JP7571996B2 - A papermaking additive that enhances the effectiveness of paper strength agents - Google Patents

A papermaking additive that enhances the effectiveness of paper strength agents Download PDF

Info

Publication number
JP7571996B2
JP7571996B2 JP2020195619A JP2020195619A JP7571996B2 JP 7571996 B2 JP7571996 B2 JP 7571996B2 JP 2020195619 A JP2020195619 A JP 2020195619A JP 2020195619 A JP2020195619 A JP 2020195619A JP 7571996 B2 JP7571996 B2 JP 7571996B2
Authority
JP
Japan
Prior art keywords
mass
paper strength
polymer
paper
strength agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020195619A
Other languages
Japanese (ja)
Other versions
JP2022084045A (en
Inventor
剛 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Original Assignee
Hymo Corp
Filing date
Publication date
Application filed by Hymo Corp filed Critical Hymo Corp
Priority to JP2020195619A priority Critical patent/JP7571996B2/en
Publication of JP2022084045A publication Critical patent/JP2022084045A/en
Application granted granted Critical
Publication of JP7571996B2 publication Critical patent/JP7571996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は製紙工程における紙力増強剤の効果を促進する製紙用添加剤及び紙力増強剤の効果促進方法に関する。 The present invention relates to a papermaking additive that enhances the effect of paper strength agents in the papermaking process and a method for enhancing the effect of paper strength agents.

紙に強度を付与する紙力増強剤として、ポリアクリルアミド系紙力増強剤がある。ポリアクリルアミド系紙力増強剤はイオン性によりアニオンタイプ、カチオンタイプ、及び両性タイプに分類される。現在では性能の面から、両性タイプの紙力増強剤が主流となっている。両性タイプのポリアクリルアミド系紙力増強剤は、アクリルアミドにカチオン性モノマーとアニオン性モノマー等の各種重合成分を共重合して得られる両性アクリルアミド系水溶性ポリマーよりなる(特許文献1)。両性アクリルアミド系水溶性ポリマーは、ポリイオンコンプレックスを形成する。ポリイオンコンプレックスは、カチオン基とアニオン基の間の静電相互作用により形成される。ポリイオンコンプレックスを形成することで、両性アクリルアミド系水溶性ポリマーは紙力増強効果を発揮することが知られている。
近年古紙のリサイクル化やクローズド化が進むことで、抄紙系内には微細繊維や溶存電解質物質が蓄積され、抄紙系の電気伝導度は上昇傾向にある。このため、特に両性タイプの紙力増強剤はイオンコンプレックスの形成が阻害され、十分な効果が発揮できない状況となっている。しかし、紙力増強剤の添加量を多くすることは水質の悪化を招き、環境上好ましくない。そのため、環境面から、紙力増強剤の添加量を増やすことなくその効果を向上させる必要が生じている。
製紙工程で使用される紙力増強剤の効果を向上させる方法として、例えば、紙力増強剤に特定濃度の酸化剤を接触させる方法が開示されている(特許文献2)。しかし、この方法では、酸化剤の使用による設備への悪影響、歩留向上剤等の製紙用薬品の効果低下等の好ましくない影響が生じる。
Polyacrylamide-based paper strength agents are used as paper strength enhancers that impart strength to paper. Polyacrylamide-based paper strength enhancers are classified into anionic, cationic, and amphoteric types according to their ionicity. Currently, amphoteric paper strength enhancers are the mainstream in terms of performance. Amphoteric polyacrylamide-based paper strength enhancers are made of amphoteric acrylamide-based water-soluble polymers obtained by copolymerizing acrylamide with various polymerization components such as cationic monomers and anionic monomers (Patent Document 1). Amphoteric acrylamide-based water-soluble polymers form polyion complexes. Polyion complexes are formed by electrostatic interactions between cationic and anionic groups. It is known that amphoteric acrylamide-based water-soluble polymers exert a paper strength enhancing effect by forming polyion complexes.
In recent years, with the advancement of recycling waste paper and closed systems, fine fibers and dissolved electrolytes have accumulated in the papermaking system, and the electrical conductivity of the papermaking system has tended to increase. As a result, amphoteric paper strength agents in particular are prevented from forming ion complexes, and are unable to exert their full effect. However, increasing the amount of paper strength agents added leads to deterioration of water quality, which is undesirable from an environmental perspective. Therefore, from an environmental perspective, there is a need to improve the effect of paper strength agents without increasing the amount added.
As a method for improving the effect of a paper strength agent used in the papermaking process, for example, a method of contacting a paper strength agent with an oxidizing agent at a specific concentration has been disclosed (Patent Document 2). However, this method has undesirable effects such as adverse effects on equipment due to the use of the oxidizing agent and reduced effects of papermaking chemicals such as retention aids.

特開2012-251252号公報JP 2012-251252 A 特許第6664627号公報Patent No. 6664627

本発明は、製紙工程において環境面や設備等に悪影響を与えることなく紙力増強剤の効果を向上させることができる製紙用添加剤を提供することにある。 The present invention aims to provide a papermaking additive that can improve the effectiveness of paper strength agents without adversely affecting the environment or equipment during the papermaking process.

前記課題を解決するために鋭意検討した結果、特定の組成を有する高分子を紙力増強剤と共に使用することで、紙力増強剤の紙力増強効果が促進され、紙力増強剤の使用量を低減できることを見出した。 As a result of intensive research to solve the above problems, it was discovered that by using a polymer having a specific composition together with a paper strength enhancer, the paper strength enhancing effect of the paper strength enhancer is enhanced, and the amount of paper strength enhancer used can be reduced.

本発明によれば、特定の組成を有する高分子を紙力増強剤と共に使用することにより、紙力増強剤の紙力増大効果が促進され、紙力増強剤の使用量を低減できるという効果を有する。 According to the present invention, by using a polymer having a specific composition together with a paper strength enhancer, the paper strength-increasing effect of the paper strength enhancer is promoted, and the amount of paper strength enhancer used can be reduced.

