JPH01102262A - Heat accumulation type heat exchanger - Google Patents
Heat accumulation type heat exchangerInfo
- Publication number
- JPH01102262A JPH01102262A JP26002587A JP26002587A JPH01102262A JP H01102262 A JPH01102262 A JP H01102262A JP 26002587 A JP26002587 A JP 26002587A JP 26002587 A JP26002587 A JP 26002587A JP H01102262 A JPH01102262 A JP H01102262A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- heat storage
- air
- refrigerant
- refrigerant piping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009825 accumulation Methods 0.000 title 1
- 239000003507 refrigerant Substances 0.000 claims abstract description 49
- 238000005338 heat storage Methods 0.000 claims abstract description 44
- 239000011232 storage material Substances 0.000 claims description 25
- 230000006835 compression Effects 0.000 claims description 5
- 238000007906 compression Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 15
- 229910001868 water Inorganic materials 0.000 abstract description 15
- 230000005494 condensation Effects 0.000 abstract description 2
- 238000009833 condensation Methods 0.000 abstract description 2
- 230000005654 stationary process Effects 0.000 abstract 2
- 230000017525 heat dissipation Effects 0.000 abstract 1
- 238000001816 cooling Methods 0.000 description 8
- 230000001172 regenerating effect Effects 0.000 description 6
- 239000002775 capsule Substances 0.000 description 4
- 230000005855 radiation Effects 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 239000010775 animal oil Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 239000005662 Paraffin oil Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D16/00—Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D3/00—Devices using other cold materials; Devices using cold-storage bodies
- F25D3/005—Devices using other cold materials; Devices using cold-storage bodies combined with heat exchangers
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Description
【発明の詳細な説明】
[技術分野]
本発明は住宅等の空気調和装置に関するものであって、
詳しくは室内の冷暖房及び除湿に利用される蒸気圧縮し
一トポンプの熱交換器に関するものである。[Detailed Description of the Invention] [Technical Field] The present invention relates to an air conditioner for houses, etc.
More specifically, the present invention relates to a vapor compression pump heat exchanger used for indoor heating, cooling, and dehumidification.
[背景技術]
従来の空気調和装置の蓄熱型熱交換器としては第7図に
示すように、内管である冷媒配管2′の外側に外管6′
を設けて二重管としてあり、二重管の外側に二重管と略
垂直となるように薄板状のプレートフィン1′を複数枚
配設しである。このとき冷媒配管2′と外管6′との間
には蓄熱材4′を封入してあり、蓄熱材4′ としては
例えば水、塩化カルシウム、硫酸ナトリウム、パラフィ
ン、動植物油等を封入しである。そして上記冷媒配管2
′を曲成して蛇行形状に形成して第6図に示すようにフ
ィンチューブ熱交換器3″を構成しである。第11図は
フィンチューブ熱交換器3′を蒸気圧縮し一トポンプの
蒸発器として使用した場合のシステム図であり、フィン
チューブ熱交換器3′にはそれぞれファン5′を並設し
である。従来の蓄熱型熱交換器の動作原理を以下説明す
る。上述のように蒸発器が蓄熱型のフィンチューブ熱交
換器3′であり、冷房時に蓄熱材4′からの蓄熱をファ
ン5′により空気に(この場合には蓄熱材4′として水
を使用し、0℃の氷として冷熱を蓄熱する)付加して能
力アップを計るものである。[Background Art] As shown in FIG. 7, a conventional regenerative heat exchanger for an air conditioner has an outer pipe 6' on the outside of a refrigerant pipe 2', which is an inner pipe.
A double pipe is provided, and a plurality of thin plate fins 1' are arranged on the outside of the double pipe so as to be substantially perpendicular to the double pipe. At this time, a heat storage material 4' is sealed between the refrigerant pipe 2' and the outer pipe 6', and as the heat storage material 4', for example, water, calcium chloride, sodium sulfate, paraffin, animal or vegetable oil, etc. can be sealed. be. And the refrigerant pipe 2
' is bent to form a meandering shape to constitute a fin-tube heat exchanger 3'' as shown in Fig. 6. Fig. 11 shows that the fin-tube heat exchanger 3' is vapor-compressed and a single pump is used. This is a system diagram when used as an evaporator, and a fan 5' is installed in parallel with each fin tube heat exchanger 3'.The operating principle of a conventional regenerative heat exchanger will be explained below.As mentioned above. The evaporator is a heat storage type fin-tube heat exchanger 3', and during cooling, the heat storage from the heat storage material 4' is transferred to the air by the fan 5' (in this case, water is used as the heat storage material 4', and the temperature is 0°C). It is intended to increase capacity by adding cold heat (storing cold heat as ice).
