JP7453648B2 - New paper strength agent - Google Patents

New paper strength agent Download PDF

Info

Publication number
JP7453648B2
JP7453648B2 JP2020048566A JP2020048566A JP7453648B2 JP 7453648 B2 JP7453648 B2 JP 7453648B2 JP 2020048566 A JP2020048566 A JP 2020048566A JP 2020048566 A JP2020048566 A JP 2020048566A JP 7453648 B2 JP7453648 B2 JP 7453648B2
Authority
JP
Japan
Prior art keywords
mass
paper
polymer
hours
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020048566A
Other languages
Japanese (ja)
Other versions
JP2021147723A (en
Inventor
剛 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Original Assignee
Hymo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corp filed Critical Hymo Corp
Priority to JP2020048566A priority Critical patent/JP7453648B2/en
Publication of JP2021147723A publication Critical patent/JP2021147723A/en
Application granted granted Critical
Publication of JP7453648B2 publication Critical patent/JP7453648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は紙の製造に使用される製紙用紙力剤に関する。 The present invention relates to a paper strength agent used in the manufacture of paper.

従来から紙に強度を付与する紙力剤として、ポリアクリルアミド系紙力剤がある。ポリアクリルアミド系紙力剤はイオン性によりアニオンタイプ、カチオンタイプ、及び両性タイプに分類される。現在では性能の面から、両性タイプの紙力剤が主流となっている。両性タイプのポリアクリルアミド系紙力剤は、アクリルアミドにカチオン性モノマーとアニオン性モノマー等の各種重合成分を共重合して得られる両性アクリルアミド系水溶性ポリマーよりなる(特許文献1)。両性アクリルアミド系水溶性ポリマーは、ポリイオンコンプレックスを形成する。ポリイオンコンプレックスは、カチオン基とアニオン基の間の静電相互作用により形成される。ポリイオンコンプレックスを形成することで、両性アクリルアミド系水溶性ポリマーは紙力増強効果を発揮することが知られている。 Polyacrylamide-based paper strength agents have conventionally been used as paper strength agents that impart strength to paper. Polyacrylamide paper strength agents are classified into anionic types, cationic types, and amphoteric types depending on their ionicity. Currently, from the viewpoint of performance, amphoteric paper strength agents are the mainstream. Amphoteric type polyacrylamide paper strength agents are made of amphoteric acrylamide water-soluble polymers obtained by copolymerizing acrylamide with various polymerization components such as cationic monomers and anionic monomers (Patent Document 1). The amphoteric acrylamide water-soluble polymer forms a polyion complex. Polyion complexes are formed by electrostatic interactions between cationic and anionic groups. It is known that amphoteric acrylamide water-soluble polymers exhibit paper strength enhancing effects by forming polyion complexes.

近年古紙のリサイクル化やクローズド化が進むことで、抄紙系内には微細繊維や溶存電解質物質が蓄積され、抄紙系の電気伝導度は上昇傾向にある。このため、特に両性タイプの紙力剤はイオンコンプレックスの形成が阻害され、十分な効果が発揮できない状況となっている。 In recent years, as waste paper has become more recycled and closed, fine fibers and dissolved electrolyte substances have accumulated within the papermaking system, and the electrical conductivity of the papermaking system has been on the rise. For this reason, particularly with amphoteric paper strength agents, the formation of ionic complexes is inhibited, resulting in a situation where sufficient effects cannot be exhibited.

一方、分子内に疎水性基を有する水溶性高分子は水中で会合体を形成することが知られている(非特許文献1)。疎水性会合体は疎水性相互作用により形成されるため、溶存電解質の存在によりその形成が阻害されることは無い。 On the other hand, it is known that water-soluble polymers having hydrophobic groups in their molecules form aggregates in water (Non-Patent Document 1). Since hydrophobic aggregates are formed by hydrophobic interactions, their formation is not inhibited by the presence of dissolved electrolytes.

疎水性基を有する重合性単量体として反応性界面活性剤がある。紙力剤製造時の高分子水溶液の撹拌軸への巻き付き現象を抑制するために反応性界面活性剤を添加する技術(特許文献2、3)が開示されている。本技術は、重合時の高分子水溶液の撹拌軸への巻き付き現象を抑制するためのものであり、重合した高分子の性能を向上させるために反応性界面活性剤を添加するものではない。また、反応性界面活性剤と重合性単量体を共重合してなる水性ポリマーとポリマー微粒子の混合物からなる水性ポリマー組成物が、機械的、化学的、貯蔵安定性に優れ、塗工紙に使用した場合に表面強度、内部強度、印刷適性等を改善することが開示されている(特許文献4)。当該技術はポリマー微粒子を必須とするものであり、また表面塗工剤を目的としたものである。また、合成樹脂エマルション及び反応性界面活性剤を共重合成分とする(メタ)アクリルアミド系共重合体を含有する内添製紙用添加剤が開示されている(特許文献5)。当該技術は合成樹脂エマルジョンの分散性と繊維に対する定着性を改善することを目的とするものである。 Reactive surfactants are examples of polymerizable monomers having hydrophobic groups. Techniques (Patent Documents 2 and 3) have been disclosed in which a reactive surfactant is added in order to suppress the wrapping phenomenon of an aqueous polymer solution around a stirring shaft during the production of a paper strength agent. This technology is intended to suppress the wrapping phenomenon of an aqueous polymer solution around a stirring shaft during polymerization, and does not involve adding a reactive surfactant to improve the performance of polymerized polymers. In addition, an aqueous polymer composition consisting of a mixture of an aqueous polymer copolymerized with a reactive surfactant and a polymerizable monomer and polymer fine particles has excellent mechanical, chemical, and storage stability, and is suitable for coated paper. It has been disclosed that when used, surface strength, internal strength, printability, etc. are improved (Patent Document 4). This technology requires polymer fine particles and is aimed at surface coating agents. Furthermore, an internally added papermaking additive containing a (meth)acrylamide-based copolymer having a synthetic resin emulsion and a reactive surfactant as copolymerization components is disclosed (Patent Document 5). The purpose of this technique is to improve the dispersibility of synthetic resin emulsions and the fixability to fibers.

特開2012-251252号公報JP2012-251252A 特開平2-8207号公報Japanese Unexamined Patent Publication No. 2-8207 特開平2-104796号公報Japanese Unexamined Patent Publication No. 2-104796 特開平10-120711号公報Japanese Patent Application Publication No. 10-120711 特開平11-189988号公報Japanese Patent Application Publication No. 11-189988 高分子46巻3月号(1997年)、128項~131項Kobunshi Vol. 46, March issue (1997), paragraphs 128-131

本発明の目的は、一般に使用されている両性タイプの紙力剤の問題点を解決し、イオン性夾雑物の影響を受けにくく紙力増強効果に優れた新しいタイプの紙力剤を提供することにある。 The purpose of the present invention is to solve the problems of commonly used amphoteric paper strength agents and to provide a new type of paper strength agent that is less susceptible to the effects of ionic impurities and has an excellent paper strength enhancement effect. It is in.

本発明者は鋭意検討を重ねた結果、反応性界面活性剤、(メタ)アクリルアミド、カチオン性単量体を必須成分とし、疎水性単量体を含まない単量体を重合することにより得られる高分子が、優れた紙力増強効果を発揮することを見出した。 As a result of extensive studies, the present inventor found that a reactive surfactant, (meth)acrylamide, and a cationic monomer are essential components, and a monomer that is obtained by polymerizing a monomer that does not contain a hydrophobic monomer. We have discovered that polymers exhibit excellent paper strength enhancement effects.

本発明によれば、優れた紙力増強効果を有し、従来にない新規な構造を有する紙力剤を得ることができる。 According to the present invention, it is possible to obtain a paper strength agent that has an excellent paper strength increasing effect and has a novel structure that has not been seen before.

以下本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明の高分子は、反応性界面活性剤、(メタ)アクリルアミド、カチオン性単量体を必須成分とし、疎水性単量体を含まない単量体を重合することにより得られる。重合は水溶液重合、懸濁重合、塩水中分散重合等の従来公知の方法により行うことができる。例えば、所定の反応容器に単量体混合物、水、ラジカル重合開始剤を添加し、窒素ガス等の不活性ガス雰囲気下、撹拌、加温することにより目的の高分子を得ることができる。 The polymer of the present invention contains a reactive surfactant, (meth)acrylamide, and a cationic monomer as essential components, and is obtained by polymerizing monomers that do not contain hydrophobic monomers. Polymerization can be carried out by conventionally known methods such as aqueous solution polymerization, suspension polymerization, and dispersion polymerization in salt water. For example, the desired polymer can be obtained by adding a monomer mixture, water, and a radical polymerization initiator to a predetermined reaction vessel, stirring and heating the mixture in an inert gas atmosphere such as nitrogen gas.

ここで反応性界面活性剤とは、一分子中にラジカル重合可能なエチレン性二重結合を持つ置換基を有し界面活性剤として機能する単量体である。反応性界面活性剤としては、例えば下記式(1)で表されるポリオキシエチレンスチレン化プロペニルフェニルエーテル(第一工業製薬株式会社製アクアロンAN-10(nの平均値10)、AN-20(nの平均値20)、AN-30(nの平均値30)等)、下記式(2)で表されるポリオキシエチレンスチレン化プロペニルフェニルエーテル硫酸エステル塩(第一工業製薬株式会社製アクアロンAR-10(nの平均値10)、AR-20(nの平均値20)等)、下記式(3)で表されるポリオキシエチレンノニルプロペニルフェニルエーテル硫酸エステル塩(第一工業製薬株式会社製アクアロンBC-10(nの平均値10)、BC-20(nの平均値20)等)、オクトキシポリエチレングリコールポリプロピレングリコールモノ(メタ)アクリレート、ラウロキシポリエチレングリコールモノ(メタ)アクリレート、ステアロキシポリエチレングリコールモノ(メタ)アクリレート、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム等が挙げられる。これらを二種以上組み合わせることも可能である。反応性界面活性剤は全単量体に対して、0.5質量%~15質量%以下であるが、1質量%より大きく~15質量%以下が好ましく、さらに好ましくは5~10質量%である。反応性界面活性剤とアクリルアミド及びカチオン性単量体を共重合して得られる高分子は水中で疎水性会合体を形成し紙力増強効果が向上する。反応性界面活性剤の量が少ないとアクリルアミド及びカチオン性単量体との共重合が不十分となるため疎水性会合体の形成が不十分となり、紙力増強効果が低下する。また、反応性界面活性剤の量が多いとアクリルアミドの量が少なくなり、パルプとの水素結合による結合力が低下し紙力増強効果が低下する。

Figure 0007453648000001
式(1)
ここで、mは1~3の整数、nは10~1000の整数

Figure 0007453648000002
式(2)
ここで、mは1~3の整数、nは3~1000の整数、Kはアルカリ金属、アルカリ土類金属、アンモニウム基またはアルカノールアミン基

Figure 0007453648000003
式(3)
ここで、nは3~1000の整数、Kはアルカリ金属、アルカリ土類金属、アンモニウム基またはアルカノールアミン基 Here, the reactive surfactant is a monomer that has a substituent having a radically polymerizable ethylenic double bond in one molecule and functions as a surfactant. Examples of the reactive surfactant include polyoxyethylene styrenated propenyl phenyl ether represented by the following formula (1) (Daiichi Kogyo Seiyaku Co., Ltd., Aqualon AN-10 (average value of n: 10), AN-20 ( n average value 20), AN-30 (n average value 30), etc.), polyoxyethylene styrenated propenyl phenyl ether sulfate salt represented by the following formula (2) (Aqualon AR manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) -10 (average value of n: 10), AR-20 (average value of n: 20), etc.), polyoxyethylene nonylpropenyl phenyl ether sulfate salt represented by the following formula (3) (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) Aqualon BC-10 (average value of n: 10), BC-20 (average value of n: 20), etc.), octoxypolyethylene glycol polypropylene glycol mono(meth)acrylate, lauroxypolyethylene glycol mono(meth)acrylate, stearoxypolyethylene Examples include glycol mono(meth)acrylate, polyoxyalkylene alkenyl ether ammonium sulfate, and the like. It is also possible to combine two or more of these. The amount of the reactive surfactant is 0.5% by mass to 15% by mass or less, based on the total monomers, preferably more than 1% by mass to 15% by mass or less, and more preferably 5 to 10% by mass. be. A polymer obtained by copolymerizing a reactive surfactant, acrylamide, and a cationic monomer forms a hydrophobic aggregate in water, improving the paper strength enhancement effect. If the amount of the reactive surfactant is small, the copolymerization with acrylamide and the cationic monomer will be insufficient, resulting in insufficient formation of hydrophobic aggregates, and the paper strength enhancing effect will be reduced. Moreover, when the amount of reactive surfactant is large, the amount of acrylamide is reduced, and the bonding force due to hydrogen bonding with pulp is reduced, resulting in a reduction in paper strength enhancement effect.

Figure 0007453648000001
Formula (1)
Here, m is an integer from 1 to 3, and n is an integer from 10 to 1000.

Figure 0007453648000002
Formula (2)
Here, m is an integer of 1 to 3, n is an integer of 3 to 1000, and K is an alkali metal, an alkaline earth metal, an ammonium group, or an alkanolamine group.

Figure 0007453648000003
Formula (3)
Here, n is an integer from 3 to 1000, K is an alkali metal, an alkaline earth metal, an ammonium group, or an alkanolamine group.

