JPH0424316Y2 - - Google Patents
Info
- Publication number
- JPH0424316Y2 JPH0424316Y2 JP1986166708U JP16670886U JPH0424316Y2 JP H0424316 Y2 JPH0424316 Y2 JP H0424316Y2 JP 1986166708 U JP1986166708 U JP 1986166708U JP 16670886 U JP16670886 U JP 16670886U JP H0424316 Y2 JPH0424316 Y2 JP H0424316Y2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- heat storage
- storage device
- exchange pipe
- heat exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005338 heat storage Methods 0.000 claims description 40
- 239000011232 storage material Substances 0.000 claims description 7
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 description 16
- 239000012188 paraffin wax Substances 0.000 description 12
- 239000003507 refrigerant Substances 0.000 description 7
- 230000005855 radiation Effects 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005057 refrigeration Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
【考案の詳細な説明】
〔考案の目的〕
(産業上の利用分野)
この考案は、たとえば空気調和機に用いる蓄熱
器に関する。[Detailed description of the invention] [Purpose of the invention] (Field of industrial application) This invention relates to a heat storage device used in, for example, an air conditioner.
(従来の技術)
空気調和機にあつては、ヒートポンプ式冷凍サ
イクルを備え、冷房および暖房運転を可能とする
ものがある。(Prior Art) Some air conditioners are equipped with a heat pump type refrigeration cycle and are capable of cooling and heating operations.
ただし、ヒートポンプ式冷凍サイクルによる暖
房運転は、起動に際しての暖房能力の立上がりが
遅いという欠点がある。 However, heating operation using a heat pump type refrigeration cycle has the disadvantage that the heating capacity is slow to rise at startup.
そこで、ヒートポンプ式冷凍サイクルに第4図
に示すような蓄熱器を設け、その蓄熱器に蓄えた
熱によつて起動に際しての暖房能力の不足分を補
うものがある。 Therefore, some heat pump type refrigeration cycles are equipped with a heat storage device as shown in FIG. 4, and the heat stored in the heat storage device makes up for the lack of heating capacity at the time of startup.
第4図において、1は蓄熱器で、熱交換パイプ
2の外周面に多数本の針状フイン3を放射状に突
設し、その熱交換パイプ2および針状フイン3の
周りに蓄熱材たとえばパラフイン4を充填してい
る。すなわち、熱交換パイプ2に流れる高温冷媒
の熱を針状フイン3を介してパラフイン4に伝
え、パラフイン4の融解によつて熱を蓄えるもの
である。また、パラフイン4の凝固により、蓄え
た熱を熱交換パイプ2を流れる冷媒に与えるもの
である。 In FIG. 4, reference numeral 1 denotes a heat storage device, in which a large number of needle-like fins 3 are provided radially protruding from the outer peripheral surface of a heat exchange pipe 2, and a heat storage material such as paraffin is placed around the heat exchange pipe 2 and the needle-like fins 3. 4 is filled. That is, the heat of the high-temperature refrigerant flowing through the heat exchange pipe 2 is transferred to the paraffin 4 via the needle-like fins 3, and the heat is stored by melting the paraffin 4. Further, the solidification of the paraffin 4 gives the stored heat to the refrigerant flowing through the heat exchange pipe 2.
この場合、フインとして針状のものを多数本採
用しているが、これはパラフイン4の相変化に伴
う体積変化をフインの一本々で吸収し、蓄熱器1
の外観の変形や損傷を防止するためである。すな
わち、板状のフインでは蓄熱材の体積変化を吸収
できず、大きな力をそのまま受けてフインは勿
論、外観の変形および損傷を招いてしまう。 In this case, a large number of needle-like fins are used as the fins, and each fin absorbs the volume change accompanying the phase change of the paraffin 4.
This is to prevent deformation or damage to the exterior. That is, the plate-shaped fins cannot absorb the volume change of the heat storage material, and are subjected to a large force, resulting in deformation and damage not only to the fins but also to their appearance.