以下、本発明を詳細に説明する。
本発明の高分子は、水溶液重合、乳化重合、分散重合、懸濁重合等のいずれの方法でも得ることができる。以下、水溶液重合の場合について説明する。
本発明の高分子は、カチオン性単量体を必須成分とする単量体成分を重合することにより得られる。重合は、所定の反応容器に単量体混合物、水、ラジカル重合開始剤、必要に応じ界面活性剤を添加し、窒素ガス等の不活性ガス雰囲気下、攪拌、加温することにより目的の高分子を得ることができる。
The present invention will be described in detail below.
The polymer of the present invention can be obtained by any method such as aqueous solution polymerization, emulsion polymerization, dispersion polymerization, suspension polymerization, etc. The aqueous solution polymerization will be described below.
The polymer of the present invention can be obtained by polymerizing a monomer component having a cationic monomer as an essential component. The polymerization can be carried out by adding a monomer mixture, water, a radical polymerization initiator, and optionally a surfactant to a predetermined reaction vessel, stirring and heating the mixture in an inert gas atmosphere such as nitrogen gas, to obtain the target polymer.

カチオン性単量体のうち三級アミノ基含有カチオン性単量体の例としては、ジメチルアミノエチル(メタ)アクリレ-ト、ジエチルアミノエチル(メタ)アクリレ-ト、ジメチルアミノプロピル(メタ)アクリルアミド、ジエチルアミノプロピル(メタ)アクリルアミド、及びこれらの塩等が挙げられる。
また四級アンモニウム塩基含有カチオン性単量体の例としては、(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロリド、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウムクロリド、(メタ)アクリロイルアミノプロピルトリメチルアンモニウムクロリド、(メタ)アクリロイルアミノプロピルジメチルベンジルアンモニウムクロリド、(メタ)アクリロイルオキシ2-ヒドロキシプロピルトリメチルアンモニウムクロリド等が挙げられる。又、ジアリルメチルアミン、ジアリルベンジルアミン、ジアリルジメチルアンモニウムクロリド、ジアリルメチルベンジルアンモニウムクロリド等が挙げられる。
これらを二種以上組み合わせることも可能である。カチオン性単量体は全単量体に対し、50~100質量%であり、好ましくは60~100質量%であり、更に好ましくは60~99質量%である。
Among the cationic monomers, examples of the tertiary amino group-containing cationic monomers include dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylamide, diethylaminopropyl (meth)acrylamide, and salts thereof.
Examples of the quaternary ammonium base-containing cationic monomer include (meth)acryloyloxyethyl trimethyl ammonium chloride, (meth)acryloyloxyethyl dimethyl benzyl ammonium chloride, (meth)acryloylaminopropyl trimethyl ammonium chloride, (meth)acryloylaminopropyl dimethyl benzyl ammonium chloride, (meth)acryloyloxy 2-hydroxypropyl trimethyl ammonium chloride, etc. Also included are diallyl methyl amine, diallyl benzyl amine, diallyl dimethyl ammonium chloride, diallyl methyl benzyl ammonium chloride, etc.
The content of the cationic monomer is 50 to 100% by mass, preferably 60 to 100% by mass, and more preferably 60 to 99% by mass, based on the total amount of the monomers.

本発明における高分子は重合成分として更に、ノニオン性単量体、疎水性単量体等を含むことができる。 The polymer in the present invention may further contain nonionic monomers, hydrophobic monomers, etc. as polymerization components.

ノニオン性単量体としては、アクリルアミド、ジメチルアクリルアミド、ジエチルアクリルアミド、イソプロピルアクリルアミド、ヒドロキシエチルアクリルアミド、ビニルピロリドン、ビニルホルムアミド、グリセロール(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート等がある。これらを二種以上組み合わせることも可能である。
ノニオン性単量体は全単量体に対し、0~50質量%、好ましくは0~30質量%である。
Examples of nonionic monomers include acrylamide, dimethylacrylamide, diethylacrylamide, isopropylacrylamide, hydroxyethylacrylamide, vinylpyrrolidone, vinylformamide, glycerol (meth)acrylate, hydroxyethyl (meth)acrylate, etc. Two or more of these may be used in combination.
The amount of the nonionic monomer is 0 to 50% by mass, preferably 0 to 30% by mass, based on the total amount of the monomers.

本発明において、疎水性単量体とは、20℃の水への溶解度が2質量%以下である単量体を意味する。疎水性単量体の例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、オクチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、スチレン、エチルスチレン等が挙げられる。これらを二種以上組み合わせることも可能である。
疎水性単量体は全単量体に対し、0~50質量%、好ましくは0~40質量%、更に好ましくは1~40質量%である。
In the present invention, the hydrophobic monomer means a monomer having a solubility of 2% by mass or less in water at 20° C. Examples of hydrophobic monomers include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, octyl (meth)acrylate, stearyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, dodecyl (meth)acrylate, octadecyl (meth)acrylate, styrene, ethylstyrene, etc. Two or more of these may be used in combination.
The amount of the hydrophobic monomer is 0 to 50% by mass, preferably 0 to 40% by mass, and more preferably 1 to 40% by mass, based on the total amount of the monomers.

更に、効果を妨げない程度にアニオン性単量体、架橋性単量体を含んでもよい。
アニオン性単量体の例としては、(メタ)アクリル酸、イタコン酸、マレイン酸、スチレンスルホン酸、2-アクリルアミド2-メチルプロパンスルホン酸、及びこれらの塩等が挙げられる。これらを二種以上組み合わせることも可能である。
架橋性単量体としては、メチレンビスアクリルアミド、エチレングリコールジ(メタ)アクリレート、N-メチロールアクリルアミド、トリアリルイソシアネート、ジビニルベンゼン等が挙げられる。これらを二種以上組み合わせることも可能である。架橋性単量体の添加率は全単量体に対し1質量%以下が好ましい。
Furthermore, an anionic monomer and a crosslinking monomer may be contained to the extent that the effect is not impaired.
Examples of the anionic monomer include (meth)acrylic acid, itaconic acid, maleic acid, styrenesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, and salts thereof. Two or more of these may be used in combination.
Examples of the crosslinkable monomer include methylenebisacrylamide, ethylene glycol di(meth)acrylate, N-methylolacrylamide, triallyl isocyanate, and divinylbenzene. Two or more of these may be combined. The addition rate of the crosslinkable monomer is preferably 1% by mass or less based on the total monomers.