カチオン性単量体としては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリルアミド、ジエチルアミノプロピル(メタ)アクリルアミドなどの無機酸若しくは有機酸の塩類、またはこれら第3級アミノ基含有単量体とメチルクロライド、ベンジルクロライド、ジメチル硫酸、エピクロロヒドリン等の四級化剤との反応によって得られる第四級アンモニウム塩を有する単量体等が挙げられる。この内、第四級アンモニウム塩を有する単量体として、(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロライド、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウムクロライド等が挙げられる。カチオン性単量体は全単量体に対し、3~30質量%が好ましく、更に好ましくは5~25質量%である。カチオン性単量体の量が少ないとパルプへの吸着性が低下し紙力増強効果が低下する。またカチオン性単量体の量が多すぎるとアクリルアミドの量が少なくなり、パルプとの水素結合による結合力が低下し紙力増強効果が低下する。 Examples of the cationic monomer include salts of inorganic or organic acids such as dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylamide, diethylaminopropyl (meth)acrylamide, or salts of these acids. Examples include monomers having quaternary ammonium salts obtained by reacting a tertiary amino group-containing monomer with a quaternizing agent such as methyl chloride, benzyl chloride, dimethyl sulfate, or epichlorohydrin. Among these, monomers having a quaternary ammonium salt include (meth)acryloyloxyethyltrimethylammonium chloride, (meth)acryloyloxyethyldimethylbenzylammonium chloride, and the like. The amount of the cationic monomer is preferably 3 to 30% by weight, more preferably 5 to 25% by weight based on the total monomers. If the amount of the cationic monomer is small, the adsorption to the pulp will decrease and the paper strength enhancement effect will decrease. Furthermore, if the amount of the cationic monomer is too large, the amount of acrylamide will decrease, the bonding strength due to hydrogen bonding with the pulp will decrease, and the paper strength enhancement effect will decrease.

本発明の紙力剤に係る共重合体は重合成分としてさらにアクリルアミド以外のノニオン性単量体、アニオン性単量体、架橋性単量体等を含むことができる。これらの合計量は全単量体の20質量%以下が好ましい。尚、本発明の紙力剤に係る高分子は重合成分として疎水性単量体は含まない。ここで疎水性単量体とは、20℃の水への溶解度が2質量%以下である単量体を意味する。疎水性単量体の例としては、ブチル(メタ)アクリレート、オクチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、スチレン等が挙げられる。 The copolymer related to the paper strength agent of the present invention can further contain nonionic monomers other than acrylamide, anionic monomers, crosslinkable monomers, etc. as polymerization components. The total amount of these is preferably 20% by mass or less of the total monomers. The polymer used in the paper strength agent of the present invention does not contain a hydrophobic monomer as a polymerization component. Here, the hydrophobic monomer means a monomer having a solubility in water at 20° C. of 2% by mass or less. Examples of hydrophobic monomers include butyl (meth)acrylate, octyl (meth)acrylate, stearyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, dodecyl (meth)acrylate, octadecyl (meth)acrylate, Examples include styrene.

アクリルアミド以外のノニオン性単量体としては、ジメチルアクリルアミド、ビニルホルムアミド、ヒドロキシエチル(メタ)アクリレート等がある。これらを二種以上組み合わせることも可能である。 Examples of nonionic monomers other than acrylamide include dimethylacrylamide, vinylformamide, and hydroxyethyl (meth)acrylate. It is also possible to combine two or more of these.

アニオン性単量体としては、(メタ)アクリル酸、クロトン酸等のモノカルボン酸単量体、マレイン酸、イタコン酸等のジカルボン酸単量体、2-アクリルアミド-2-メチルプロパンスルホン酸等の有機スルホン酸単量体、またはこれらのナトリウム塩等のアルカリ金属塩、アンモニウム塩等が挙げられる。これらを二種以上組み合わせることも可能である。 Examples of anionic monomers include monocarboxylic acid monomers such as (meth)acrylic acid and crotonic acid, dicarboxylic acid monomers such as maleic acid and itaconic acid, and 2-acrylamido-2-methylpropanesulfonic acid. Examples include organic sulfonic acid monomers, alkali metal salts such as sodium salts, ammonium salts, and the like. It is also possible to combine two or more of these.

架橋性単量体としては、メチレンビスアクリルアミド、エチレングリコールジ(メタ)アクリレート、N-メチロールアクリルアミド、トリアリルイソシアネート、ジビニルベンゼン等が挙げられる。架橋性単量体の添加率は全単量体に対し1質量%以下が好ましい。 Examples of the crosslinkable monomer include methylene bisacrylamide, ethylene glycol di(meth)acrylate, N-methylolacrylamide, triallylisocyanate, divinylbenzene, and the like. The addition rate of the crosslinking monomer is preferably 1% by mass or less based on the total monomers.

本発明においては連鎖移動剤を使用することが好ましい。連鎖移動剤としては、アルキルメルカプタン類、チオグリコール酸及びそのエステル類、イソプロピルアルコール、アリルアルコール、アリルアミン、ジ亜リン酸ナトリウム等が挙げられる。また、メタリルスルホン酸ナトリウム、メタリルスルホン酸カリウム、メタリルスルホン酸アンモニウム等のメタリルスルホン酸塩等の単量体が挙げられる。 In the present invention, it is preferred to use a chain transfer agent. Examples of the chain transfer agent include alkylmercaptans, thioglycolic acid and its esters, isopropyl alcohol, allyl alcohol, allylamine, sodium diphosphite, and the like. Further, monomers such as methallyl sulfonates such as sodium methallyl sulfonate, potassium methallyl sulfonate, and ammonium methallyl sulfonate may be mentioned.

重合開始剤としては、例えば過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、過酸化水素、過酸化ベンゾイル等の過酸化物等が挙げられる。これらは単独でも使用できるが、亜硫酸塩、亜硫酸水素塩等の還元剤と組合せてレドックス系重合開始剤としても使用できる。2、2’-アゾビス[2-(5-メチル-イミダゾリン-2-イル)プロパン]塩酸塩、2、2’-アゾビス[2-(5-メチル-イミダゾリン-2-イル)プロパン]塩酸塩、2、2’-アゾビス-2-アミジノプロパン塩酸塩等のアゾ系の重合開始剤も使用可能である。重合開始剤の量は全単量体に対し0.05質量%~2質量%、好ましくは0.1~1質量%である。 Examples of the polymerization initiator include persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate, and peroxides such as hydrogen peroxide and benzoyl peroxide. Although these can be used alone, they can also be used as redox polymerization initiators in combination with reducing agents such as sulfites and hydrogen sulfites. 2,2'-azobis[2-(5-methyl-imidazolin-2-yl)propane] hydrochloride, 2,2'-azobis[2-(5-methyl-imidazolin-2-yl)propane] hydrochloride, Azo polymerization initiators such as 2,2'-azobis-2-amidinopropane hydrochloride can also be used. The amount of polymerization initiator is 0.05% to 2% by weight, preferably 0.1 to 1% by weight based on the total monomers.

重合反応は、通常温度30℃~100℃、時間は0.5時間~20時間で行う。得られる高分子の濃度は通常5~50質量%である。 The polymerization reaction is usually carried out at a temperature of 30°C to 100°C and for a period of 0.5 to 20 hours. The concentration of the resulting polymer is usually 5 to 50% by weight.