しかしながら、針状フインの採用は次のような問
題を含んでいる。すなわち、蓄熱時、各針状フイ
ン3の先端がなす面およびフイン列の両端部がな
す面に沿つてパラフイン4が融解するが、その融
解に際しての熱移動の速度が上記各面において異
なるため、フイン列端部がなす面の外側に固相壁
が生じる。そして、固相壁とフイン列端部との間
でパラフイン4が膨張し、フイン列端部に対して
矢印方向の力が働く。こうして、蓄熱を繰返すう
ちにフイン列端部が第5図のようになぎ倒された
形となる。これは、フイン面積の減少であり、熱
交換性能の大幅な低下となる。However, the use of needle-like fins involves the following problems. That is, during heat storage, the paraffin 4 melts along the plane formed by the tip of each needle fin 3 and the plane formed by both ends of the row of fins, but the speed of heat transfer during the melting is different in each plane, A solid wall is formed on the outside of the plane formed by the ends of the fin rows. Then, the paraffin 4 expands between the solid phase wall and the end of the fin row, and a force in the direction of the arrow acts on the end of the fin row. In this way, as heat is accumulated repeatedly, the end portions of the fin rows take on a flattened shape as shown in FIG. This results in a decrease in the fin area and a significant decrease in heat exchange performance.
(考案が解決しようとする問題点)
この考案は上記のような事情に鑑みてなされた
もので、その目的とするところは、針状フインの
変形を未然に防止することができ、常に効率のよ
い熱交換を可能とする信頼性にすぐれた蓄熱器を
提供することにある。(Problems to be solved by the invention) This invention was made in view of the above-mentioned circumstances, and its purpose is to prevent deformation of the needle fins and to always maintain efficiency. The object of the present invention is to provide a highly reliable heat storage device that enables good heat exchange.
(問題点を解決するための手段)
外周面に多数本の針状フインが放射状に突設さ
れた熱交換パイプを備え、その熱交換パイプおよ
び針状フインの周りに蓄熱材を充填してなる蓄熱
器において、前記熱交換パイプの両側部に剛性お
よびパイプからの熱伝導性の高いフランジを設け
る。
(Means for solving the problem) A heat exchange pipe having a large number of needle fins protruding radially from the outer circumferential surface is provided, and a heat storage material is filled around the heat exchange pipe and the needle fins. In the heat storage device, flanges with high rigidity and high heat conductivity from the pipe are provided on both sides of the heat exchange pipe.
(作用)
フランジが盾となり、フイン列端部に力がかか
らない。(Function) The flange acts as a shield and no force is applied to the end of the fin row.
(実施例)
以下、この考案の一実施例について図面を参照
して説明する。(Example) An example of this invention will be described below with reference to the drawings.
まず、この考案に係わる空気調和機を第2図に
示す。 First, an air conditioner according to this invention is shown in FIG.
第2図において、11は圧縮機で、この圧縮機
11に四方弁12、室内熱交換器13、蓄熱器2
1の吸熱用熱交換パイプ22a、減圧装置たとえ
ば膨張弁14、室外熱交換器15が順次連通さ
れ、ヒートポンプ式冷凍サイクルが構成される。
すなわち、暖房運転時は四方弁12の切換作動に
より図示実線矢印の方向に冷媒を流して暖房サイ
クルを形成し、室内熱交換器13を凝縮器、室外
熱交換器15を蒸発器として作用させる。冷房運
転時は四方弁12の復帰により図示破線矢印の方
向に冷媒を流し、室外熱交換器15を凝縮器、室
内熱交換器13を蒸発器として作用させる。しか
して、吸熱用熱交換パイプ22aと膨張弁14に
対し、電磁開閉弁16、キヤピラリチユーブ1
7、蓄熱器21の放熱用熱交換パイプ22b、逆
止弁18の直列サイクルが並列に連通される。な
お、室内熱交換器13の近傍に室内フアン19、
室外熱交換器15の近傍に室外フアン20が配設
される。 In FIG. 2, 11 is a compressor, and this compressor 11 includes a four-way valve 12, an indoor heat exchanger 13, and a heat storage device 2.
The heat exchange pipe 22a for heat absorption, the pressure reducing device such as the expansion valve 14, and the outdoor heat exchanger 15 are sequentially connected to form a heat pump type refrigeration cycle.