重合に際しては、疎水性単量体を使用する場合には界面活性剤を使用することができる。界面活性剤は、分子内に親水性基と疎水性基を有する物質であり、中性界面活性剤としては、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレンソルビタンモノオレエート、ポリオキシエチレンソルビタントリオレエート等のポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル等のポリオキシエチレンアルキルエーテル、ソルビタンモノオレエート、ソルビタンモノステアレート等のソルビタン脂肪酸エステル、ペンタオキシエチレンオレイルアルコールエーテル等のポリオキシエチレン高級アルコールエーテル、アニオン性界面活性剤としては、ドデシル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ナフタレンスルホネート・ホルマリン縮合物等、カチオン性界面活性剤としては、塩化ドデシルトリメチルアンモニウム、塩化ステアリルトリメチルアンモニウム、塩化ジステアリルジメチルアンモニウム等が挙げられる。これらを二種以上組み合わせることも可能である。界面活性剤存在下、水中で重合することで疎水性単量体を微細分散させる効果が作用し、共重合が促進される。界面活性剤の量が少ないと単量体を微細分散させる効果が小さく、多すぎると溶解時、使用時に発泡の原因となる。界面活性剤の添加率は全単量体に対して0.01質量%~5質量%であり、好ましくは0.05質量%~3質量%、更に好ましくは0.1質量%~1質量%である。 When using a hydrophobic monomer during polymerization, a surfactant can be used. The surfactant is a substance having a hydrophilic group and a hydrophobic group in the molecule. Neutral surfactants include polyoxyalkylene alkyl ethers, polyoxyethylene sorbitan fatty acid esters such as polyoxyethylene sorbitan monooleate and polyoxyethylene sorbitan trioleate, polyoxyethylene alkyl ethers such as polyoxyethylene cetyl ether, polyoxyethylene oleyl ether and polyoxyethylene lauryl ether, sorbitan fatty acid esters such as sorbitan monooleate and sorbitan monostearate, and polyoxyethylene higher alcohol ethers such as pentaoxyethylene oleyl alcohol ether. Anionic surfactants include sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, and naphthalenesulfonate-formalin condensates. Cationic surfactants include dodecyltrimethylammonium chloride, stearyltrimethylammonium chloride, and distearyldimethylammonium chloride. Two or more of these can also be combined. Polymerization in water in the presence of a surfactant acts to finely disperse the hydrophobic monomer, promoting copolymerization. If the amount of surfactant is small, the effect of finely dispersing the monomer is small, and if the amount is too large, it can cause foaming when dissolved or used. The surfactant addition rate is 0.01% to 5% by mass, preferably 0.05% to 3% by mass, and more preferably 0.1% to 1% by mass, based on the total monomer.

本発明においては連鎖移動剤を使用することができる。連鎖移動剤としては、アルキルメルカプタン類、チオグリコール酸及びそのエステル類、イソプロピルアルコール、アリルアルコール、アリルアミン、次亜リン酸ナトリウム等が挙げられる。また、メタリルスルホン酸ナトリウム、メタリルスルホン酸カリウム、メタリルスルホン酸アンモニウム等のメタリルスルホン酸塩等の単量体が挙げられる。 In the present invention, a chain transfer agent can be used. Examples of the chain transfer agent include alkyl mercaptans, thioglycolic acid and its esters, isopropyl alcohol, allyl alcohol, allylamine, sodium hypophosphite, etc. Also included are monomers such as methallylsulfonates, such as sodium methallylsulfonate, potassium methallylsulfonate, and ammonium methallylsulfonate.

重合開始剤としては、例えば、2、2’-アゾビス[2-(5-メチル-イミダゾリン-2-イル)プロパン]二塩酸塩、2、2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2、2’-アゾビス-2-アミジノプロパン二塩酸塩等のアゾ系の重合開始剤が挙げられる。又、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、過酸化水素、過酸化ベンゾイル等の過酸化物等も挙げられる。これらは単独でも使用できるが、亜硫酸塩、亜硫酸水素塩等の還元剤と組合せてレドックス系重合開始剤としても使用できる。重合開始剤の添加率は全単量体に対し0.01質量%~2質量%、好ましくは0.1~1質量%である。 The polymerization initiator may be, for example, an azo-based polymerization initiator such as 2,2'-azobis[2-(5-methyl-imidazolin-2-yl)propane]dihydrochloride, 2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride, or 2,2'-azobis-2-amidinopropanedihydrochloride. Other examples include persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate, and peroxides such as hydrogen peroxide and benzoyl peroxide. These may be used alone, or may be used as a redox-based polymerization initiator in combination with a reducing agent such as a sulfite or hydrogen sulfite. The addition rate of the polymerization initiator is 0.01% to 2% by mass, preferably 0.1% to 1% by mass, based on the total monomer.

重合濃度としては、単量体濃度として10質量%~80質量%であるが、好ましくは15質量%~60質量%である。
重合反応は、通常温度30℃~100℃、時間は0.5時間~20時間で行う。
The polymerization concentration is 10% by mass to 80% by mass in terms of monomer concentration, and preferably 15% by mass to 60% by mass.
The polymerization reaction is usually carried out at a temperature of 30° C. to 100° C. for a time of 0.5 to 20 hours.

得られた高分子は、高分子1質量%水溶液の粘度が5~200mPa・sであることが好ましい。更に好ましくは15~170mPa・sである。粘度はB型粘度計で回転数60rpm、25℃で測定したものである。粘度がこれより小さいと紙力増強効果が不十分となる。また、粘度がこれより大きいと溶解性が低下し取扱いが困難となる。B型粘度計として、東機産業株式会社製B8M型、TVB-10M型等の汎用品が適宜に使用される。粘度が100mPa・s以下の場合は、1号ローターを用いる。 The viscosity of the obtained polymer in a 1% by weight aqueous solution is preferably 5 to 200 mPa·s. More preferably, it is 15 to 170 mPa·s. The viscosity is measured with a B-type viscometer at 60 rpm and 25°C. If the viscosity is lower than this range, the paper strength enhancing effect will be insufficient. If the viscosity is higher than this range, the solubility will decrease and handling will be difficult. As the B-type viscometer, a general-purpose product such as the B8M model or TVB-10M model manufactured by Toki Sangyo Co., Ltd. is appropriately used. If the viscosity is 100 mPa·s or less, a No. 1 rotor is used.