得られた高分子は、高分子1質量%水溶液の粘度が5~50mPa・sであることが好ましい。粘度はB型粘度計で回転数60rpm、25℃で測定したものである。粘度がこれより小さいと紙力増強効果が不十分となる。また、粘度がこれより大きいと溶解性が低下し取扱いが困難となる。B型粘度計として、東機産業株式会社製B8M型、TVB-10M型等の汎用品が適宜に使用される。粘度が100mPa・s以下の場合は、1号ローターを用いる。 The obtained polymer preferably has a viscosity of 5 to 50 mPa·s as a 1% by mass aqueous solution of the polymer. The viscosity was measured using a B-type viscometer at a rotation speed of 60 rpm and 25°C. If the viscosity is lower than this, the paper strength enhancing effect will be insufficient. Moreover, if the viscosity is higher than this, the solubility will decrease and handling will become difficult. As the B-type viscometer, general-purpose products such as B8M model and TVB-10M model manufactured by Toki Sangyo Co., Ltd. are used as appropriate. If the viscosity is 100 mPa·s or less, use a No. 1 rotor.

本発明における紙力剤を使用する紙の種類としては、新聞用紙、上質印刷用紙、中質印刷用紙、グラビア印刷用紙、PPC用紙、塗工原紙、微塗工紙、包装用紙、ライナーや中芯原紙の板紙等が挙げられる。添加する場所としては、抄紙工程におけるパルプスラリー中あるいは湿紙上などのウエットエンド部に添加される。添加率としては、パルプ乾燥固形分に対して、固形分で0.05~10質量%であり、好ましくは0.1~5質量%である。又、その他の紙力剤やサイズ剤、硫酸バンド、凝結剤、歩留向上剤、濾水性向上剤等の製紙用薬品と併用することができる。 The types of paper for which the paper strength agent of the present invention is used include newsprint, wood-free printing paper, medium-quality printing paper, gravure printing paper, PPC paper, coated base paper, lightly coated paper, packaging paper, liner and core base paper board, etc. The agent is added to the pulp slurry or to the wet end, such as on the wet paper, during the papermaking process. The addition rate is 0.05 to 10% by mass, preferably 0.1 to 5% by mass, in terms of solids, based on the dry solids content of the pulp. The agent can also be used in combination with other paper strength agents, sizing agents, aluminum sulfate, coagulants, retention aids, drainage aids, and other papermaking chemicals.

以下、実施例によって本発明をさらに詳しく説明するが、本発明はその要旨を超えない限り、以下の実施例に制約されるものではない。なお、粘度はB型粘度計を使用し、回転数60rpm、25℃で測定した。 EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. The viscosity was measured using a B-type viscometer at a rotation speed of 60 rpm and 25°C.

(実施例1)
500mLの4つ口フラスコに、反応性界面活性剤オクトキシポリエチレングリコールポリプロピレングリコールモノメタクリレート(ブレンマー50POEP-800B、日油製)1.0g、80質量%アクリロイルオキシエチルジメチルベンジルアンモニウムクロライド3.1g、50%アクリルアミド93.6g、脱塩水152.0g、ジ亜リン酸ナトリウム0.10g、VA-044(和光純薬製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、20.5mPa・sであった。この結果を表1に示す。
(Example 1)
In a 500 mL four-necked flask, 1.0 g of reactive surfactant octoxypolyethylene glycol polypropylene glycol monomethacrylate (Blenmar 50 POEP-800B, manufactured by NOF Corporation), 3.1 g of 80% by mass acryloyloxyethyldimethylbenzyl ammonium chloride, 50 % acrylamide, 152.0 g of demineralized water, 0.10 g of sodium diphosphite, and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries, Ltd.) were charged, and nitrogen gas was passed through the mixture while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Thereafter, it was held at 70°C for 2 hours. Thereafter, it was cooled to obtain an aqueous polymer solution. The viscosity of the obtained 1% by mass aqueous solution of the polymer was 20.5 mPa·s. The results are shown in Table 1.

(実施例2)
500mLの4つ口フラスコに、反応性界面活性剤オクトキシポリエチレングリコールポリプロピレングリコールモノメタクリレート(ブレンマー50POEP-800B、日油製)1.0g、80質量%アクリロイルオキシエチルジメチルベンジルアンモニウムクロライド11.3g、50%アクリルアミド95.6g、脱塩水142.9g、ジ亜リン酸ナトリウム0.10g、VA-044(和光純薬製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、17.5mPa・sであった。この結果を表1に示す。
(Example 2)
In a 500 mL four-necked flask, 1.0 g of reactive surfactant octoxypolyethylene glycol polypropylene glycol monomethacrylate (Blenmar 50 POEP-800B, manufactured by NOF Corporation), 11.3 g of 80% by mass acryloyloxyethyldimethylbenzyl ammonium chloride, 50 % acrylamide, 142.9 g of demineralized water, 0.10 g of sodium diphosphite, and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries, Ltd.) and nitrogen gas was passed through the mixture while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Thereafter, it was held at 70°C for 2 hours. Thereafter, it was cooled to obtain an aqueous polymer solution. The viscosity of the obtained 1% by mass aqueous solution of the polymer was 17.5 mPa·s. The results are shown in Table 1.

(実施例3)
500mLの4つ口フラスコに、反応性界面活性剤アクアロンAN-10(第一工業製薬製)1.0g、80質量%アクリロイルオキシエチルトリメチルアンモニウムクロライド9.4g、50質量%アクリルアミド83.2g、脱塩水151.6g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、23.5mPa・sであった。この結果を表1に示す。
(Example 3)
In a 500 mL four-necked flask, 1.0 g of the reactive surfactant Aquaron AN-10 (manufactured by Daiichi Kogyo Seiyaku), 9.4 g of 80% by mass acryloyloxyethyltrimethylammonium chloride, 83.2 g of 50% by mass acrylamide, and 151.6 g of brine, 0.30 g of sodium methallylsulfonate, and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries, Ltd.) were charged, and nitrogen gas was passed through the mixture while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Thereafter, it was held at 70°C for 2 hours. Thereafter, it was cooled to obtain an aqueous polymer solution. The viscosity of the obtained 1% by mass aqueous solution of the polymer was 23.5 mPa·s. The results are shown in Table 1.

参考例4)
500mLの4つ口フラスコに、反応性界面活性剤アクアロンAN-10(第一工業製薬製)0.25g、80質量%アクリロイルオキシエチルトリメチルアンモニウムクロライド9.4g、50質量%アクリルアミド84.6g、脱塩水151.0g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、18.5mPa・sであった。この結果を表1に示す。
( Reference example 4)
In a 500 mL four-necked flask, 0.25 g of the reactive surfactant Aquaron AN-10 (manufactured by Daiichi Kogyo Seiyaku), 9.4 g of 80% by mass acryloyloxyethyltrimethylammonium chloride, 84.6 g of 50% by mass acrylamide, and 151.0 g of brine, 0.30 g of sodium methallylsulfonate, and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries, Ltd.) were charged, and nitrogen gas was passed through the mixture while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Thereafter, it was held at 70°C for 2 hours. Thereafter, it was cooled to obtain an aqueous polymer solution. The viscosity of the obtained 1% by mass aqueous solution of the polymer was 18.5 mPa·s. The results are shown in Table 1.