蓄熱過程(水から氷にする過程)としては第11図、第
8図に示すようにファン5′を停止することにより、空
気への放熱が極めて少なくなると共に冷媒配管2′内の
冷媒(−5〜−10℃)が蓄熱材4′より熱を奪い、水
は氷となり、潜熱(水が氷に相変化するために必要な熱
量で水1kgに対して80 Kcal)が蓄熱材4′に
蓄えられる。During the heat storage process (process of turning water into ice), by stopping the fan 5' as shown in Figs. 11 and 8, heat radiation to the air is extremely reduced, and the refrigerant (- 5 to -10℃) removes heat from the heat storage material 4', water becomes ice, and latent heat (the amount of heat required for the phase change of water to ice, 80 Kcal for 1 kg of water) is transferred to the heat storage material 4'. Can be stored.
放冷過程としては第11図、第9図に示すように蓄熱過
程を経て水が氷になった後、ファン5′を運転させると
空気が外管6′、フィン5′の表面を通過するために氷
が外管6′を通して空気より熱を奪い、空気は低温とな
って、冷風として室内等の冷房として利用される。その
後、氷は熱を与えられてやがて水に変化する。In the cooling process, as shown in Figures 11 and 9, after the water undergoes a heat storage process and becomes ice, when the fan 5' is operated, air passes through the surfaces of the outer tube 6' and fins 5'. Therefore, the ice absorbs heat from the air through the outer tube 6', and the air becomes low temperature, which is used as cold air to cool indoor rooms. The ice is then heated and eventually turns into water.
定常過程としては第11図、第10図に示すように放冷
過程が終わると次の蓄熱過程に移るまではファン5′を
運転したままの定常過程となる。As shown in FIGS. 11 and 10, the steady process is a steady process in which the fan 5' continues to operate after the cooling process ends and until the next heat storage process begins.
この過程は冷媒が水を介して空気より熱を奪って冷風を
作る。In this process, the refrigerant removes heat from the air through water, creating cold air.
しかしながら上述のような従来例にあっては、定常過程
の時に冷媒配管2′と空気との間に蓄熱材4′である水
を介しているので、冷媒配管2′により空気を低温にす
るには冷媒配管2′と空気との間にある蓄熱材4′を介
して熱交換をおこなわなくてはならず、このことがら熱
抵抗が大きく、熱交換効率が悪いという欠点があった。However, in the conventional example described above, water, which is the heat storage material 4', is interposed between the refrigerant pipe 2' and the air during a steady process, so it is difficult to lower the temperature of the air by the refrigerant pipe 2'. In this case, heat must be exchanged via a heat storage material 4' between the refrigerant pipe 2' and the air, which has the drawback of high thermal resistance and poor heat exchange efficiency.
[発明の目的]
本発明は叙述の点に鑑みてなされたものであって、本発
明の目的とするところは蓄熱をしない定常過程の運転時
であっても熱交換効率のよい蓄熱型熱交換器を提供する
にある。[Object of the Invention] The present invention has been made in view of the above points, and the object of the present invention is to provide a regenerative heat exchanger that has high heat exchange efficiency even during steady process operation that does not store heat. It is to provide the equipment.
[発明の開示]
本発明蓄熱型熱交換器は蒸気圧縮サイクルを利用した空
気調和装置において、蒸気側あるいは凝縮側のプレート
フィン1と冷媒配管2とからなるフィンチューブ熱交換
器3の冷媒配管2内にカプセル状の蓄熱材4を封入した
ものであって、上述のように構成することにより従来例
の欠点を解決したものである。つまり上記のように冷媒
配管2内にカプセル状の蓄熱材4を封入したことにより
、冷媒配管2内の冷媒から空気への熱交換に際して冷媒
配管2は二重管ではなく一重であるため直接空気に対し
て熱交換を行うことができ、熱交換効率がよい。また冷
媒配管2を二重とせずに一重とするのでフィンチューブ
熱交換器3自体が大きいものとならずコンパクトにする
ことができる。[Disclosure of the Invention] The regenerative heat exchanger of the present invention is an air conditioner using a vapor compression cycle. A capsule-shaped heat storage material 4 is enclosed within the heat storage device, and the drawbacks of the conventional example are solved by configuring it as described above. In other words, by enclosing the capsule-shaped heat storage material 4 in the refrigerant pipe 2 as described above, when heat is exchanged from the refrigerant in the refrigerant pipe 2 to the air, the refrigerant pipe 2 is not a double pipe but a single pipe, so that air can be directly The heat exchange efficiency is high. Furthermore, since the refrigerant pipe 2 is made single instead of double, the fin tube heat exchanger 3 itself does not have to be large and can be made compact.