本発明における高分子の紙力増強剤の効果促進作用について説明する。
紙力増強剤のカチオン基部分がパルプのカルボキシル基と相互作用することで紙力増強効果が発揮されると考えられる。しかし、パルプのカルボキシル基の分布は一様ではなく、カルボキシル基の密度が高い部分に優先的に紙力増強剤が分布し、紙力増強剤のパルプ上での分布も不均一になり、紙力増強効果が十分に発揮できないものと考えられる。本発明におけるカチオン基密度の高い高分子を添加することで、当該高分子が優先的にカルボキシル基密度の高い部分に吸着し、紙力増強剤のパルプ上での分布を一様にし、紙力増強効果を促進するものと考えられる。
疎水性単量体を共重合したカチオン性高分子は水中でミセルを形成することが知られている。疎水性単量体を共重合したカチオン性高分子は、パルプ上の局所化したカルボキシメチル基を有効に封鎖し、紙力増強剤のパルプ上での分布を均一化し、紙力増強効果を更に促進するものと考えられる。また、ミセル化したカチオン性高分子は、カチオン基密度が増大しているため、パルプ間の接着性の向上にも寄与しているものと考えられる。
The effect of enhancing the effect of the polymeric paper strength agent in the present invention will now be described.
It is believed that the cationic group portion of the strength agent interacts with the carboxyl group of the pulp to exert the paper strength enhancing effect. However, the distribution of the carboxyl group of the pulp is not uniform, and the strength agent is preferentially distributed in the area with a high density of carboxyl groups, and the distribution of the strength agent on the pulp is also uneven, and it is believed that the paper strength enhancing effect cannot be fully exerted. It is believed that by adding the polymer with a high density of cationic groups in the present invention, the polymer is preferentially adsorbed to the area with a high density of carboxyl groups, uniformizing the distribution of the strength agent on the pulp and promoting the paper strength enhancing effect.
It is known that cationic polymers copolymerized with hydrophobic monomers form micelles in water. Cationic polymers copolymerized with hydrophobic monomers are believed to effectively block localized carboxymethyl groups on the pulp, uniformly distribute the paper strength agent on the pulp, and further promote the paper strength enhancement effect. In addition, micellar cationic polymers have an increased cationic group density, which is believed to contribute to improving the adhesion between pulps.

本発明における高分子の添加場所としては、紙力増強剤が添加されている場所の周辺に添加する。一般的に紙力増強剤は、リファイナー、原料配合チェスト、ミキシングチェスト、マシンチェスト、種箱等、製紙工程上流のパルプ乾燥固形分濃度が2.0質量%以上の抄紙前の製紙原料に添加されており、この場合は本発明における高分子も同製紙原料に添加する。
又、製紙工程において上流からパルプ乾燥固形分濃度が2.0質量%以上で移送されてきた高濃度の製紙原料が抄紙機の直前では白水や清水等によりパルプ乾燥固形分濃度が2.0質量%より低い製紙原料に希釈されている。一般的には0.5~1.5質量%に希釈されており、これらはインレット原料やヘッドボックス原料と呼ばれており、これら原料(以下、インレット原料とする。)に対して、紙力増強剤を添加する場合もあり、この場合は本発明における高分子も同製紙原料に添加する。この場合の工程の添加場所としては、せん断工程であるファンポンプ前後やスクリーン前後が適用される。
紙力増強剤との添加順序は、紙力増強剤の前後に添加しても良く、同時に添加しても良い。本発明における紙力促進の効果発現の機構上、紙力増強剤添加前、あるいは同時に添加することが好ましい。。
The location where the polymer in the present invention is added is the vicinity of the location where the paper strength agent is added. Generally, the paper strength agent is added to the raw paper material before papermaking where the pulp dry solid content is 2.0 mass% or more upstream of the papermaking process, such as a refiner, a raw material blending chest, a mixing chest, a machine chest, a seed box, etc. In this case, the polymer in the present invention is also added to the raw paper material.
In the papermaking process, high-concentration papermaking raw material with a pulp dry solids concentration of 2.0% or more is transferred from upstream and diluted with white water or fresh water just before the papermaking machine to a papermaking raw material with a pulp dry solids concentration of less than 2.0% by mass. Generally, it is diluted to 0.5 to 1.5% by mass, and these are called inlet raw material or headbox raw material. In some cases, a paper strength agent is added to these raw materials (hereinafter referred to as inlet raw material), and in this case, the polymer of the present invention is also added to the papermaking raw material. In this case, the location of addition in the process is before or after the fan pump or before or after the screen, which is the shearing process.
The order of addition of the paper strength enhancer may be before or after the paper strength enhancer, or they may be added simultaneously. In view of the mechanism of the paper strength enhancing effect in the present invention, it is preferable to add the paper strength enhancer before or simultaneously with the addition of the paper strength enhancer.

本発明における高分子からなる製紙用添加剤を適用する紙の種類としては、新聞用紙、上質印刷用紙、中質印刷用紙、グラビア印刷用紙、PPC用紙、塗工原紙、微塗工紙、包装用紙、ライナーや中芯原紙の板紙等が挙げられる。この中でもより紙力増強剤の効果がより要求されるライナーや中芯原紙等の板紙が好ましい。添加率としては、紙力増強剤(純分)に対し、1質量%~100質量%(高分子純分)添加する。パルプ乾燥固形分に対して、高分子純分で0.003~1質量%であり、好ましくは0.005~0.5質量%である。又、その他のサイズ剤、硫酸バンド、ピッチコントロール剤、歩留向上剤、濾水性向上剤等の製紙用薬品と併用することができる。 The types of paper to which the polymer-based papermaking additive of the present invention is applied include newsprint, wood-free printing paper, medium-quality printing paper, gravure printing paper, PPC paper, coated base paper, lightly coated paper, packaging paper, liner and core base paper boards, etc. Among these, liner and core base paper boards, which require a stronger effect from the paper strength enhancer, are preferred. The addition rate is 1% to 100% by mass (polymer pure content) of the paper strength enhancer (pure content). The polymer pure content is 0.003 to 1% by mass, preferably 0.005 to 0.5% by mass, based on the dry solid content of the pulp. It can also be used in combination with other papermaking chemicals such as sizing agents, aluminum sulfate, pitch control agents, retention aids, and drainage aids.

以下、実施例によって本発明をさらに詳しく説明するが、本発明はその要旨を超えない限り、以下の実施例に制約されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples as long as it does not exceed the gist of the invention.

