JP7630256B2 - 患者の状態変化を予測するサーバ、端末、方法、プログラム、及び学習済みモデルの生成方法 - Google Patents
患者の状態変化を予測するサーバ、端末、方法、プログラム、及び学習済みモデルの生成方法 Download PDFInfo
- Publication number
- JP7630256B2 JP7630256B2 JP2020188655A JP2020188655A JP7630256B2 JP 7630256 B2 JP7630256 B2 JP 7630256B2 JP 2020188655 A JP2020188655 A JP 2020188655A JP 2020188655 A JP2020188655 A JP 2020188655A JP 7630256 B2 JP7630256 B2 JP 7630256B2
- Authority
- JP
- Japan
- Prior art keywords
- data
- patient
- condition
- item related
- test item
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Medical Treatment And Welfare Office Work (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2020188655A JP7630256B2 (ja) | 2020-11-12 | 2020-11-12 | 患者の状態変化を予測するサーバ、端末、方法、プログラム、及び学習済みモデルの生成方法 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2020188655A JP7630256B2 (ja) | 2020-11-12 | 2020-11-12 | 患者の状態変化を予測するサーバ、端末、方法、プログラム、及び学習済みモデルの生成方法 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2022077702A JP2022077702A (ja) | 2022-05-24 |
| JP2022077702A5 JP2022077702A5 (enExample) | 2023-06-23 |
| JP7630256B2 true JP7630256B2 (ja) | 2025-02-17 |
Family
ID=81706678
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2020188655A Active JP7630256B2 (ja) | 2020-11-12 | 2020-11-12 | 患者の状態変化を予測するサーバ、端末、方法、プログラム、及び学習済みモデルの生成方法 |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP7630256B2 (enExample) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115798708A (zh) * | 2022-11-25 | 2023-03-14 | 西安交通大学 | 基于长时间序列的急救伤情分类方法 |
| CN119181515B (zh) * | 2024-11-25 | 2025-04-18 | 陕西省中医医院 | 一种基于慢性肾脏病护理数据的信息化管理方法及系统 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004157596A (ja) | 2002-11-01 | 2004-06-03 | Junichi Ninomiya | 健康管理システム及び健康管理方法 |
| JP2017522944A (ja) | 2014-06-27 | 2017-08-17 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 増悪及び/又は入院の危険性を評価するための装置、システム、方法、及びコンピュータプログラム |
| US20200003867A1 (en) | 2018-06-11 | 2020-01-02 | Plato Systems, Inc. | Partially coordinated radar system |
| JP2020113011A (ja) | 2019-01-10 | 2020-07-27 | 合同会社みらか中央研究所 | 情報処理方法、プログラムおよび情報処理装置 |
-
2020
- 2020-11-12 JP JP2020188655A patent/JP7630256B2/ja active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004157596A (ja) | 2002-11-01 | 2004-06-03 | Junichi Ninomiya | 健康管理システム及び健康管理方法 |
| JP2017522944A (ja) | 2014-06-27 | 2017-08-17 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 増悪及び/又は入院の危険性を評価するための装置、システム、方法、及びコンピュータプログラム |
| US20200003867A1 (en) | 2018-06-11 | 2020-01-02 | Plato Systems, Inc. | Partially coordinated radar system |
| JP2020113011A (ja) | 2019-01-10 | 2020-07-27 | 合同会社みらか中央研究所 | 情報処理方法、プログラムおよび情報処理装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2022077702A (ja) | 2022-05-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6684302B2 (ja) | 心肺機能不全に対する易罹患性(susceptibility)を判断する装置を制御する方法、コンピュータ読取可能記憶媒体 | |
| Romero-Brufau et al. | Using machine learning to improve the accuracy of patient deterioration predictions: Mayo Clinic Early Warning Score (MC-EWS) | |
| US10163174B2 (en) | Methods, systems, and computer program products for evaluating a patient in a pediatric intensive care unit | |
| Churpek et al. | Multicenter development and validation of a risk stratification tool for ward patients | |
| García-Gallo et al. | A machine learning-based model for 1-year mortality prediction in patients admitted to an Intensive Care Unit with a diagnosis of sepsis | |
| US9959390B2 (en) | Modeling techniques for predicting mortality in intensive care units | |
| CN103201743B (zh) | 患者疾病严重性、死亡率和住院时长的连续预测方法 | |
| US20190311809A1 (en) | Patient status monitor and method of monitoring patient status | |
| EP3370175A1 (en) | Method for providing a wearable device, method for predicting an acute exacerbation and system for predicting an acute exacerbation | |
| JP2015531930A (ja) | 臨床支援システム及び方法 | |
| US11580432B2 (en) | System monitor and method of system monitoring to predict a future state of a system | |
| US20220344059A1 (en) | System, Method, and Computer Program Product for Detecting and Responding to Patient Neuromorbidity | |
| JP7710523B2 (ja) | 医学検査値分析を実行するためのコンピュータ実装された方法、及び、装置 | |
| JP7630256B2 (ja) | 患者の状態変化を予測するサーバ、端末、方法、プログラム、及び学習済みモデルの生成方法 | |
| Hu et al. | Development and external validation of a dynamic risk score for early prediction of cardiogenic shock in cardiac intensive care units using machine learning | |
| Arzeno et al. | Designing optimal mortality risk prediction scores that preserve clinical knowledge | |
| Chatchumni et al. | Performance of the Simple Clinical Score (SCS) and the Rapid Emergency Medicine Score (REMS) to predict severity level and mortality rate among patients with sepsis in the emergency department | |
| Baez et al. | Clinical validation demonstrates concordance of qSOFA and POC lactate Bayesian model: Results from the ACDC Phase-2 program | |
| US20240120107A1 (en) | Data processing system and method for predicting a score representative of a probability of a sepsis for a patient | |
| KR20240157574A (ko) | 재입원 예측 방법, 재입원 예측 장치, 재입원 예측 모델 훈련 방법, 및 재입원 예측 모델 훈련 장치 | |
| Danesh et al. | Integrating digital twin technology with dynamic ensemble learning for sepsis prediction in intensive care units | |
| CN114144837A (zh) | 用于动态预测普通病房中的患者的出院准备的模型 | |
| Shade et al. | COVID-HEART: development and validation of a multi-variable model for real-time prediction of cardiovascular complications in hospitalized patients with COVID-19 | |
| Zhao et al. | External validation of a deep learning prediction model for in-hospital mortality among ICU patients | |
| Ray et al. | Application of artificial intelligence techniques in the intensive care unit |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230615 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230615 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240220 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240221 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240419 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20240903 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20241127 |
|
| A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20241204 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20250107 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20250204 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 7630256 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |