JP7549293B2 - Surface-coated cutting tools - Google Patents

Surface-coated cutting tools Download PDF

Info

Publication number
JP7549293B2
JP7549293B2 JP2021014036A JP2021014036A JP7549293B2 JP 7549293 B2 JP7549293 B2 JP 7549293B2 JP 2021014036 A JP2021014036 A JP 2021014036A JP 2021014036 A JP2021014036 A JP 2021014036A JP 7549293 B2 JP7549293 B2 JP 7549293B2
Authority
JP
Japan
Prior art keywords
layer
average
hafnium
content
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021014036A
Other languages
Japanese (ja)
Other versions
JP2022117522A (en
Inventor
浩峻 唐
和宏 引田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2021014036A priority Critical patent/JP7549293B2/en
Publication of JP2022117522A publication Critical patent/JP2022117522A/en
Application granted granted Critical
Publication of JP7549293B2 publication Critical patent/JP7549293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

この発明は、特に、Ti基合金のような表面被覆切削工具との溶着性の高い材料(以下、Ti基合金のような溶着性の高い材料という)を切削加工に供した場合であっても、優れた耐クラック性、耐摩耗性を長期間の使用にわたって発揮する表面被覆切削工具(以下、被覆工具ということがある)に関する。 This invention relates to a surface-coated cutting tool (hereinafter sometimes referred to as a coated tool) that exhibits excellent crack resistance and wear resistance over a long period of use, even when a material that has high adhesion to the surface-coated cutting tool, such as a Ti-based alloy (hereinafter referred to as a material that has high adhesion to the Ti-based alloy), is used for cutting.

従来、超硬合金等を工具基体とし、この工具基体の表面に硬質被覆層を蒸着法により形成した被覆工具が知られている。この被覆工具は耐摩耗性を有しているが、この耐摩耗性をさらに向上させるべく、種々の提案がなされ、金属硼化物を含む硬質被覆層に関する提案もなされている。 Conventionally, coated tools have been known in which a tool base is made of cemented carbide or the like, and a hard coating layer is formed on the surface of the tool base by a vapor deposition method. These coated tools have wear resistance, but various proposals have been made to further improve this wear resistance, including a proposal for a hard coating layer containing a metal boride.

例えば、特許文献1には、工具基体の表面にAl、Si、Cr、W、Ti、Nb、Zrから選択される1種以上の金属元素からなる硼化物被覆層を被覆し、該硼化物被覆層は六方晶の結晶構造を有し、X線回折において最強回折強度を(001)面に有し、残留圧縮応力が0.1GPa以上である被覆工具が記載され、前記硬質被覆層は工具基体への密着性を犠牲とすることなく、高硬度であるとされている。 For example, Patent Document 1 describes a coated tool in which the surface of a tool substrate is coated with a boride coating layer made of one or more metal elements selected from Al, Si, Cr, W, Ti, Nb, and Zr, the boride coating layer has a hexagonal crystal structure, has the strongest diffraction intensity in the (001) plane in X-ray diffraction, and has a residual compressive stress of 0.1 GPa or more, and the hard coating layer is said to have high hardness without sacrificing adhesion to the tool substrate.

また、例えば、特許文献2には、工具基体の表面に中間皮膜を介して硬質被覆層を被覆し、前記硬質被覆層はAl、Si、Cr、W、Ti、Nb、Zrから選択される1種以上の元素の硼化物であって、六方晶の結晶構造であり、前記中間皮膜は、AlxMy(x+y=100、40≦x≦95、Mは、Ti、Cr、V、Nbの1種以上)からなる窒化物または炭窒化物であり、前記工具基体の側が立方晶の結晶構造、前記硬質被覆層側が六方晶の結晶構造を有している被覆工具が記載され、前記硬質被覆層は耐摩耗性に優れ、工具基体と高い密着性を有しているとされている。 For example, Patent Document 2 describes a coated tool in which the surface of a tool substrate is coated with a hard coating layer via an intermediate coating, the hard coating layer is a boride of one or more elements selected from Al, Si, Cr, W, Ti, Nb, and Zr and has a hexagonal crystal structure, the intermediate coating is a nitride or carbonitride made of AlxMy (x+y=100, 40≦x≦95, M is one or more of Ti, Cr, V, and Nb), and the tool substrate side has a cubic crystal structure and the hard coating layer side has a hexagonal crystal structure, and the hard coating layer is said to have excellent wear resistance and high adhesion to the tool substrate.

特開2008-238281号公報JP 2008-238281 A 特開2012-228735号広報JP2012-228735Publication

切削加工装置の高性能化や自動化はめざましく、その一方で、難削材と呼ばれる材料の切削加工が求められている。そして、この要求は、Ti基合金のような切削時に溶着の発生しやすい材料の切削加工も例外ではない。
前記特許文献1および2に記載された被覆工具は、工具基体と被覆層との密着性に優れるものの、Ti基合金の切削加工に供したときの耐久性については言及がない。
While cutting equipment has become increasingly sophisticated and automated, there is a growing demand for cutting materials that are considered difficult to cut, and this demand is no exception when it comes to cutting materials that are prone to adhesion during cutting, such as Ti-based alloys.
The coated tools described in Patent Documents 1 and 2 have excellent adhesion between the tool substrate and the coating layer, but there is no mention of durability when used in cutting Ti-based alloys.

本発明は、前記事情に鑑みてなされたものであって、Ti基合金等の溶着の発生しやすい(溶着性の高い)材料の切削加工においても、優れた切削性能を発揮する被覆工具を提供することを目的とする。 The present invention was made in consideration of the above circumstances, and aims to provide a coated tool that exhibits excellent cutting performance even when cutting materials that are prone to adhesion (high adhesion), such as Ti-based alloys.

本発明の実施形態に係る表面被覆切削工具は、
工具基体と該工具基体上の硬質被覆層とを有し、
前記硬質被覆層は0.5~5.0μmの平均層厚である硼化ハフニウム層を含み、
前記硼化ハフニウム層は、その平均組成を組成式:HfBxで表したとき、xが1.0~2.5であって、
かつ、その層厚方向に、前記平均組成に対して、ハフニウムの含有割合が高く、硼素の含有割合が低い第1層と、前記平均組成に対して、ハフニウムの含有割合が低く、硼素の含有割合が高い第2層とが、交互に積層され、
前記第1層および前記第2層のそれぞれの平均層厚が2~20nmである。
The surface-coated cutting tool according to an embodiment of the present invention comprises:
A tool substrate and a hard coating layer on the tool substrate,
the hard coating layer comprises a hafnium boride layer having an average thickness of 0.5 to 5.0 μm;
The hafnium boride layer has an average composition represented by the composition formula HfBx, where x is 1.0 to 2.5,
In addition, a first layer having a high hafnium content and a low boron content with respect to the average composition and a second layer having a low hafnium content and a high boron content with respect to the average composition are alternately laminated in the layer thickness direction,
The first layer and the second layer each have an average thickness of 2 to 20 nm.

さらに、前記実施形態に係る被覆工具は、以下の事項を一つ以上満足してもよい。
(1)前記第1層におけるハフニウムの含有割合の平均値をCAHf(原子%)、硼素の含有割合の平均値をCAB(原子%)、前記第2層におけるハフニウムの含有割合の平均値をCBHf(原子%)、硼素の含有割合の平均値をCBB(原子%)とするとき、
0.3≦|CAHf-CBHf|=|CAB-CBB|≦5.0
であること。
(2)前記硼化ハフニウム層は、六方晶構造の結晶粒を有すること。
Furthermore, the coated tool according to the above embodiment may satisfy one or more of the following requirements.
(1) The average hafnium content in the first layer is C AHf (atomic %), the average boron content is C AB (atomic %), the average hafnium content in the second layer is C BHf (atomic %), and the average boron content is C BB (atomic %),
0.3≦|C AHf −C BHf |=|C AB −C BB |≦5.0
To be.
(2) The hafnium boride layer has crystal grains with a hexagonal crystal structure.

前記によれば、Ti基合金等の溶着性の高い材料の切削加工においても、耐摩耗性および耐溶着性の向上した表面被覆切削工具を得ることができる。 As a result of the above, it is possible to obtain a surface-coated cutting tool with improved wear resistance and adhesion resistance, even when cutting highly adhesive materials such as Ti-based alloys.

本発明における第1層と第2層の交互積層構造において、ハフニウム(Hf)と硼素(B)の含有割合の変化を示す模式図である。2 is a schematic diagram showing the change in the content ratio of hafnium (Hf) and boron (B) in the alternate laminate structure of the first layer and the second layer in the present invention. FIG.

本発明者は、硼化ハフニウムを含む硬質被覆層について鋭意検討を行った。その結果、硼化ハフニウム層は、その層厚方向に、平均組成に対してハフニウムの含有割合が高く、硼素の含有割合が低い第1層と、前記平均組成に対して、ハフニウムの含有割合が低く、硼素の含有割合が高い第2層とが、交互に積層された構造を有するとき、Ti基合金のような切削時に溶着の発生しやすい材料の切削加工においても優れた耐摩耗性および耐溶着性を有するという知見を得た。 The inventors conducted extensive research into hard coating layers containing hafnium boride. As a result, they discovered that when a hafnium boride layer has a structure in which a first layer having a high hafnium content and a low boron content relative to the average composition and a second layer having a low hafnium content and a high boron content relative to the average composition are alternately laminated in the thickness direction, the hafnium boride layer has excellent wear resistance and adhesion resistance even when cutting materials such as Ti-based alloys, which are prone to adhesion during cutting.