(製造例1)
500mLの4つ口フラスコに、80質量%メタクリロイルオキシエチルトリメチルアンモニウムクロライド62.5g、脱塩水187.5g、2、2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩(和光純薬工業製VA-044)0.1gを仕込み150rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、16.4mPa・sであった。この結果を表1に示す。
(Production Example 1)
In a 500 mL four-neck flask, 62.5 g of 80% by mass methacryloyloxyethyl trimethylammonium chloride, 187.5 g of demineralized water, and 0.1 g of 2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (VA-044 manufactured by Wako Pure Chemical Industries, Ltd.) were charged and nitrogen gas was passed through while stirring at 150 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Then, the temperature was maintained at 70°C for 2 hours. Then, the mixture was cooled to obtain an aqueous polymer solution. The viscosity of the 1% by mass aqueous solution of the obtained polymer was 16.4 mPa·s. The results are shown in Table 1.

(製造例2)
500mLの4つ口フラスコに、スチレン10.0g、80質量%メタクリロイルオキシエチルトリメチルアンモニウムクロライド50.0g、脱塩水189.1g、ドデシル硫酸ナトリウム0.5g、2、2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩(和光純薬工業製VA-044)0.01gを仕込み150rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、20.2mPa・sであった。この結果を表1に示す。
(Production Example 2)
In a 500 mL four-neck flask, 10.0 g of styrene, 50.0 g of 80% by mass methacryloyloxyethyl trimethylammonium chloride, 189.1 g of demineralized water, 0.5 g of sodium dodecyl sulfate, and 0.01 g of 2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (VA-044 manufactured by Wako Pure Chemical Industries) were charged and nitrogen gas was passed through while stirring at 150 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Then, the temperature was maintained at 70°C for 2 hours. Then, the mixture was cooled to obtain an aqueous polymer solution. The viscosity of the 1% by mass aqueous solution of the obtained polymer was 20.2 mPa·s. The results are shown in Table 1.

(製造例3)
500mLの4つ口フラスコに、50%アクリルアミド50.0g、80質量%メタクリロイルオキシエチルトリメチルアンモニウムクロライド31.8g、脱塩水167.3g、次亜リン酸ナトリウム0.05g、2、2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩(和光純薬工業製VA-044)0.05gを仕込み150rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、42.0mPa・sであった。この結果を表1に示す。
(Production Example 3)
In a 500 mL four-neck flask, 50.0 g of 50% acrylamide, 31.8 g of 80% methacryloyloxyethyl trimethylammonium chloride, 167.3 g of demineralized water, 0.05 g of sodium hypophosphite, and 0.05 g of 2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (VA-044 manufactured by Wako Pure Chemical Industries) were charged and nitrogen gas was passed through while stirring at 150 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Then, the temperature was maintained at 70°C for 2 hours. Then, the mixture was cooled to obtain an aqueous polymer solution. The viscosity of the 1% by mass aqueous solution of the obtained polymer was 42.0 mPa·s. The results are shown in Table 1.

(製造例4)
500mLの4つ口フラスコに、50%アクリルアミド30.0g、80質量%メタクリロイルオキシエチルトリメチルアンモニウムクロライド43.9g、脱塩水175.1g、次亜リン酸ナトリウム0.05g、2、2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩(和光純薬工業製VA-044)0.05gを仕込み150rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、24.0mPa・sであった。この結果を表1に示す。
(Production Example 4)
In a 500 mL four-neck flask, 30.0 g of 50% acrylamide, 43.9 g of 80% methacryloyloxyethyl trimethylammonium chloride, 175.1 g of demineralized water, 0.05 g of sodium hypophosphite, and 0.05 g of 2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (VA-044 manufactured by Wako Pure Chemical Industries) were charged and nitrogen gas was passed through while stirring at 150 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Then, the temperature was maintained at 70°C for 2 hours. Then, the mixture was cooled to obtain an aqueous polymer solution. The viscosity of the 1% by mass aqueous solution of the obtained polymer was 24.0 mPa·s. The results are shown in Table 1.

(製造例5)
500mLの4つ口フラスコに、ドデシルメタクリレート0.5g、80質量%メタクリロイルオキシエチルトリメチルアンモニウムクロライド61.9g、脱塩水187.3g、ドデシル硫酸ナトリウム0.5g、2、2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩(和光純薬工業製VA-044)0.05gを仕込み150rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、26.5mPa・sであった。この結果を表1に示す。
(Production Example 5)
In a 500 mL four-neck flask, 0.5 g of dodecyl methacrylate, 61.9 g of 80% by mass methacryloyloxyethyl trimethylammonium chloride, 187.3 g of demineralized water, 0.5 g of sodium dodecyl sulfate, and 0.05 g of 2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (VA-044 manufactured by Wako Pure Chemical Industries) were charged and nitrogen gas was passed through while stirring at 150 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Then, the temperature was maintained at 70°C for 2 hours. Then, the mixture was cooled to obtain an aqueous polymer solution. The viscosity of the 1% by mass aqueous solution of the obtained polymer was 26.5 mPa·s. The results are shown in Table 1.

(製造例6)
500mLの4つ口フラスコに、ドデシルメタクリレート0.5g、スチレン1.0g、80質量%メタクリロイルオキシエチルトリメチルアンモニウムクロライド60.6g、脱塩水187.2g、ドデシル硫酸ナトリウム0.5g、2、2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩(和光純薬工業製VA-044)0.05gを仕込み150rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、112.0mPa・sであった。この結果を表1に示す。
(Production Example 6)
In a 500 mL four-neck flask, 0.5 g of dodecyl methacrylate, 1.0 g of styrene, 60.6 g of 80% by mass methacryloyloxyethyl trimethylammonium chloride, 187.2 g of demineralized water, 0.5 g of sodium dodecyl sulfate, and 0.05 g of 2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (VA-044 manufactured by Wako Pure Chemical Industries) were charged and nitrogen gas was passed through while stirring at 150 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Then, the temperature was maintained at 70°C for 2 hours. Then, the mixture was cooled to obtain an aqueous polymer solution. The viscosity of the 1% by mass aqueous solution of the obtained polymer was 112.0 mPa·s. The results are shown in Table 1.