(実施例5)
500mLの4つ口フラスコに、反応性界面活性剤アクアロンAN-10(第一工業製薬製)5.0g、80質量%アクリロイルオキシエチルトリメチルアンモニウムクロライド9.4g、50質量%アクリルアミド75.1g、脱塩水155.4g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、27.0mPa・sであった。この結果を表1に示す。
(Example 5)
In a 500 mL four-necked flask, 5.0 g of the reactive surfactant Aquaron AN-10 (manufactured by Daiichi Kogyo Seiyaku), 9.4 g of 80% by mass acryloyloxyethyltrimethylammonium chloride, 75.1 g of 50% by mass acrylamide, and 155.4 g of brine, 0.30 g of sodium methallylsulfonate, and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries, Ltd.) were charged, and nitrogen gas was passed through the mixture while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Thereafter, it was held at 70°C for 2 hours. Thereafter, it was cooled to obtain an aqueous polymer solution. The viscosity of the obtained 1% by mass aqueous solution of the polymer was 27.0 mPa·s. The results are shown in Table 1.

(実施例6)
500mLの4つ口フラスコに、反応性界面活性剤アクアロンAN-10(第一工業製薬製)2.5g、80質量%アクリロイルオキシエチルトリメチルアンモニウムクロライド9.4g、50質量%アクリルアミド80.1g、脱塩水153.1g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、32.5mPa・sであった。この結果を表1に示す。
(Example 6)
In a 500 mL four-necked flask, 2.5 g of the reactive surfactant Aqualon AN-10 (manufactured by Daiichi Kogyo Seiyaku), 9.4 g of 80% by mass acryloyloxyethyltrimethylammonium chloride, 80.1 g of 50% by mass acrylamide, and 153.1 g of brine, 0.30 g of sodium methallylsulfonate, and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries, Ltd.) were charged, and nitrogen gas was passed through the mixture while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Thereafter, it was held at 70°C for 2 hours. Thereafter, it was cooled to obtain an aqueous polymer solution. The viscosity of the obtained 1% by mass aqueous solution of the polymer was 32.5 mPa·s. The results are shown in Table 1.

(実施例7)
500mLの4つ口フラスコに、反応性界面活性剤アクアロンAN-10(第一工業製薬製)0.50g、ジメチルアミノエチルメタクリレート7.5g、35%塩酸5.0g、50質量%アクリルアミド84.2g、脱塩水152.1g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、23.5mPa・sであった。この結果を表1に示す。
(Example 7)
In a 500 mL four-necked flask, 0.50 g of reactive surfactant Aquaron AN-10 (manufactured by Daiichi Kogyo Seiyaku), 7.5 g of dimethylaminoethyl methacrylate, 5.0 g of 35% hydrochloric acid, and 84.2 g of 50% by mass acrylamide. , 152.1 g of demineralized water, 0.30 g of sodium methallylsulfonate, and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries, Ltd.) were charged, and nitrogen gas was passed through the mixture while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Thereafter, it was held at 70°C for 2 hours. Thereafter, it was cooled to obtain an aqueous polymer solution. The viscosity of the obtained 1% by mass aqueous solution of the polymer was 23.5 mPa·s. The results are shown in Table 1.

(実施例8)
500mLの4つ口フラスコに、反応性界面活性剤アクアロンAR-10(第一工業製薬製)5.0g、ジメチルアミノエチルメタクリレート7.5g、35%塩酸5.0g、50質量%アクリルアミド75.1g、脱塩水157.8g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、22.0mPa・sであった。この結果を表1に示す。
(Example 8)
In a 500 mL four-necked flask, 5.0 g of reactive surfactant Aquaron AR-10 (manufactured by Daiichi Kogyo Seiyaku), 7.5 g of dimethylaminoethyl methacrylate, 5.0 g of 35% hydrochloric acid, and 75.1 g of 50% by mass acrylamide. , 157.8 g of demineralized water, 0.30 g of sodium methallylsulfonate, and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries, Ltd.) were charged, and nitrogen gas was passed through the mixture while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Thereafter, it was held at 70°C for 2 hours. Thereafter, it was cooled to obtain an aqueous polymer solution. The viscosity of the obtained 1% by mass aqueous solution of the polymer was 22.0 mPa·s. The results are shown in Table 1.

(実施例9)
500mLの4つ口フラスコに、反応性界面活性剤アクアロンAR-10(第一工業製薬製)2.5g、ジメチルアミノエチルメタクリレート7.5g、35%塩酸5.0g、50質量%アクリルアミド80.0g、脱塩水155.1g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、29.2mPa・sであった。この結果を表1に示す。
(Example 9)
In a 500 mL four-neck flask, 2.5 g of reactive surfactant Aqualon AR-10 (manufactured by Daiichi Kogyo Seiyaku), 7.5 g of dimethylaminoethyl methacrylate, 5.0 g of 35% hydrochloric acid, and 80.0 g of 50% by mass acrylamide. , 155.1 g of demineralized water, 0.30 g of sodium methallylsulfonate, and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries, Ltd.) were charged, and nitrogen gas was passed through the mixture while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Thereafter, it was held at 70°C for 2 hours. Thereafter, it was cooled to obtain an aqueous polymer solution. The viscosity of the obtained 1% by mass aqueous solution of the polymer was 29.2 mPa·s. The results are shown in Table 1.

参考例10)
500mLの4つ口フラスコに、反応性界面活性剤アクアロンAR-10(第一工業製薬製)0.25g、ジメチルアミノエチルメタクリレート7.5g、35%塩酸5.0g、50質量%アクリルアミド84.5g、脱塩水152.8g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、20.2mPa・sであった。この結果を表1に示す。
( Reference example 10)
In a 500 mL four-necked flask, 0.25 g of reactive surfactant Aquaron AR-10 (manufactured by Daiichi Kogyo Seiyaku), 7.5 g of dimethylaminoethyl methacrylate, 5.0 g of 35% hydrochloric acid, and 84.5 g of 50% by mass acrylamide. , 152.8 g of demineralized water, 0.30 g of sodium methallylsulfonate, and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries, Ltd.) were charged, and nitrogen gas was passed through the mixture while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Thereafter, it was held at 70°C for 2 hours. Thereafter, it was cooled to obtain an aqueous polymer solution. The viscosity of the obtained 1% by mass aqueous solution of the polymer was 20.2 mPa·s. The results are shown in Table 1.

(実施例11)
500mLの4つ口フラスコに、反応性界面活性剤アクアロンAR-10(第一工業製薬製)1.0g、ジメチルアミノエチルメタクリレート7.5g、35%塩酸5.2g、50質量%アクリルアミド83.1g、脱塩水153.5g、メタリルスルホン酸ナトリウム0.35g、VA-044(和光純薬製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、27.5mPa・sであった。この結果を表1に示す。
(Example 11)
In a 500 mL four-necked flask, 1.0 g of reactive surfactant Aquaron AR-10 (manufactured by Daiichi Kogyo Seiyaku), 7.5 g of dimethylaminoethyl methacrylate, 5.2 g of 35% hydrochloric acid, and 83.1 g of 50% by mass acrylamide. , 153.5 g of demineralized water, 0.35 g of sodium methallylsulfonate, and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries, Ltd.) were charged, and nitrogen gas was passed through the mixture while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Thereafter, it was held at 70°C for 2 hours. Thereafter, it was cooled to obtain an aqueous polymer solution. The viscosity of the obtained 1% by mass aqueous solution of the polymer was 27.5 mPa·s. The results are shown in Table 1.