That is, during heating operation, the four-way valve 12 is switched to cause the refrigerant to flow in the direction of the solid arrow in the figure to form a heating cycle, with the indoor heat exchanger 13 acting as a condenser and the outdoor heat exchanger 15 acting as an evaporator. During cooling operation, the four-way valve 12 is returned to flow the refrigerant in the direction of the dashed arrow in the figure, causing the outdoor heat exchanger 15 to act as a condenser and the indoor heat exchanger 13 to act as an evaporator. Therefore, the electromagnetic on-off valve 16, the capillary tube 1
7. The series cycle of the heat exchange pipe 22b for heat radiation of the heat storage device 21 and the check valve 18 are connected in parallel. In addition, an indoor fan 19 is installed near the indoor heat exchanger 13,
An outdoor fan 20 is disposed near the outdoor heat exchanger 15.
蓄熱器21は、吸熱用熱交換パイプ22a、放
熱用熱交換パイプ22b、および電気ヒータ26
を有し、その周りに蓄熱材たとえばパラフインを
充填したものである。しかして、電気ヒータ26
は温度スイツチ31および電磁開閉器44の接点
を直列に介して商用交流電源32に接続される。
温度スイツチ31は、蓄熱器21の蓄熱温度が所
定値以下になるとオンするものである。 The heat storage device 21 includes a heat exchange pipe 22a for heat absorption, a heat exchange pipe 22b for heat radiation, and an electric heater 26.
It has a heat storage material such as paraffin filled around it. However, the electric heater 26
is connected to the commercial AC power supply 32 through the contacts of the temperature switch 31 and the electromagnetic switch 44 in series.
The temperature switch 31 is turned on when the heat storage temperature of the heat storage device 21 falls below a predetermined value.
一方、40は空気調和機全般にわたる制御を行
なう制御部で、マイクロコンピユータおよびその
周辺回路からなる。しかして、制御部40に運転
操作部41、室内温度センサ42、室内熱交温度
センサ43、電磁開閉器44、電磁開閉弁16、
圧縮機11、四方弁12などが接続される。 On the other hand, 40 is a control section that performs overall control of the air conditioner, and is composed of a microcomputer and its peripheral circuits. Therefore, the control unit 40 includes an operation operation unit 41, an indoor temperature sensor 42, an indoor heat exchanger temperature sensor 43, an electromagnetic switch 44, an electromagnetic switch valve 16,
A compressor 11, a four-way valve 12, etc. are connected.
ここで、蓄熱器21における吸熱用熱交換パイ
プ22aおよびその周辺部の具体例を第1図に示
す。 Here, a specific example of the endothermic heat exchange pipe 22a in the heat storage device 21 and its surrounding area is shown in FIG.
第1図に示すように、吸熱用熱交換パイプ22
aの外周面に多数本の針状フイン23を放射状に
突設し、その熱交換パイプ22aの両側部つまり
フイン列端部と対応する位置にそれぞれフランジ
25,25を設ける。このフランジ25,25
は、剛性が高く、しかも針状フイン23と同じぐ
らいに良好な熱伝導性を有する部材で形成したも
ので、針状フイン23と同じ径にしてある。そし
て、熱交換パイプ22a、針状フイン23、およ
びフランジ25の周りに蓄熱材たとえばパラフイ
ン24を充填している。 As shown in FIG. 1, the heat exchange pipe 22 for heat absorption
A large number of needle-like fins 23 are provided radially protruding from the outer peripheral surface of the heat exchange pipe 22a, and flanges 25, 25 are provided on both sides of the heat exchange pipe 22a, that is, at positions corresponding to the ends of the fin rows, respectively. This flange 25, 25
is made of a material that is highly rigid and has as good thermal conductivity as the needle-like fins 23, and has the same diameter as the needle-like fins 23. A heat storage material such as paraffin 24 is filled around the heat exchange pipe 22a, the needle fins 23, and the flange 25.
つぎに、上記のような構成において第3図を参
照しながら作用を説明する。 Next, the operation of the above configuration will be explained with reference to FIG.