(製造例7)
500mLの4つ口フラスコに、スチレン20.0g、ジメチルアミノエチルメタクリレート24.7g、35質量%塩酸15.8g、脱塩水187.2g、ドデシル硫酸ナトリウム0.5g、2、2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩(和光純薬工業製VA-044)0.05gを仕込み150rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、23.4mPa・sであった。この結果を表1に示す。
(Production Example 7)
In a 500 mL four-neck flask, 20.0 g of styrene, 24.7 g of dimethylaminoethyl methacrylate, 15.8 g of 35% by mass hydrochloric acid, 187.2 g of demineralized water, 0.5 g of sodium dodecyl sulfate, and 0.05 g of 2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (VA-044 manufactured by Wako Pure Chemical Industries, Ltd.) were charged and nitrogen gas was passed through while stirring at 150 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Then, the temperature was maintained at 70°C for 2 hours. Then, the mixture was cooled to obtain an aqueous polymer solution. The viscosity of the 1% by mass aqueous solution of the obtained polymer was 23.4 mPa·s. The results are shown in Table 1.

(製造例8)
500mLの4つ口フラスコに、2-エチルヘキシルアクリレート1.0g、80質量%メタクリロイルオキシエチルトリメチルアンモニウムクロライド61.3g、脱塩水187.3g、ドデシル硫酸ナトリウム0.5g、2、2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩(和光純薬工業製VA-044)0.05gを仕込み150rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、155.5mPa・sであった。この結果を表1に示す。
(Production Example 8)
In a 500 mL four-neck flask, 1.0 g of 2-ethylhexyl acrylate, 61.3 g of 80% by mass methacryloyloxyethyl trimethylammonium chloride, 187.3 g of demineralized water, 0.5 g of sodium dodecyl sulfate, and 0.05 g of 2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (VA-044 manufactured by Wako Pure Chemical Industries) were charged and nitrogen gas was passed through while stirring at 150 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Then, the temperature was maintained at 70°C for 2 hours. Then, the mixture was cooled to obtain an aqueous polymer solution. The viscosity of the 1% by mass aqueous solution of the obtained polymer was 155.5 mPa·s. The results are shown in Table 1.

(製造例9)
500mLの4つ口フラスコに、ステアリルメタリレート0.5g、スチレン2.5g、80質量%メタクリロイルオキシエチルトリメチルアンモニウムクロライド59.0g、脱塩水188.2g、ドデシル硫酸ナトリウム0.5g、2、2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩(和光純薬工業製VA-044)0.05gを仕込み150rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、164.0mPa・sであった。この結果を表1に示す。
(Production Example 9)
In a 500 mL four-neck flask, 0.5 g of stearyl methacrylate, 2.5 g of styrene, 59.0 g of 80% by mass methacryloyloxyethyl trimethylammonium chloride, 188.2 g of demineralized water, 0.5 g of sodium dodecyl sulfate, and 0.05 g of 2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (VA-044 manufactured by Wako Pure Chemical Industries) were charged and nitrogen gas was passed through while stirring at 150 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Then, the temperature was maintained at 70°C for 2 hours. Then, the mixture was cooled to obtain an aqueous polymer solution. The viscosity of the 1% by mass aqueous solution of the obtained polymer was 164.0 mPa·s. The results are shown in Table 1.

(製造例10)
500mLの4つ口フラスコに、ドデシルメタリレート2.5g、スチレン5.1g、80質量%メタクリロイルオキシエチルトリメチルアンモニウムクロライド53.1g、脱塩水188.2g、ドデシル硫酸ナトリウム0.5g、2、2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩(和光純薬工業製VA-044)0.05gを仕込み150rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、67.5mPa・sであった。この結果を表1に示す。
(Production Example 10)
In a 500 mL four-neck flask, 2.5 g of dodecyl methacrylate, 5.1 g of styrene, 53.1 g of 80% by mass methacryloyloxyethyl trimethylammonium chloride, 188.2 g of demineralized water, 0.5 g of sodium dodecyl sulfate, and 0.05 g of 2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (VA-044 manufactured by Wako Pure Chemical Industries) were charged and nitrogen gas was passed through while stirring at 150 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Then, the temperature was maintained at 70°C for 2 hours. Then, the mixture was cooled to obtain an aqueous polymer solution. The viscosity of the 1% by mass aqueous solution of the obtained polymer was 67.5 mPa·s. The results are shown in Table 1.

(表1)

Figure 0007571996000001
カチオン性単量体;DMM:ジメチルアミノエチルメタクリレート、
DMC:メタクリロイルオキシエチルトリメチルアンモニウムクロライド
疎水性単量体;St:スチレン、DDM:ドデシルメタクリレート、2EHA:2-エチルへキシルアクリレート、SMA:ステアリルメタクリレート
ノ二オン性単量体;AAM:アクリルアミド
1質量%水溶液粘度;B型粘度計を使用、回転数60rpm、25℃で測定。 (Table 1)
Figure 0007571996000001
Cationic monomer; DMM: dimethylaminoethyl methacrylate,
DMC: methacryloyloxyethyltrimethylammonium chloride hydrophobic monomer; St: styrene, DDM: dodecyl methacrylate, 2EHA: 2-ethylhexyl acrylate, SMA: stearyl methacrylate nonionic monomer; AAM: acrylamide. Viscosity of 1% by mass aqueous solution: measured using a B-type viscometer at a rotation speed of 60 rpm and 25° C.

又、市販の紙力増強剤1~3を用意した。これらの組成、物性を表2に示す。 In addition, commercially available paper strength agents 1 to 3 were prepared. Their compositions and physical properties are shown in Table 2.

(表2)