(実施例12)
500mLの4つ口フラスコに、反応性界面活性剤アクアロンAR-10(第一工業製薬製)1.0g、ジメチルアミノエチルメタクリレート7.5g、35%塩酸5.0g、80質量%アクリル酸1.3g、50質量%アクリルアミド83.2g、脱塩水153.5g、メタリルスルホン酸ナトリウム0.35g、VA-044(和光純薬製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、20.5mPa・sであった。この結果を表1に示す。
(Example 12)
In a 500 mL four-necked flask, 1.0 g of the reactive surfactant Aquaron AR-10 (manufactured by Daiichi Kogyo Seiyaku), 7.5 g of dimethylaminoethyl methacrylate, 5.0 g of 35% hydrochloric acid, and 1.0 g of 80% by mass acrylic acid. 3g of 50% by mass acrylamide, 83.2g of demineralized water, 153.5g of demineralized water, 0.35g of sodium methallylsulfonate, and 0.1g of VA-044 (manufactured by Wako Pure Chemical Industries, Ltd.) were charged, and nitrogen gas was passed through the mixture while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Thereafter, it was held at 70°C for 2 hours. Thereafter, it was cooled to obtain an aqueous polymer solution. The viscosity of the obtained 1% by mass aqueous solution of the polymer was 20.5 mPa·s. The results are shown in Table 1.

(実施例13)
500mLの4つ口フラスコに、反応性界面活性剤アクアロンAR-10(第一工業製薬製)1.0g、ジメチルアミノエチルメタクリレート7.5g、35%塩酸5.0g、50質量%アクリルアミド83.1g、脱塩水153.5g、メチレンビスアクリルアミド0.05g、メタリルスルホン酸ナトリウム0.90g、VA-044(和光純薬製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、19.7mPa・sであった。この結果を表1に示す。
(Example 13)
In a 500 mL four-necked flask, 1.0 g of reactive surfactant Aquaron AR-10 (manufactured by Daiichi Kogyo Seiyaku), 7.5 g of dimethylaminoethyl methacrylate, 5.0 g of 35% hydrochloric acid, and 83.1 g of 50% by mass acrylamide. , 153.5 g of demineralized water, 0.05 g of methylenebisacrylamide, 0.90 g of sodium methallylsulfonate, and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries, Ltd.) were charged, and nitrogen gas was passed through the mixture while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Thereafter, it was held at 70°C for 2 hours. Thereafter, it was cooled to obtain an aqueous polymer solution. The viscosity of the obtained 1% by mass aqueous solution of the polymer was 19.7 mPa·s. The results are shown in Table 1.

(実施例14)
500mLの4つ口フラスコに、反応性界面活性剤アクアロンAR-10(第一工業製薬製)2.5g、ジメチルアミノエチルメタクリレート7.5g、35%塩酸5.0g、50質量%アクリルアミド80.0g、脱塩水155.0g、メチレンビスアクリルアミド0.05g、メタリルスルホン酸ナトリウム0.90g、VA-044(和光純薬製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、16.2mPa・sであった。この結果を表1に示す。
(Example 14)
In a 500 mL four-neck flask, 2.5 g of reactive surfactant Aqualon AR-10 (manufactured by Daiichi Kogyo Seiyaku), 7.5 g of dimethylaminoethyl methacrylate, 5.0 g of 35% hydrochloric acid, and 80.0 g of 50% by mass acrylamide. , 155.0 g of demineralized water, 0.05 g of methylenebisacrylamide, 0.90 g of sodium methallylsulfonate, and 0.1 g of VA-044 (manufactured by Wako Pure Chemical Industries, Ltd.) were charged, and nitrogen gas was passed through the mixture while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Thereafter, it was held at 70°C for 2 hours. Thereafter, it was cooled to obtain an aqueous polymer solution. The viscosity of the obtained 1% by mass aqueous solution of the polymer was 16.2 mPa·s. The results are shown in Table 1.

(比較例1)
500mLの4つ口フラスコに、80質量%アクリロイルオキシエチルジメチルベンジルアンモニウムクロライド3.1g、50質量%アクリルアミド96.4g、脱塩水150.9g、ジ亜リン酸ナトリウム0.10g、VA-044(和光純薬製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、18.5mPa・sであった。この結果を表1に示す。
(Comparative example 1)
In a 500 mL four-neck flask, add 3.1 g of 80% by mass acryloyloxyethyldimethylbenzyl ammonium chloride, 96.4 g of 50% by mass acrylamide, 150.9 g of demineralized water, 0.10 g of sodium diphosphite, VA-044 (Japanese). 0.1 g of Hikari Pure Chemical Industries, Ltd.) was added, and nitrogen gas was passed through the mixture while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Thereafter, it was held at 70°C for 2 hours. Thereafter, it was cooled to obtain an aqueous polymer solution. The viscosity of the obtained 1% by mass aqueous solution of the polymer was 18.5 mPa·s. The results are shown in Table 1.

(比較例2)
500mLの4つ口フラスコに、80質量%アクリロイルオキシエチルトリメチルアンモニウムクロライド9.4g、50質量%アクリルアミド85.6g、脱塩水155.6g、メタリルスルホン酸ナトリウム0.30g、VA-044(和光純薬製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、18.5mPa・sであった。この結果を表1に示す。
(Comparative example 2)
In a 500 mL four-necked flask, 9.4 g of 80 mass% acryloyloxyethyltrimethylammonium chloride, 85.6 g of 50 mass% acrylamide, 155.6 g of demineralized water, 0.30 g of sodium methallylsulfonate, VA-044 (Wako Pure) Nitrogen gas was passed through the mixture while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Thereafter, it was held at 70°C for 2 hours. Thereafter, it was cooled to obtain an aqueous polymer solution. The viscosity of the obtained 1% by mass aqueous solution of the polymer was 18.5 mPa·s. The results are shown in Table 1.

(比較例3)
500mLの4つ口フラスコに、ジメチルアミノエチルメタクリレート7.5g、35%塩酸5.0g、50質量%アクリルアミド85.0g、脱塩水152.5g、メタリルスルホン酸ナトリウム0.25g、VA-044(和光純薬製)0.1gを仕込み200rpmで撹拌しながら窒素ガスを通じた。30分後、50℃まで昇温し、3時間保持した。その後70℃で2時間保持した。その後冷却し、高分子水溶液を得た。得られた高分子の1質量%水溶液の粘度は、22.5mPa・sであった。この結果を表1に示す。
(Comparative example 3)
In a 500 mL four-necked flask, add 7.5 g of dimethylaminoethyl methacrylate, 5.0 g of 35% hydrochloric acid, 85.0 g of 50% by mass acrylamide, 152.5 g of demineralized water, 0.25 g of sodium methallylsulfonate, VA-044 ( 0.1 g (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and nitrogen gas was passed through the mixture while stirring at 200 rpm. After 30 minutes, the temperature was raised to 50°C and maintained for 3 hours. Thereafter, it was held at 70°C for 2 hours. Thereafter, it was cooled to obtain an aqueous polymer solution. The viscosity of the resulting 1% by mass aqueous solution of the polymer was 22.5 mPa·s. The results are shown in Table 1.