運転操作部41で暖房運転を設定するととも
に、所望の室内温度を設定し、かつ運転開始操作
を行なう。すると、制御部40は、四方弁12を
切換作動するとともに、開閉弁16を開放し、圧
縮機11、室内フアン19、室外フアン20をそ
れぞれ起動する。こうして、圧縮機11が起動す
ると、圧縮機11の吐出冷媒が四方弁12、室内
熱交換器13、開閉弁16、キヤピラリチユーブ
17、蓄熱器21の放熱用熱交換パイプ22b、
逆止弁18、室外熱交換器15、四方弁12を通
して循環する。つまり、室内熱交換器13が凝縮
器として作用し、さらに放熱用熱交換パイプ22
bおよび室外熱交換器15が蒸発器として作用
し、暖房運転の開始となる。このとき、蓄熱器2
1に蓄えられている熱が暖房補助熱となり、暖房
能力の立上がりが速まる。 The operation unit 41 is used to set the heating operation, set the desired room temperature, and perform the operation start operation. Then, the control unit 40 switches the four-way valve 12, opens the on-off valve 16, and starts the compressor 11, indoor fan 19, and outdoor fan 20, respectively. In this way, when the compressor 11 is started, the refrigerant discharged from the compressor 11 is transferred to the four-way valve 12, the indoor heat exchanger 13, the on-off valve 16, the capillary tube 17, the heat exchange pipe 22b for heat radiation of the heat storage device 21,
It circulates through the check valve 18, the outdoor heat exchanger 15, and the four-way valve 12. In other words, the indoor heat exchanger 13 acts as a condenser, and the heat exchange pipe 22 for heat radiation also acts as a condenser.
b and the outdoor heat exchanger 15 act as an evaporator, and heating operation starts. At this time, heat storage device 2
The heat stored in 1 becomes heating auxiliary heat, which speeds up the rise of heating capacity.
しかして、制御部30は、運転開始から一定時間
が経過すると(蓄熱を使い切ると)、開閉弁16
を閉成する。すると、圧縮機1の吐出冷媒が四方
弁12、室内熱交換器13、蓄熱器21の吸熱用
熱交換パイプ22a、膨張弁14、室外熱交換器
15、四方弁12を通して循環する。つまり、室
内熱交換器13および吸熱用熱交換22aが凝縮
器として作用するとともに、室外熱交換器15が
蒸発器として作用し、通常の暖房運転に移行す
る。このとき、吸熱用熱交換パイプ22aを流れ
る高温冷媒の熱が蓄熱器21に取込まれ、蓄えら
れる。Therefore, the control unit 30 controls the on-off valve 16 when a certain period of time has passed since the start of operation (when the heat storage is used up).
Close. Then, the refrigerant discharged from the compressor 1 circulates through the four-way valve 12 , the indoor heat exchanger 13 , the heat-absorbing heat exchange pipe 22 a of the heat storage device 21 , the expansion valve 14 , the outdoor heat exchanger 15 , and the four-way valve 12 . That is, while the indoor heat exchanger 13 and the endothermic heat exchange 22a act as a condenser, the outdoor heat exchanger 15 acts as an evaporator, and the operation shifts to normal heating operation. At this time, the heat of the high-temperature refrigerant flowing through the endothermic heat exchange pipe 22a is taken into the heat storage device 21 and stored.
暖房運転が進むと、室外熱交換器15の表面に
徐々に霜が付着するようになる。しかして、制御
部40は室内熱交温度センサ43によつて室外熱
交換器15の温度を定期的に検知しており、その
検知温度が所定値以下になると開閉弁16を開放
する。同時に、室外フアン20の運転をオフす
る。すると、蓄熱器21に蓄えられている熱が室
外熱交換器15に対する除霜熱として利用され
る。 As the heating operation progresses, frost gradually begins to adhere to the surface of the outdoor heat exchanger 15. Thus, the control unit 40 periodically detects the temperature of the outdoor heat exchanger 15 using the indoor heat exchanger temperature sensor 43, and opens the on-off valve 16 when the detected temperature falls below a predetermined value. At the same time, the outdoor fan 20 is turned off. Then, the heat stored in the heat storage device 21 is used as defrosting heat for the outdoor heat exchanger 15.
