=2.5kVO時、8102 テは
Vp=1kV の時に測定精度σが最小になる。第1図
の最小値抽出回路22は第4図の特性32と第5図の特
性34の様にパタン材質によって異なる二次電子雑音量
の加速電圧依存特性から測定精度が良好となる加速電圧
を抽出するものであム通常の演算回路で構成できる。
Now, the M3 diagram shows the dependence of the measurement accuracy σ on the amount of secondary electron noise n when the pattern width is measured using the line profile method mentioned above, and the measurement accuracy is the standard deviation value σ of the pattern width measurement value obtained by repeatedly measuring the measurement accuracy. Show characteristics. Actual measurement examples of the photoresist AZ pattern on S1 of characteristic 30 and the bare S1 pattern of characteristic 31 demonstrate that the measurement accuracy σ increases approximately in proportion to the 315th power of the amount of secondary electron noise n. That is, when the pattern material is No, the measurement accuracy σ becomes minimum when Vp=2.5 kV, and when the pattern material is No. 8102, the measurement accuracy σ becomes minimum when Vp=1 kV. The minimum value extraction circuit 22 in FIG. 1 selects an accelerating voltage that provides good measurement accuracy from the accelerating voltage dependence characteristics of the amount of secondary electron noise that differ depending on the pattern material, as shown in the characteristic 32 in FIG. 4 and the characteristic 34 in FIG. 5. The extraction circuit can be constructed using a normal arithmetic circuit.

次に第2図と第4図およびrJs図とを用いて、全収率
の加速電圧依存特性による荷電ビーム測長法の他の実施
例を説明する。この場合は、ψ)式から分かる様に二次
電子雑音量の二乗平均値n2がパタン材質固有の全収率
ρ(Vp)に比例することに着目してなされたものであ
る。即ち、全収率ρ(Vp)の加速電圧依存特性から、
全収率a(Vp)の最小値に対応する加速電圧を抽出す
れば前記した理由により、測定精度σを最小にできる全
収率#(VP)は試料Tの吸収電流をl5(Vp)とす
れば次式で与えられる。
Next, another embodiment of the charged beam length measurement method based on the accelerating voltage dependence characteristic of the total yield will be described using FIGS. 2, 4, and the rJs diagram. This case was made by focusing on the fact that the root mean square value n2 of the amount of secondary electron noise is proportional to the total yield ρ(Vp) specific to the pattern material, as can be seen from the equation ψ). That is, from the accelerating voltage dependence characteristic of the total yield ρ(Vp),
If the accelerating voltage corresponding to the minimum value of the total yield a(Vp) is extracted, for the reason mentioned above, the total yield #(VP) that can minimize the measurement accuracy σ can be calculated using the absorption current of the sample T as 15(Vp). Then, it is given by the following formula.

p(Vp) = 1+Il (vp)/ 1Ipl  
    (3)ここで、吸収電流l5(Vp)の符号は
吸収電流l5(Vp)が第2図の試料Tからアースに流
れるとき正とする。従って、吸収電流をl5(Vp)を
第2図の電流計25で測定し、これに対応する全収率p
(Vp)とその最小値を最小値抽出回路22で算出すれ
ば良い。第4図の特性33および第5図のqIf性35
はこの様にして測定し九全収率の加速電圧依存特性の実
測例である。両図から、Moと5102共に全収率の加
速電圧依存特性は二次電子雑音量の二乗平均値の加速電
圧依存特性と良く一致しており、従って、二次電子雑音
量を最小にする加速電圧は全収率を最小にする加速電圧
と同一になることが確認できる。
p(Vp) = 1+Il(vp)/1Ipl
(3) Here, the sign of the absorption current l5(Vp) is assumed to be positive when the absorption current l5(Vp) flows from the sample T in FIG. 2 to the ground. Therefore, the absorption current l5 (Vp) is measured with the ammeter 25 in FIG. 2, and the corresponding total yield p
(Vp) and its minimum value may be calculated by the minimum value extraction circuit 22. Characteristic 33 in Figure 4 and qIf property 35 in Figure 5
This is an example of the acceleration voltage dependence of the total yield measured in this manner. From both figures, the acceleration voltage dependence characteristics of the total yield of both Mo and 5102 are in good agreement with the acceleration voltage dependence characteristics of the root mean square value of the amount of secondary electron noise, and therefore, the acceleration that minimizes the amount of secondary electron noise is It can be confirmed that the voltage is the same as the accelerating voltage that minimizes the overall yield.