以下本発明を実施例により詳述する。The present invention will be explained in detail below with reference to Examples.
第2図はフィンチューブ熱交換器3の要部を示し、2は
冷媒配管であり、冷媒配管2の内部には複数個のカプセ
ル状の蓄熱材4を設けである。冷媒配管2の外側には冷
媒配管2の長手方向に対して略垂直となるように薄板状
のプレートフィン1を複数枚配設してあり、上記冷媒配
管2を曲成し蛇行形状に形成してフィンチューブ熱交換
器3としである。このときカプセル状の蓄熱材4は外皮
となるカプセル4aとカプセル4aの内部に封入された
蓄熱材料4bとにより主体が構成してあり、内部の蓄熱
材料4bとしては例えば水、塩化カルシウム、硫酸ナト
リウム、パラフィン、動植物油等が上げられる。またカ
プセル4aとしては金属、プラスチック、セラミック等
が考えられ、カプセル4aの形状としては球状、棒状等
でもよく、その形状は種々設計変更可能である。蒸気圧
縮ヒートポンプの蒸発器に上記フィンチューブ熱交換器
3を使用した場合について以下説明する。(このとき蓄
熱材料4bとしては水を使用している。)図中8は圧縮
器を示し、11は膨張弁を示す。FIG. 2 shows the main parts of the fin-tube heat exchanger 3, in which 2 is a refrigerant pipe, and inside the refrigerant pipe 2, a plurality of capsule-shaped heat storage materials 4 are provided. A plurality of thin plate fins 1 are arranged on the outside of the refrigerant pipe 2 so as to be substantially perpendicular to the longitudinal direction of the refrigerant pipe 2, and the refrigerant pipe 2 is formed into a curved meandering shape. This is a fin tube heat exchanger 3. At this time, the capsule-shaped heat storage material 4 is mainly composed of a capsule 4a serving as an outer shell and a heat storage material 4b sealed inside the capsule 4a, and the internal heat storage material 4b may include water, calcium chloride, sodium sulfate, etc. , paraffin, animal and vegetable oils, etc. Further, the capsule 4a may be made of metal, plastic, ceramic, etc., and the shape of the capsule 4a may be spherical, rod-like, etc., and its shape can be changed in various designs. A case where the fin tube heat exchanger 3 is used in an evaporator of a vapor compression heat pump will be described below. (At this time, water is used as the heat storage material 4b.) In the figure, 8 indicates a compressor, and 11 indicates an expansion valve.
蓄熱過程としては第11図、第3図に示すようにフィン
チューブ熱交換器3に並設した7アン5を停止して空気
への放熱を極めて少なくすることにより、冷媒配管2内
の冷媒がカプセル状の蓄熱材4より熱を奪い、蓄熱材4
は水から氷となって蓄熱材4に潜熱が蓄えられる。In the heat storage process, as shown in Figs. 11 and 3, the 7-rings 5 installed in parallel to the fin-tube heat exchanger 3 are stopped to extremely reduce heat radiation to the air, so that the refrigerant in the refrigerant pipe 2 is The heat storage material 4 absorbs heat from the capsule-shaped heat storage material 4.
water turns into ice, and latent heat is stored in the heat storage material 4.
放冷過程としては蓄熱過程を経てカプセル状の蓄熱材4
が氷に変化した後、7アン5を運転させることにより空
気が冷媒配管2、フィン5の表面を通過するために冷媒
及び氷が空気より熱を奪い、空気は低温となって、冷風
として冷房に利用される。氷となった蓄熱材4は熱を与
えられて、やがて水に変化する。During the cooling process, the capsule-shaped heat storage material 4 undergoes a heat storage process.
After the ice changes to ice, the air passes through the surfaces of the refrigerant piping 2 and fins 5 by operating the 7-an 5, so the refrigerant and ice absorb heat from the air, and the air becomes low temperature and cools the air conditioner as cold air. used for. The heat storage material 4 that has become ice is given heat and eventually changes to water.