表1

Figure 0007453648000004
反応性界面活性剤;
50POEP-800B:オクトキシポリエチレングリコールポリプロピレングリコールモノメタクリレート(日油株式会社製ブレンマー50POEP-800B)
AN-10:ポリオキシエチレンスチレン化プロペニルフェニルエーテル(第一工業製薬株式会社製アクアロンAN-10)
AR-10:ポリオキシエチレンスチレン化プロペニルフェニルエーテル硫酸エステル塩(第一工業製薬株式会社製アクアロンAR-10)
カチオン性単量体;
DMBZ:アクリロイルオキシエチルジメチルベンジルアンモニウムクロライド
DMM:ジメチルアミノエチルメタクリレート
DMQ:アクリロイルオキシエチルトリメチルアンモニウムクロライド
その他の単量体;AAC:アクリル酸、MBAA:メチレンビスアクリルアミド ( Table 1 )
Figure 0007453648000004
reactive surfactant;
50POEP-800B: Octoxypolyethylene glycol polypropylene glycol monomethacrylate (Blenmar 50POEP-800B manufactured by NOF Corporation)
AN-10: Polyoxyethylene styrenated propenyl phenyl ether (Aqualon AN-10 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
AR-10: Polyoxyethylene styrenated propenyl phenyl ether sulfate salt (Aqualon AR-10 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
Cationic monomer;
DMBZ: Acryloyloxyethyldimethylbenzylammonium chloride DMM: Dimethylaminoethyl methacrylate DMQ: Acryloyloxyethyltrimethylammonium chloride Other monomers; AAC: Acrylic acid, MBAA: Methylenebisacrylamide

(試験例1)
本発明における紙力剤の紙質測定試験を実施した。先ず、LBKPをナイアガラ式ビーターで叩解し、カナディアンスタンダードフリーネス(叩解度)355mLに調整した。パルプ濃度1質量%のスラリー(pH6.4、電気伝導度17.1mS/m)500mLに対し、パルプ固形分に対し0.5質量%、1質量%となるように表1の実施例の高分子試料あるいは比較例の高分子試料を添加し、800rpmで1分間撹拌後、タッピシートマシンにて抄紙(80メッシュワイヤー使用)し、続いて圧力410kPaで5分間プレスし、さらに回転型乾燥機を使用し105℃で乾燥した。温度23℃、湿度50%の条件下で24時間調湿して、坪量80g/cmの紙を得た。得られた紙の引張強度(オリエンテック製TENSILON RTC-1210A)、JIS P8112に準じて破裂強度を測定し、表2の結果を得た。実施試験例では比較試験例の紙に比較して紙力の向上を示した。
(Test example 1)
A paper quality measurement test of the paper strength agent in the present invention was conducted. First, LBKP was beaten with a Niagara beater and adjusted to Canadian standard freeness (beating degree) of 355 mL. For 500 mL of slurry with a pulp concentration of 1% by mass (pH 6.4, electrical conductivity 17.1mS/m), the height of the example in Table 1 was adjusted so that the pulp solid content was 0.5% by mass and 1% by mass. A molecular sample or a comparative polymer sample was added, and after stirring at 800 rpm for 1 minute, paper was made using a Tappi sheet machine (80 mesh wire was used), followed by pressing at a pressure of 410 kPa for 5 minutes, and then a rotary dryer. It was used and dried at 105°C. The paper was conditioned for 24 hours at a temperature of 23° C. and a humidity of 50% to obtain paper with a basis weight of 80 g/cm 2 . The tensile strength of the obtained paper (TENSILON RTC-1210A manufactured by Orientec) and bursting strength were measured according to JIS P8112, and the results shown in Table 2 were obtained. The practical test example showed an improvement in paper strength compared to the paper of the comparative test example.

(表2)
(Table 2)

(試験例2)
試験例1と同様に調製(叩解度320mL)したパルプ濃度1質量%のスラリー500mLに対し、パルプ固形分に対し0.5質量%、1質量%となるように表1の実施例の高分子試料あるいは比較例の高分子試料を添加し、800rpmで1分間撹拌後、タッピシートマシンにて抄紙(80メッシュワイヤー使用)し、続いて圧力410kPaで5分間プレスし、さらに回転型乾燥機を使用し105℃で乾燥した。温度23℃、湿度50%の条件下で24時間調湿して、坪量80g/cmの紙を得た。得られた紙の内部結合強さ(熊谷理機工業製インターナルボンドテスター)、JIS P8112に準じて破裂強度を測定し、表3の結果を得た。実施試験例では比較試験例の紙に比較して紙力の向上を示した。
(Test example 2)
To 500 mL of slurry with a pulp concentration of 1 mass % prepared in the same manner as in Test Example 1 (freeness: 320 mL), the polymers of the examples shown in Table 1 were added so that the concentrations were 0.5 mass % and 1 mass % based on the pulp solid content. Add the sample or comparative polymer sample, stir for 1 minute at 800 rpm, then make paper using a Tappi sheet machine (using 80 mesh wire), press for 5 minutes at a pressure of 410 kPa, and then use a rotary dryer. and dried at 105°C. The paper was conditioned for 24 hours at a temperature of 23° C. and a humidity of 50% to obtain paper with a basis weight of 80 g/cm 2 . The internal bond strength (internal bond tester manufactured by Kumagai Riki Kogyo) and bursting strength of the obtained paper were measured according to JIS P8112, and the results shown in Table 3 were obtained. The practical test example showed an improvement in paper strength compared to the paper of the comparative test example.

表3

Figure 0007453648000006
( Table 3 )
Figure 0007453648000006

(試験例3)
試験例1と同様に調製(叩解度355mL)したパルプ濃度1質量%のスラリー500mLに対し、パルプ固形分に対し0.5質量%、1質量%となるように表1の実施例の高分子試料あるいは比較例の高分子試料を添加し、800rpmで1分間撹拌後、タッピシートマシンにて抄紙(80メッシュワイヤー使用)し、続いて圧力410kPaで5分間プレスし、さらに回転型乾燥機を使用し105℃で乾燥した。温度23℃、湿度50%の条件下で24時間調湿して、坪量80g/cmの紙を得た。得られた紙の内部結合強さ(熊谷理機工業製インターナルボンドテスター)、JIS P8112に準じて破裂強度を測定し、表4の結果を得た。実施試験例では比較試験例の紙に比較して紙力の向上を示した。
(Test example 3)
To 500 mL of a slurry with a pulp concentration of 1 mass % prepared in the same manner as in Test Example 1 (beating degree 355 mL), the polymers of the examples shown in Table 1 were added so that the concentrations were 0.5 mass % and 1 mass % based on the pulp solid content. Add the sample or comparative polymer sample, stir for 1 minute at 800 rpm, then make paper using a Tappi sheet machine (using 80 mesh wire), press for 5 minutes at a pressure of 410 kPa, and then use a rotary dryer. and dried at 105°C. The paper was conditioned for 24 hours at a temperature of 23° C. and a humidity of 50% to obtain paper with a basis weight of 80 g/cm 2 . The internal bond strength of the obtained paper (internal bond tester manufactured by Kumagai Riki Kogyo) and bursting strength were measured according to JIS P8112, and the results shown in Table 4 were obtained. The practical test example showed an improvement in paper strength compared to the paper of the comparative test example.