第6図は線幅1μmono配線パタンの測長を加速電圧
をVp=l〜2(kV)の範囲で行った時の測定精度の
加速電圧依存特性の実測例を示したものである。同図に
おいて、特性36は二次電子波形の加算平均化回数M=
4、特性3TはM=16、特性37はM=64の条件で
の依存特性である。
FIG. 6 shows an actual measurement example of the accelerating voltage dependence characteristic of the measurement accuracy when measuring the length of a mono wiring pattern with a line width of 1 μm at an accelerating voltage in the range of Vp=1 to 2 (kV). In the same figure, the characteristic 36 is the number of times of averaging of the secondary electron waveform M=
4. Characteristic 3T is a dependent characteristic under the condition of M=16, and characteristic 37 is a dependent characteristic under the condition of M=64.

同図から、何れの場合も第4図の特性32の二次電子雑
音量の二乗平均値の加速電圧依存特性或いは特性33の
全収率の加速電圧依存特性に対応して測定精度は加速電
圧と共に単調減少することが確認できる。加速電圧を変
化させたときの二次電1  子線音量の変化量はパタン
材質がMoの場合は第4図で抽出でき、この変化量に対
応する測定精度の変化量は第3図の315乗則で予測で
きる。第6図に示す加速電圧を変化させたときの測定精
度の変化量は、このような手順で得た予測値と比較的良
く一致する。即ち、第6図は本発明が有効であることを
実証している。
From the figure, it can be seen that in any case, the measurement accuracy depends on the accelerating voltage, corresponding to the accelerating voltage dependence characteristic of the root mean square value of the amount of secondary electron noise in characteristic 32 in Fig. 4, or the accelerating voltage dependence characteristic of the total yield in characteristic 33. It can be confirmed that there is a monotonous decrease with The amount of change in the volume of the secondary electron beam when the accelerating voltage is changed can be extracted from Figure 4 when the pattern material is Mo, and the amount of change in measurement accuracy corresponding to this amount of change can be extracted from 315 in Figure 3. It can be predicted by the power law. The amount of change in measurement accuracy when changing the accelerating voltage shown in FIG. 6 corresponds relatively well with the predicted value obtained by such a procedure. That is, FIG. 6 proves that the present invention is effective.