Figure 0007571996000002
(Table 2)
Figure 0007571996000002

(実施例1)
紙料原料として、段ボール古紙をナイアガラ式ビーターで叩解し、叩解度300mLに調製した。これをパルプ濃度1質量%のパルプスラリーとして使用した(pH7.3、電気伝導度117.1mS/m)。このパルプスラリー500mLに対し、パルプ固形分に対して表1の本発明における高分子試料製造例1を0.01質量%添加、表2の紙力増強剤1を0.3質量%添加後、800rpmで1分間撹拌後、TAPPIスタンダード抄紙機にて抄紙(80メッシュワイヤー使用)し、続いて圧力410kPaで5分間プレスし、さらに回転型ドラムワイヤーを使用し105℃で3分間乾燥した。温度23℃、湿度50%の条件下で24時間調湿して、坪量80g/cmの紙を得た。得られた紙について、破裂強度、圧縮強度を測定し、それぞれ比破裂強度、比圧縮強度で表した。破裂強度は、ミューレン破裂試験機(熊谷理機工業社製)を用いてJIS P 8131、圧縮強度は、ショートスパン圧縮試験機(L&W社製、Compressive Strength Tester STFI)を用いてJIS P 8126に従い実施した。又、製造例2~4についても同様な試験を実施した。これらの結果を表3に示す。
Example 1
As a paper stock, waste cardboard was beaten with a Niagara beater to a degree of beating of 300 mL. This was used as a pulp slurry with a pulp concentration of 1% by mass (pH 7.3, electrical conductivity 117.1 mS/m). To 500 mL of this pulp slurry, 0.01% by mass of the polymer sample production example 1 in the present invention in Table 1 and 0.3% by mass of the paper strength enhancer 1 in Table 2 were added based on the pulp solid content, and the mixture was stirred at 800 rpm for 1 minute, after which paper was made with a TAPPI standard paper machine (using 80 mesh wire), followed by pressing for 5 minutes at a pressure of 410 kPa, and then drying for 3 minutes at 105°C using a rotary drum wire. The paper was conditioned for 24 hours under conditions of a temperature of 23°C and a humidity of 50%, to obtain a paper with a basis weight of 80 g/ cm2 . The burst strength and compression strength of the obtained paper were measured and expressed as specific burst strength and specific compression strength, respectively. The burst strength was measured using a Mullen burst tester (manufactured by Kumagai Riki Kogyo Co., Ltd.) in accordance with JIS P 8131, and the compressive strength was measured using a short span compression tester (Compressive Strength Tester STFI, manufactured by L&W Co., Ltd.) in accordance with JIS P 8126. The same tests were also carried out for Production Examples 2 to 4. The results are shown in Table 3.

(比較例1)
実施例1と同じパルプスラリーを用いて、実施例1と同様な試験を本発明における高分子試料を使用しないで実施した。その結果を表3に示す。
(Comparative Example 1)
Using the same pulp slurry as in Example 1, the same test as in Example 1 was carried out without using the polymer sample of the present invention. The results are shown in Table 3.

(表3)

Figure 0007571996000003
(Table 3)
Figure 0007571996000003

紙力増強剤単独添加に比べて、本発明における高分子試料を併用すると紙力増強剤の効果を促進する効果が認められた。カチオン性単量体と疎水性単量体を用いて得られた高分子試料製造例2は最も効果的であった。 Compared to adding a paper strength agent alone, the use of the polymer sample of the present invention in combination was found to enhance the effect of the paper strength agent. Polymer sample production example 2 obtained using a cationic monomer and a hydrophobic monomer was the most effective.

(実施例2)
実施例1と同じパルプスラリーを用いて、実施例1と同様な試験を本発明における高分子試料製造例5~7を用いて実施した。その結果を表4に示す。
Example 2
Using the same pulp slurry as in Example 1, tests similar to those in Example 1 were carried out using the polymer sample preparation examples 5 to 7 of the present invention. The results are shown in Table 4.

(比較例2)
実施例1と同じパルプスラリーを用いて、実施例1と同様な試験を本発明における高分子試料を使用しないで実施した。その結果を表4に示す。
(Comparative Example 2)
Using the same pulp slurry as in Example 1, the same test as in Example 1 was carried out without using the polymer sample of the present invention. The results are shown in Table 4.

(表4)

Figure 0007571996000004
(Table 4)
Figure 0007571996000004

紙力増強剤単独添加に比べて、本発明における高分子試料を併用時、紙力増強剤の効果を促進する効果が認められた。疎水性単量体含有量が多く、1質量%水溶液粘度が高いと効果が高い傾向にあることが分かった。 Compared to adding a paper strength agent alone, the use of the polymer sample of the present invention in combination with the paper strength agent was found to promote the effect of the paper strength agent. It was found that the effect tends to be greater when the hydrophobic monomer content is high and the viscosity of the 1% by mass aqueous solution is high.

(実施例3)
実施例1と同じパルプスラリーを用いて、実施例1と同様な試験を本発明における高分子試料製造例8を用いて実施した。紙力増強剤と本発明における高分子試料の有効な添加量比を調べた。その結果を表5に示す。
Example 3
Using the same pulp slurry as in Example 1, the same test as in Example 1 was carried out using the polymer sample of the present invention, Example 8. The effective addition ratio of the paper strength agent and the polymer sample of the present invention was investigated. The results are shown in Table 5.

(比較例3)
実施例1と同じパルプスラリーを用いて、実施例1と同様な試験を紙力増強剤単独、又は本発明における高分子試料単独で実施した。その結果を表5に示す。
(Comparative Example 3)
Using the same pulp slurry as in Example 1, tests similar to those in Example 1 were carried out using the paper strength agent alone or the polymer sample of the present invention alone. The results are shown in Table 5.

(表5)

Figure 0007571996000005
(Table 5)
Figure 0007571996000005

同等の総添加率の比較において、紙力増強剤単独添加に比べて、本発明における高分子試料を少量併用することで紙力を促進する効果が認められた。 When comparing the same total addition rate, it was found that the addition of a small amount of the polymer sample of the present invention in combination with the paper strength agent alone was more effective at promoting paper strength.

(実施例4)
実施例1と同じパルプスラリーを用いて、実施例1と同様な試験を紙力増強剤2、紙力増強剤3を使用して実施した。その結果を表6に示す。
Example 4
Using the same pulp slurry as in Example 1, tests similar to those in Example 1 were carried out using paper strength agents 2 and 3. The results are shown in Table 6.

(比較例4)
実施例1と同じパルプスラリーを用いて、実施例1と同様な試験を本発明における高分子試料を使用しないで実施した。その結果を表6に示す。
(Comparative Example 4)
Using the same pulp slurry as in Example 1, the same test as in Example 1 was carried out without using the polymer sample of the present invention. The results are shown in Table 6.

(表6)

Figure 0007571996000006
Table 6
Figure 0007571996000006

何れの紙力増強剤に対しても本発明における高分子試料を少量添加することで大きな紙力増強剤促進効果が認められた。
















Addition of a small amount of the polymer sample of the present invention to any of the paper strength agents was found to have a significant effect of promoting the paper strength agent.
