定常過程としては放冷過程が終わると次の蓄熱過程に移
るまでは7アン5を運転したままの定常過程となる。こ
の過程は冷媒(−5〜−10’C)が空気より熱を奪っ
て冷風を作るが、その際蓄熱材4は冷媒配管2の内部に
あるため冷媒配管2と空気との間には熱交換をさえぎる
ものはなにもなく、このことから熱抵抗が非常に小さく
、冷媒配管2がら空気に対して直接熱交換を行うことが
でき熱交換効率がよくなる。As for the steady process, after the cooling process is finished, the 7-an 5 remains in operation until the next heat storage process is started. In this process, the refrigerant (-5 to -10'C) absorbs heat from the air to create cold air, but at this time, since the heat storage material 4 is inside the refrigerant pipe 2, there is no heat between the refrigerant pipe 2 and the air. There is nothing that obstructs the exchange, so the thermal resistance is very small, and heat exchange can be performed directly from the refrigerant pipe 2 to the air, improving heat exchange efficiency.
上述した実施例では蒸気圧縮ヒートポンプの蒸発器に本
発明を用いて室内の冷房を行う場合を示したが、凝縮器
に本発明を用いることにより室内を暖房する場合であっ
ても上述した実施例と同様の効果が得られるものである
。In the above-mentioned embodiments, the present invention is used in the evaporator of a vapor compression heat pump to cool the room, but even in the case where the present invention is used in the condenser to heat the room, the above-mentioned embodiments also apply. The same effect can be obtained.
[発明の効果1
本発明は叙述のように蒸気側あるいは凝縮側のプレート
フィンと冷媒配管とからなるフィンチューブ熱交換器の
冷媒配管内にカプセル状の蓄熱材を封入したので、従来
のように冷媒配管に外管を設けて冷媒配管を二重にして
冷媒配管と外管との間に蓄熱材を封入するということが
なく、このことから冷媒配管内の冷媒から空気への熱交
換に際して冷媒配管は二重管ではなく一重であるため空
気に対して冷媒配管から直接熱交換を行うことができ、
熱交換時にロスがなく熱交換効率がよい。[Effect of the Invention 1] As described above, the present invention encapsulates a capsule-shaped heat storage material in the refrigerant pipe of a fin-tube heat exchanger consisting of plate fins on the steam side or condensation side and refrigerant pipes, so that There is no need to install an outer pipe in the refrigerant pipe to double the refrigerant pipe and seal a heat storage material between the refrigerant pipe and the outer pipe. Since the piping is single rather than double pipe, heat exchange can be performed directly from the refrigerant piping to the air.
There is no loss during heat exchange and the heat exchange efficiency is high.
また冷媒配管を二重とせずに一重とすることができるの
で蓄熱型熱交換器自体が大きいものとならずコンパクト
にすることができる。Furthermore, since the refrigerant piping can be made single instead of double, the regenerative heat exchanger itself does not have to be large and can be made compact.
第1図は本発明の一実施例の断面図、第2図は同上の要
部の断面図、第3図は同上の蓄熱過程を示す冷媒配管の
断面図、第4図は同上の放冷過程を示す冷媒配管の断面
図、第5図は同上の定常過程を示す冷媒配管の断面図、
第6図は従来例の蓄熱型熱交換器の断面図、第7図は同
上の部分断面図、$8図は同上の蓄熱過程を示す冷媒配
管の断面図、第9図は同上の放冷過程を示す冷媒配管の
断面図、第10図は同上の定常過程を示す冷媒配管の断
面図、第11図はフィンチューブ熱交換器を蒸発し一ト
ポンプの蒸発器に使用した場合のシステム図であって、
1はプレートフィン、2は冷媒配管、3はフィンチュー
ブ熱交換器、4は蓄熱材である。
代理人 弁理士 石 1)艮 七
uJ Lf)
手続補正書(自発)
1.事件の表示
昭和62年特許願wfJ26002S号2、発明の名称
蓄熱型熱交換器
3、補正をする者
事件との関係 特許出願人
住 所 大阪府門真市大字門真1048番地名称(58
3)松下電工株式会社
代表者 藤 井 貞 夫
4、代理人
郵便番号 530
5、補正命令の日付
自 発
1)、明細書第6頁第14行目のしフィン5」を削除し
て「プレートフィン1」を挿入致します。Fig. 1 is a cross-sectional view of an embodiment of the present invention, Fig. 2 is a cross-sectional view of the main parts of the above, Fig. 3 is a cross-sectional view of the refrigerant piping showing the heat storage process of the above, and Fig. 4 is the cooling radiation of the same as the above. A sectional view of the refrigerant piping showing the process, FIG. 5 is a sectional view of the refrigerant piping showing the steady process of the same as above,
Figure 6 is a sectional view of a conventional heat storage type heat exchanger, Figure 7 is a partial sectional view of the same as above, Figure 8 is a sectional view of refrigerant piping showing the heat storage process of the above, and Figure 9 is the cooling of the same as above. Figure 10 is a cross-sectional view of refrigerant piping showing the same steady process as above, and Figure 11 is a system diagram when a fin-tube heat exchanger is evaporated and used as an evaporator for a single pump. There it is,