なお、前述した実施例では、主として電子ビームを用い
た測長装置について説明り、九が、イオンビーム等その
他の荷電ビームについても同様な手段と方法で実施でき
ることは言うまでもない。
In the above-mentioned embodiments, a length measuring device using an electron beam is mainly explained, and it goes without saying that the same method and method can be used for other charged beams such as an ion beam.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、高精度なパタン幅
測定が再現性良くできるので、L81デバイスの製造に
おける歩留りの向上に寄与できるという極めて優れた効
果が得られる。
As explained above, according to the present invention, highly accurate pattern width measurement can be performed with good reproducibility, so an extremely excellent effect can be obtained that can contribute to improving the yield in manufacturing L81 devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による荷電ビーム測長装置の一実施例を
示す構成図、第2図は本発明による荷電ビーム測長装置
の他の実施例を示す構成図、第3図は測長の測定精度の
二次電子雑音量依存特性を示す図、第4図はパタン材質
がMoの場合の二次電子雑音量の二乗平均値と全収率の
加速電圧依存特性を示す図、第5図はパタン材質が5t
o2の場合の二次電子雑音量の二乗平均値と全収率の加
速電圧依存特性を示す図、第6図はパタン材質がM。 の場合の測定精度の加速電圧依存特性を示す図、第7図
は5E3Aを用いた測長装置の一般的構成を示す図であ
る。 1・・・・[子M、2−・・・コンデンサレンズ、31
1・・・対物レンズ、4・・・・アパーチャ、5II・
・・偏向器、6・・・・ステージ、T・−・・試料、8
・・・・電子ビーム、9・・・・二次電子、1G−・・
豐二次電子検出器、11・am・直流電圧源、12.1
3−・φ・直流電流源、14・・・・走査回路、15・
・・・ステージの制御回路、1B−−・・コンソール、
17・・・・パタン幅算出回路、18・・・・表示器、
19・・・・制御装置、21・・・拳計算機、22・・
・・最小値抽出回路、23・・・・雑音計、24・・串
・コンデンサ、25・・・・電流計、30.31・・0
・測定精度の加速電圧依存特性、32.34・・・・二
次電子雑音量の二乗平均値の加速電圧依存特性、33,
35・・・−全収率の加速電圧依存特性、36〜3B−
・・・測定精度の加速電圧依存特性。 特許出願人  日本電信電話株式会社
FIG. 1 is a block diagram showing one embodiment of the charged beam length measuring device according to the present invention, FIG. 2 is a block diagram showing another embodiment of the charged beam length measuring device according to the present invention, and FIG. 3 is a block diagram showing one embodiment of the charged beam length measuring device according to the present invention. Figure 4 is a diagram showing the dependence of measurement accuracy on the amount of secondary electron noise. Figure 4 is a diagram showing the dependency of the accelerating voltage on the root mean square value of the amount of secondary electron noise and the total yield when the pattern material is Mo. The pattern material is 5t.
Figure 6 shows the root mean square value of the secondary electron noise amount and the accelerating voltage dependence characteristics of the total yield in the case of o2, and the pattern material is M. FIG. 7 is a diagram showing the acceleration voltage dependence characteristic of measurement accuracy in the case of 5E3A. 1... [child M, 2-... condenser lens, 31
1...Objective lens, 4...Aperture, 5II.
...Deflector, 6...Stage, T...Sample, 8
...Electron beam, 9...Secondary electron, 1G-...
Toyo secondary electron detector, 11 am DC voltage source, 12.1
3-・φ・DC current source, 14・・・Scanning circuit, 15・
...Stage control circuit, 1B--Console,
17...Pattern width calculation circuit, 18...Display device,
19...control device, 21...fist calculator, 22...
・・Minimum value extraction circuit, 23・・・Noise meter, 24・・Skewer/capacitor, 25・・・Ammeter, 30.31・・0
・Accelerating voltage dependence characteristic of measurement accuracy, 32.34... Accelerating voltage dependence characteristic of root mean square value of secondary electron noise amount, 33,
35...-acceleration voltage dependence characteristics of total yield, 36-3B-
...Acceleration voltage dependence characteristics of measurement accuracy. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (3)