(表4)
(Table 4)

(試験例4)
試験例1と同様に調製(叩解度355mL)したパルプ濃度1質量%のスラリー500mLに対し、パルプ固形分に対し0.5質量%、1質量%となるように表1の実施例の高分子試料あるいは比較例の高分子試料又は市販品の両性ポリアクリルアミド系紙力剤(固形分20質量%、pH7のカチオン当量値1.33meq/g、アニオン当量値1.06meq/g)を添加し、800rpmで1分間撹拌後、タッピシートマシンにて抄紙(80メッシュワイヤー使用)し、続いて圧力410kPaで5分間プレスし、さらに回転型乾燥機を使用し105℃で乾燥した。温度23℃、湿度50%の条件下で24時間調湿して、坪量80g/cmの紙を得た。得られた紙の内部結合強さ(熊谷理機工業製インターナルボンドテスター)、JIS P8112に準じて破裂強度を測定し、表5の結果を得た。実施試験例では比較試験例の紙に比較して紙力の向上を示した。
(Test example 4)
To 500 mL of a slurry with a pulp concentration of 1 mass % prepared in the same manner as in Test Example 1 (freeness: 355 mL), the polymers of the examples shown in Table 1 were added so that the concentrations were 0.5 mass % and 1 mass % based on the pulp solid content. Adding a sample or a comparative polymer sample or a commercially available amphoteric polyacrylamide paper strength agent (solid content 20% by mass, pH 7 cation equivalent value 1.33 meq/g, anion equivalent value 1.06 meq/g), After stirring at 800 rpm for 1 minute, paper was made using a Tappi sheet machine (80 mesh wire was used), followed by pressing at a pressure of 410 kPa for 5 minutes, and further drying at 105° C. using a rotary dryer. The paper was conditioned for 24 hours at a temperature of 23° C. and a humidity of 50% to obtain paper with a basis weight of 80 g/cm 2 . The internal bond strength (internal bond tester manufactured by Kumagai Riki Kogyo) and bursting strength of the obtained paper were measured according to JIS P8112, and the results shown in Table 5 were obtained. The practical test example showed an improvement in paper strength compared to the paper of the comparative test example.

(表5)











(Table 5)











Claims (2)

反応性界面活性剤として、ポリオキシエチレンスチレン化プロペニルフェニルエーテル、ポリオキシエチレンスチレン化プロペニルフェニルエーテル硫酸エステル塩及びオクトキシポリエチレングリコールポリプロピレングリコールモノ(メタ)アクリレートから選択される一種以上、(メタ)アクリルアミド、カチオン性単量体を必須成分とし、疎水性単量体を含まない単量体成分を重合して得られる高分子であり、該高分子が全単量体に対して、反応性界面活性剤が1質量%より大きく15質量%以下である単量体成分を重合して得られる高分子からなることを特徴とする紙力剤。 As a reactive surfactant, one or more selected from polyoxyethylene styrenated propenyl phenyl ether, polyoxyethylene styrenated propenyl phenyl ether sulfate salt, octoxypolyethylene glycol polypropylene glycol mono(meth)acrylate, (meth)acrylamide , is a polymer obtained by polymerizing monomer components that contain a cationic monomer as an essential component and does not contain a hydrophobic monomer, and the polymer has a reactive surface activity with respect to all monomers. A paper strength agent characterized in that the agent is made of a polymer obtained by polymerizing monomer components in an amount of more than 1% by mass and not more than 15% by mass . 前記高分子の1質量%水溶液のB型粘度計による回転数60rpm、温度25℃における粘度が5~50mPa・sであることを特徴とする請求項1に記載の紙力剤。 The paper strength agent according to claim 1, wherein the viscosity of the 1% by mass aqueous solution of the polymer measured by a B-type viscometer at a rotation speed of 60 rpm and a temperature of 25° C. is 5 to 50 mPa·s.
JP2020048566A 2020-03-19 2020-03-19 New paper strength agent Active JP7453648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020048566A JP7453648B2 (en) 2020-03-19 2020-03-19 New paper strength agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020048566A JP7453648B2 (en) 2020-03-19 2020-03-19 New paper strength agent

Publications (2)

Publication Number Publication Date
JP2021147723A JP2021147723A (en) 2021-09-27
JP7453648B2 true JP7453648B2 (en) 2024-03-21

Family

ID=77847747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020048566A Active JP7453648B2 (en) 2020-03-19 2020-03-19 New paper strength agent

Country Status (1)

Country Link
JP (1) JP7453648B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301532A (en) 2006-05-15 2007-11-22 Seiko Pmc Corp Method for preparing dispersion of substituted cyclic dicarboxylic acid anhydride and dispersion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301532A (en) 2006-05-15 2007-11-22 Seiko Pmc Corp Method for preparing dispersion of substituted cyclic dicarboxylic acid anhydride and dispersion

Also Published As

Publication number Publication date
JP2021147723A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
EP0659780B1 (en) Acrylamide polymers and uses thereof
EP1425472B1 (en) Method of improving retention and drainage in a papermaking process using a diallyl -n, n-disubstituted ammonium halide/acrylamide copolymer and a structurally modified cationic polymer
US7482417B2 (en) Papermaking chemical, method for manufacturing same, and paper containing same
JP2008545892A (en) Hydrophobic polymers and their use in the production of cellulosic fiber compositions
US8530597B2 (en) High molecular weight compact structured polymers, methods of making and using
AU2002324874A1 (en) Method of improving retention and drainage in a papermaking process using diallyl-N, N-disubstituted ammonium halide/acrylamide copolymer and a structurally modified cationic polymer
CN107604755B (en) Paper strength agent, method for producing paper strength agent, and method for producing paper and paper
JP2003517104A (en) Method of using hydrophobic associative polymer in production of cellulosic fiber composition, and cellulosic fiber composition incorporating hydrophobic associative polymer
CN112601860B (en) Additive for papermaking, paper and method for producing paper
JP5640458B2 (en) Method for producing paper-making paper strength enhancer
JP3545473B2 (en) Acrylamide polymer and its use
JP7453648B2 (en) New paper strength agent
JP7332100B2 (en) Papermaking paper strength agent
JP3549330B2 (en) Papermaking additives
JP7277884B2 (en) Method for manufacturing paper strength agent
JP3798784B2 (en) Paper strength enhancer and paper
JP5024719B2 (en) Paper manufacturing method
JP3803670B2 (en) Acrylamide polymer aqueous solution and its use
JP2001020198A (en) Papermaking additive
JP2022084045A (en) Additive for paper making, capable of promoting effect of paper-strengthening agent
JP4158190B2 (en) Paper sizing agent
JP2001279599A (en) Paper-making method
JP2023128115A (en) Polymer sizing agent for paper making
JP2022061062A (en) Papermaking additive
JP2024059162A (en) Paper sizing agents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240229

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240229

R150 Certificate of patent or registration of utility model

Ref document number: 7453648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150