Claims (4)

カチオン性単量体を全単量体に対し、30質量%~100質量%含む単量体成分を重合して得られる高分子からなる製紙用添加剤であり、該製紙用添加剤を抄紙前の製紙原料に、紙力増強剤添加前あるいは同時に紙力増強剤(純分)に対し、1質量%~100質量%(高分子純分)添加することを特徴とする紙力増強剤の効果促進方法 The papermaking additive is a polymer obtained by polymerizing a monomer component containing 30% by mass to 100% by mass of a cationic monomer based on the total monomers, and the method for enhancing the effect of a paper strength agent is characterized in that the papermaking additive is added to a papermaking raw material prior to papermaking in an amount of 1% by mass to 100% by mass (pure polymer content) of the paper strength agent (pure content) before or simultaneously with the addition of the paper strength agent . 前記高分子が、疎水性単量体を含む単量体成分を重合して得られる高分子であることを特徴とする請求項1記載の紙力増強剤の効果促進方法 2. The method for enhancing the effect of a paper strength agent according to claim 1, wherein the polymer is obtained by polymerizing a monomer component containing a hydrophobic monomer. 疎水性単量体を全単量体に対し、0質量%を超えて~50質量%含む単量体成分を重合して得られる高分子であることを特徴とする請求項2記載の紙力増強剤の効果促進方法 The method for enhancing the effect of a paper strength agent according to claim 2, characterized in that the polymer is obtained by polymerizing a monomer component containing more than 0% by mass to 50% by mass of hydrophobic monomers relative to the total monomers. 前記高分子の1質量%水溶液をB型粘度計で回転数60rpmにおいて測定したときの粘度(25℃)が、5~200mPa・sであることを特徴とする請求項1~3の何れかに記載の紙力増強剤の効果促進方法
The method for enhancing the effect of a paper strength agent according to any one of claims 1 to 3, characterized in that the viscosity (25°C) of a 1% by mass aqueous solution of the polymer is 5 to 200 mPa·s when measured with a B-type viscometer at a rotation speed of 60 rpm.
JP2020195619A 2020-11-26 A papermaking additive that enhances the effectiveness of paper strength agents Active JP7571996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020195619A JP7571996B2 (en) 2020-11-26 A papermaking additive that enhances the effectiveness of paper strength agents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020195619A JP7571996B2 (en) 2020-11-26 A papermaking additive that enhances the effectiveness of paper strength agents

Publications (2)

Publication Number Publication Date
JP2022084045A JP2022084045A (en) 2022-06-07
JP7571996B2 true JP7571996B2 (en) 2024-10-23

Family

ID=

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115199A (en) 2000-10-12 2002-04-19 Kao Corp Additive for making paper
JP2003324523A (en) 2002-05-02 2003-11-14 Cosmo Information System:Kk Service system for providing local information
JP2007029766A (en) 2005-07-22 2007-02-08 Sanyo Chem Ind Ltd Organic coagulant and method for treating waste water or sludge
JP2008296154A (en) 2007-05-31 2008-12-11 Sanyo Chem Ind Ltd Polymer flocculant
JP2020147875A (en) 2019-03-15 2020-09-17 荒川化学工業株式会社 Powder type paper-strengthening agent, manufacturing method of powder type paper-strengthening agent, paper-strengthening agent solution and paper
JP2020176336A (en) 2019-04-16 2020-10-29 ハイモ株式会社 Paper strength enhancing agent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115199A (en) 2000-10-12 2002-04-19 Kao Corp Additive for making paper
JP2003324523A (en) 2002-05-02 2003-11-14 Cosmo Information System:Kk Service system for providing local information
JP2007029766A (en) 2005-07-22 2007-02-08 Sanyo Chem Ind Ltd Organic coagulant and method for treating waste water or sludge
JP2008296154A (en) 2007-05-31 2008-12-11 Sanyo Chem Ind Ltd Polymer flocculant
JP2020147875A (en) 2019-03-15 2020-09-17 荒川化学工業株式会社 Powder type paper-strengthening agent, manufacturing method of powder type paper-strengthening agent, paper-strengthening agent solution and paper
JP2020176336A (en) 2019-04-16 2020-10-29 ハイモ株式会社 Paper strength enhancing agent

Similar Documents

Publication Publication Date Title
EP1425472B1 (en) Method of improving retention and drainage in a papermaking process using a diallyl -n, n-disubstituted ammonium halide/acrylamide copolymer and a structurally modified cationic polymer
EP1581564B1 (en) Cationic or amphoteric copolymers prepared in an inverse emulsion matrix and their use in preparing cellulosic fiber compositions
EP0659780B1 (en) Acrylamide polymers and uses thereof
US8404083B2 (en) Process for increasing the dry strength of paper, board and cardboard
US20060266488A1 (en) Hydrophobic polymers and their use in preparing cellulosic fiber compositions
AU2002324874A1 (en) Method of improving retention and drainage in a papermaking process using diallyl-N, N-disubstituted ammonium halide/acrylamide copolymer and a structurally modified cationic polymer
CN107604755B (en) Paper strength agent, method for producing paper strength agent, and method for producing paper and paper
EP1463767B1 (en) High molecular weight cationic and anionic polymers comprising zwitterionic monomers
JP2003517104A (en) Method of using hydrophobic associative polymer in production of cellulosic fiber composition, and cellulosic fiber composition incorporating hydrophobic associative polymer
MX2011001884A (en) Polymer dispersion.
JP3545473B2 (en) Acrylamide polymer and its use
CN109503771A (en) A kind of new and effective paper strengthening agent
JP7571996B2 (en) A papermaking additive that enhances the effectiveness of paper strength agents
US20170362776A1 (en) Production of paper and board
JP7332100B2 (en) Papermaking paper strength agent
JP2016538429A (en) Use of nanocrystalline cellulose and polymer-grafted nanocrystalline cellulose to increase retention, wet strength and dry strength in the papermaking process
JP3549330B2 (en) Papermaking additives
JP7453648B2 (en) New paper strength agent
JP2022084045A (en) Additive for paper making, capable of promoting effect of paper-strengthening agent
JP3798784B2 (en) Paper strength enhancer and paper
JP7277884B2 (en) Method for manufacturing paper strength agent
JP2023128115A (en) Polymer sizing agent for paper making
JP7154705B2 (en) Ketene dimer emulsion sizing agent and paper manufacturing method
JP2024059162A (en) Size agent for paper making
JP2022061062A (en) Papermaking additive