1 is a plate fin, 2 is a refrigerant pipe, 3 is a fin tube heat exchanger, and 4 is a heat storage material. Agent Patent attorney Ishi 1) Ai ShichiuJ Lf) Procedural amendment (voluntary) 1. Display of the case 1986 patent application wfJ26002S No. 2, name of the invention Regenerative heat exchanger 3, person making the amendment Relationship to the case Patent applicant address 1048 Kadoma, Kadoma City, Osaka Prefecture Name (58
3) Matsushita Electric Works Co., Ltd. Representative: Sadao Fujii 4, agent postal code: 530 5, date of amendment order: 1) Deleting "Fin 5" on page 6, line 14 of the specification, and adding "Plate Insert fin 1.
Claims (1)
て、蒸気側あるいは凝縮側のプレートフィンと冷媒配管
とからなるフィンチューブ熱交換器の冷媒配管内にカプ
セル状の蓄熱材を封入したことを特徴とする蓄熱型熱交
換器。[1] An air conditioner using a vapor compression cycle, characterized in that a capsule-shaped heat storage material is sealed in the refrigerant piping of a fin-tube heat exchanger consisting of plate fins and refrigerant piping on the vapor side or condensing side. A storage type heat exchanger.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26002587A JPH01102262A (en) | 1987-10-15 | 1987-10-15 | Heat accumulation type heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26002587A JPH01102262A (en) | 1987-10-15 | 1987-10-15 | Heat accumulation type heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01102262A true JPH01102262A (en) | 1989-04-19 |
Family
ID=17342259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26002587A Pending JPH01102262A (en) | 1987-10-15 | 1987-10-15 | Heat accumulation type heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01102262A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6928833B2 (en) * | 2001-10-22 | 2005-08-16 | Showa Denko K.K. | Finned tube for heat exchangers, heat exchanger, process for producing heat exchanger finned tube, and process for fabricating heat exchanger |
-
1987
- 1987-10-15 JP JP26002587A patent/JPH01102262A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6928833B2 (en) * | 2001-10-22 | 2005-08-16 | Showa Denko K.K. | Finned tube for heat exchangers, heat exchanger, process for producing heat exchanger finned tube, and process for fabricating heat exchanger |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20100035740A (en) | A indoor air conditioner using induction working coil | |
JPH01102262A (en) | Heat accumulation type heat exchanger | |
JP2007078275A (en) | Heat exchanger for stirling refrigerating machine | |
GB1366652A (en) | Thermal prime mover | |
JPH0451740B2 (en) | ||
KR100866065B1 (en) | Local radiation cooling apparatus equipped with an insulation panel | |
JPH1163728A (en) | Structure of cooling heat pump | |
JPH0684850B2 (en) | Air conditioner | |
JPH0115783B2 (en) | ||
JPS581345B2 (en) | Air conditioning/heating/hot water equipment | |
JPS6241171Y2 (en) | ||
JPS62182538A (en) | Latent heat accumulating type heat retrieval heat pump air conditioner | |
JPS63318495A (en) | Regenerative heat exchanger | |
JPH09273877A (en) | Heat pipe type air cooler | |
JPH0225113B2 (en) | ||
JPS59231342A (en) | Air conditioner | |
JP2731083B2 (en) | Heat storage device | |
JPS63123995A (en) | Heat storage type heat exchanger | |
JPS63209526A (en) | Cooling and heating apparatus for culture of plant | |
JPH0424316Y2 (en) | ||
JPS59180291A (en) | Heat accumulating tank | |
JPS6021307B2 (en) | refrigerator | |
JPS602855A (en) | Heat pump device | |
JPS63243693A (en) | Heat accumulating type heat exchanger | |
JPH0578757B2 (en) |