【特許請求の範囲】[Claims] (1)表面にパタンを有する試料表面に荷電ビームを走
査して得られる二次電子雑音量もしくは全収率の加速電
圧依存特性と、パタン幅の測定精度の二次電子雑音量も
しくは全収率への依存特性とから指定した測定精度とな
る加速電圧を選定し、該加速電圧により前記試料表面を
走査することによつて得られる二次電子波形で前記試料
表面のパタン幅を測定することを特徴とした荷電ビーム
測長法。
(1) Accelerating voltage dependence of the amount of secondary electron noise or total yield obtained by scanning a charged beam on the surface of a sample with a pattern, and the amount of secondary electron noise or total yield of the pattern width measurement accuracy Select an accelerating voltage that provides a specified measurement accuracy based on the dependence characteristics on the sample, and measure the pattern width on the sample surface using a secondary electron waveform obtained by scanning the sample surface with the accelerating voltage. Characterized charged beam length measurement method.
(2)表面にパタンを有する試料表面に荷電ビームを加
速、収束および偏向する手段と、前記荷電ビームのビー
ム電流を一定にして加速電圧を変化させる手段と、前記
試料表面から放出される二次電子を収集する手段と、前
記二次電子の波形で試料表面のパタン幅を算出する手段
と、前記二次電子雑音量を測定する手段と、一定範囲で
変化する一変数の関数の最小値を算出する手段とを備え
たことを特徴とする荷電ビーム装置。
(2) means for accelerating, converging, and deflecting a charged beam on a sample surface having a pattern on the surface; means for changing an accelerating voltage while keeping the beam current of the charged beam constant; and a secondary beam emitted from the sample surface; means for collecting electrons; means for calculating the pattern width on the sample surface from the waveform of the secondary electrons; means for measuring the amount of secondary electron noise; A charged beam device comprising: means for calculating.
(3)表面にパタンを有する試料表面に荷電ビームを加
速、収束および偏向する手段と、前記荷電ビームのビー
ム電流を一定にして加速電圧を変化させる手段と、前記
試料表面から放出される二次電子を収集する手段と、前
記二次電子の波形で試料表面のパタン幅を算出する手段
と、前記試料へ流れる吸収電流を測定する手段と、一定
範囲で変化する一変数の関数の最小値を算出する手段と
を備えたことを特徴とする荷電ビーム装置。
(3) means for accelerating, converging, and deflecting a charged beam on a sample surface having a pattern on the surface; means for changing the accelerating voltage while keeping the beam current of the charged beam constant; and secondary energy emitted from the sample surface; means for collecting electrons; means for calculating the pattern width on the surface of the sample from the waveform of the secondary electrons; means for measuring the absorbed current flowing into the sample; A charged beam device comprising: means for calculating.
JP62259561A 1987-10-16 1987-10-16 Measuring method of length by charged beam and apparatus therefor Pending JPH01102304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62259561A JPH01102304A (en) 1987-10-16 1987-10-16 Measuring method of length by charged beam and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62259561A JPH01102304A (en) 1987-10-16 1987-10-16 Measuring method of length by charged beam and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH01102304A true JPH01102304A (en) 1989-04-20

Family

ID=17335834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62259561A Pending JPH01102304A (en) 1987-10-16 1987-10-16 Measuring method of length by charged beam and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH01102304A (en)

Similar Documents

Publication Publication Date Title
JP3534582B2 (en) Pattern defect inspection method and inspection device
JP5286004B2 (en) Substrate inspection apparatus and substrate inspection method
KR100382026B1 (en) Scanning Electron Microscope
CN100592028C (en) Method and apparatus of measuring thin film sample and method and apparatus of fabricating thin film sample
US20060054817A1 (en) Dual detector optics for simultaneous collection of secondary and backscattered electrons
WO2002068944A1 (en) Method and apparatus for measuring physical properties of micro region
US10943762B2 (en) Inspection system, image processing device and inspection method
JPS5932145A (en) Potential detector
JP2002243428A (en) Method and device for pattern inspection
US7209596B2 (en) Method of precision calibration of a microscope and the like
JPH01102304A (en) Measuring method of length by charged beam and apparatus therefor
US6807314B1 (en) Method of precision calibration of a microscope and the like
JPS63308510A (en) Measuring method for length by charged particle beam and measuring apparatus therefor
JPS6168847A (en) Method and device for automatically positioning particle sonde
US20230094023A1 (en) Charged particle beam image processing device and charged particle beam apparatus including the same
JPS61124810A (en) Pattern shape inspecting apparatus
JPS62144052A (en) 2-d distribution measuring apparatus for film thickness and component element of surface-treated layer of surface treated metal plate and measurement thereby
JP2978971B2 (en) Charged particle beam apparatus and charged particle beam positioning method
SU884005A1 (en) Method of measuring diameter of electronic probe in raster electron microscope
TW202403816A (en) Charged particle beam apparatus
JPS62191Y2 (en)
JPS63237525A (en) Exposure to charged particle beam
JPS6199809A (en) Size measuring instrument
JPS63298950A (en) Surface analyzing method and device therefor
JPH0417250A (en) Electron beam device