ところで、蓄熱器21においては、蓄熱に際
し、各針状フイン23の先端がなす面およびフラ
ンジ25の外面に沿つてパラフイン24が融解す
るが、その融解に際しての熱移動の速度が上記各
面において異なるため、フランジ25の外面に対
して固相壁が生じる。そして、固相壁とフランジ
25の外面との間でパラフイン24が膨張し、フ
ランジ25に対して図示矢印方向の力が働く。た
だし、フランジ25は剛性が高いので、何ら変形
は生じない。つまり、フランジ25が盾となり、
針状フイン23の倒れ込み変形を未然に防止す
る。したがつて、フランジ25の熱伝導性が良好
なことも含めて広いフイン面積を確保することが
でき、常に効率のよい熱交換が可能である。 By the way, in the heat storage device 21, when storing heat, the paraffin 24 melts along the surface formed by the tip of each needle fin 23 and the outer surface of the flange 25, but the speed of heat transfer during the melting is different on each of the surfaces. Therefore, a solid wall is formed on the outer surface of the flange 25. Then, the paraffin 24 expands between the solid wall and the outer surface of the flange 25, and a force acts on the flange 25 in the direction of the arrow in the figure. However, since the flange 25 has high rigidity, no deformation occurs. In other words, the flange 25 acts as a shield,
To prevent the needle-like fins 23 from collapsing and deforming. Therefore, a wide fin area can be ensured, including the good thermal conductivity of the flange 25, and efficient heat exchange is always possible.
また、暖房運転時、制御部40は室内温度セン
サ42の検知温度と室内設定温度とを比較し、室
内温度が設定温度に達するとそこで圧縮機11の
運転をオフし、暖房運転を中断する。その後、室
内温度が設定温度よりも所定値低い値まで低下す
ると、再び圧縮機11の運転をオンし、暖房運転
を再開する。 Further, during the heating operation, the control unit 40 compares the temperature detected by the indoor temperature sensor 42 and the indoor set temperature, and when the indoor temperature reaches the set temperature, the operation of the compressor 11 is turned off and the heating operation is interrupted. Thereafter, when the indoor temperature falls to a value lower than the set temperature by a predetermined value, the operation of the compressor 11 is turned on again and the heating operation is restarted.
そして、制御部40は、圧縮機11の運転オフ
と同時に電磁開閉器44を付勢し、運転オンと同
時に電磁開閉器44を消勢する。したがつて、暖
房運転の中断時(蓄熱中断時)、温度スイツチ3
1がオンしていれば(蓄熱温度が所定値以下)、
電気ヒータ26が発熱作動し、その発熱が蓄熱器
21に蓄えられる。これは、蓄熱の中断に伴う自
然放熱を補い、常に必要十分な蓄熱を確保するも
のである。なお、電気ヒータ26の作動は圧縮機
11の運転オフ時だけなので、経済性の問題は生
じない。 Then, the control unit 40 energizes the electromagnetic switch 44 at the same time when the compressor 11 is turned off, and deenergizes the electromagnetic switch 44 at the same time when the compressor 11 is turned on. Therefore, when heating operation is interrupted (heat storage is interrupted), temperature switch 3
If 1 is on (heat storage temperature is below the predetermined value),
The electric heater 26 operates to generate heat, and the generated heat is stored in the heat storage device 21. This compensates for the natural heat dissipation that accompanies interruptions in heat storage, and always ensures necessary and sufficient heat storage. Incidentally, since the electric heater 26 is operated only when the compressor 11 is turned off, no economic problem arises.
なお、上記実施例では、電気ヒータを内蔵する
蓄熱器について述べたが、電気ヒータを設けるか
どうかについては適宣設定可能である。また、蓄
熱器を室内熱交換器と室外熱交換器との間に設け
る場合を例に説明したが、その配設位置について
は適宣設定可能である。その他、この考案は上記
実施例に限定されるものではなく、要旨を変えな
い範囲で種々変形実施可能である。 In addition, although the above-mentioned Example described the heat storage device with a built-in electric heater, it can be set as appropriate whether or not to provide an electric heater. Moreover, although the case where the heat storage device is provided between the indoor heat exchanger and the outdoor heat exchanger has been described as an example, the location of the heat storage device can be set as appropriate. In addition, this invention is not limited to the above-mentioned embodiments, and various modifications can be made without changing the gist.
以上述べたようにこの考案によれば、熱交換パ
イプの両側部に剛性の高いフランジを設けたの
で、針状フインの変形を未然に防止することがで
き、常に効率のよい熱交換を可能とする信頼性に
すぐれた蓄熱器を提供できる。
As mentioned above, according to this invention, since highly rigid flanges are provided on both sides of the heat exchange pipe, deformation of the needle fins can be prevented, and efficient heat exchange is always possible. It is possible to provide a heat storage device with excellent reliability.
第1図はこの考案の一実施例の要部の構成を示
す図、第2図は同実施例に係わる空気調和機の構
成を示す図、第3図は同実施例の作用を説明する
ためのタイムチヤート、第4図および第5図はそ
れぞれ従来における蓄熱器の要部の構成を示す図
である。
21……蓄熱器、22a……吸熱用熱交換パイ
プ、22b……放熱用熱交換パイプ、23……針
状フイン、24……パラフイン(蓄熱材)、25
……フランジ、26……電気ヒータ。
Fig. 1 is a diagram showing the configuration of a main part of an embodiment of this invention, Fig. 2 is a diagram showing the configuration of an air conditioner according to the embodiment, and Fig. 3 is a diagram for explaining the operation of the embodiment. The time chart of FIG. 4 and FIG. 5 are diagrams showing the configuration of main parts of a conventional heat storage device, respectively. 21... Heat storage device, 22a... Heat exchange pipe for heat absorption, 22b... Heat exchange pipe for heat radiation, 23... Acicular fin, 24... Paraffin (heat storage material), 25
...Flange, 26...Electric heater.
Claims (1)
れた熱交換パイプを備え、その熱交換パイプおよ
び針状フインの周りに蓄熱材を充填してなる蓄熱
器において、前記熱交換パイプの両側部に剛性の
高いフランジを設けたことを特徴とする蓄熱器。 In a heat storage device comprising a heat exchange pipe in which a large number of needle fins protrude radially from the outer peripheral surface, and a heat storage material is filled around the heat exchange pipe and the needle fins, both sides of the heat exchange pipe A heat storage device that is characterized by having a highly rigid flange at the bottom.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986166708U JPH0424316Y2 (en) | 1986-10-31 | 1986-10-31 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1986166708U JPH0424316Y2 (en) | 1986-10-31 | 1986-10-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6374978U JPS6374978U (en) | 1988-05-18 |
JPH0424316Y2 true JPH0424316Y2 (en) | 1992-06-08 |
Family
ID=31097944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1986166708U Expired JPH0424316Y2 (en) | 1986-10-31 | 1986-10-31 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0424316Y2 (en) |
-
1986
- 1986-10-31 JP JP1986166708U patent/JPH0424316Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS6374978U (en) | 1988-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS645717Y2 (en) | ||
US4569207A (en) | Heat pump heating and cooling system | |
JPH024163A (en) | Cooling device for semiconductor element for power | |
JPH1019305A (en) | Cooling system | |
JPH0424316Y2 (en) | ||
JPH11173710A (en) | Defrosting system using exhaust heat of compressor | |
JPS5829397Y2 (en) | Air conditioning equipment | |
JPH07127955A (en) | Refrigerating cycle device | |
JPS5922460Y2 (en) | Refrigeration equipment | |
JPH08128762A (en) | Defrosting device for outdoor unit | |
CN218915448U (en) | Heat pump air conditioner system and heat pump air conditioner | |
JPS581345B2 (en) | Air conditioning/heating/hot water equipment | |
JPH0221740Y2 (en) | ||
JPS5922421Y2 (en) | air conditioner | |
JPH0539973A (en) | Cold heat-accumulating type refrigerator | |
KR200179994Y1 (en) | Heat exchange device | |
CN2045830U (en) | Condensing unit for heat tube | |
KR19990042257A (en) | Cooling / Heating Control Method of Air Conditioner | |
JPH0115783B2 (en) | ||
KR100189112B1 (en) | String refrigerator | |
KR19990017206U (en) | Defrost water evaporator of refrigerator | |
JPH0225104Y2 (en) | ||
JPS6330946Y2 (en) | ||
JPH04268143A (en) | Air-conditioner | |
JPH0752540Y2 (en) | Refrigerator for low temperature air conditioner |