以下では、本発明の実施形態に係る被覆工具について詳細に説明する。
なお、本明細書および特許請求の範囲において数値範囲を「A~B」(A、Bはともに数値である)と表現するとき、その範囲は上限(B)および下限(A)の数値を含んでおり、上限(B)と下限(A)の単位は同じである。
なお、本明細書でいう工具基体の表面とは、硬質被覆層の最も工具基体の表面に近い層と工具基体の界面の粗さ曲線について、平均線を算術的に求めたものである。
Hereinafter, a coated tool according to an embodiment of the present invention will be described in detail.
In this specification and claims, when a numerical range is expressed as "A to B" (where A and B are both numerical values), the range includes an upper limit (B) and a lower limit (A), and the units of the upper limit (B) and the lower limit (A) are the same.
In this specification, the surface of the tool substrate is an arithmetically determined average line of a roughness curve of the interface between the tool substrate and the layer of the hard coating layer closest to the surface of the tool substrate.

1.硼化ハフニウム層
本実施形態に係る硼化ハフニウム層について、順に説明する。
1. Hafnium boride layer The hafnium boride layer according to this embodiment will be described in detail below.

(1)平均層厚
硼化ハフニウム層の平均層厚は、0.5~5.0μmであることが好ましい。その理由は、0.5μm未満であると、被覆層が薄いため長期にわたって耐摩耗性を発揮することが困難であり、一方、5.0μmを超えると欠損やチッピングが発生しやすくなるためである。平均層厚は、1.0~2.5μmであることがより好ましい。
(1) Average layer thickness The average layer thickness of the hafnium boride layer is preferably 0.5 to 5.0 μm. The reason is that if it is less than 0.5 μm, the coating layer is too thin to provide long-term wear resistance, while if it exceeds 5.0 μm, defects and chipping are likely to occur. The average layer thickness is more preferably 1.0 to 2.5 μm.

ここで、硬質被覆層の平均層厚は、例えば、集束イオンビーム装置(FIB:Focused Ion Beam system)、クロスセクションポリッシャー装置(CP:Cross-section Polisher)等を用いて、硬質被覆層を任意の位置の縦断面(工具基体表面に垂直な面)で切断して観察用の試料を作製し、その断面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)により複数箇所(例えば、5箇所)を観察して、得られた層厚を算術平均することにより得ることができる。 Here, the average thickness of the hard coating layer can be obtained by, for example, cutting the hard coating layer at a longitudinal section (a surface perpendicular to the tool substrate surface) at any position using a focused ion beam system (FIB) or a cross-section polisher (CP) to prepare a sample for observation, observing the cross section at multiple points (e.g., five points) using a scanning electron microscope (SEM), and calculating the arithmetic average of the layer thicknesses obtained.

(2)平均組成
硼化ハフニウム層の平均組成は、組成式:HfBxで表したとき、xが1.0~2.5であることが好ましい。ここで、xは原子比である。
xを前記範囲とする理由は、xが1.0未満になると、硼化ハフニウム層において金属ハフニウムとしての物性が顕著になってTi基合金等の切削加工において、被削材との親和性が高まり耐凝着性が低下し、一方、xが2.5を超えると、四硼化物等の硼素を多く含む硼化物の物性に近づき、結晶構造が六方晶の結晶粒の占める割合が低下し硬さが低下してしまうためである。
(2) Average Composition When the average composition of the hafnium boride layer is expressed by the composition formula HfBx, x is preferably 1.0 to 2.5, where x is an atomic ratio.
The reason for setting x within the above range is that when x is less than 1.0, the physical properties of metallic hafnium become prominent in the hafnium boride layer, and in cutting of Ti-based alloys and the like, the affinity with the workpiece increases and the adhesion resistance decreases; on the other hand, when x exceeds 2.5, the physical properties approach those of borides containing a large amount of boron, such as tetraborides, and the proportion of hexagonal crystal grains in the crystal structure decreases, resulting in a decrease in hardness.

xは、1.5~2.0であることがより好ましい。
なお、被覆層中にはAr、C、Oなどの不可避不純物が含まれるが、前記のx値を左右しない。
It is more preferable that x is between 1.5 and 2.0.
Although the coating layer contains unavoidable impurities such as Ar, C, and O, these do not affect the value of x.

硼素の含有量(x)は以下のようにして測定する。
電子線マイクロアナライザ(EPMA:Electron Probe Micro Analyzer)を用い、電子線を硬質被覆層の表面、もしくは、硬質被覆層の任意の位置の縦断面の5箇所に照射し、それぞれの箇所から得られた硬質被覆層を構成する元素に対応する特性X線を解析することで各元素の含有量の定量化を行い、その結果を算術平均する。
The boron content (x) is measured as follows.
Using an electron probe micro analyzer (EPMA), an electron beam is irradiated onto the surface of the hard coating layer or onto five arbitrary positions on a longitudinal section of the hard coating layer, and the content of each element is quantified by analyzing characteristic X-rays corresponding to the elements constituting the hard coating layer obtained from each position, and the results are arithmetically averaged.

(3)交互積層構造
硼化ハフニウム層は、その層厚方向に、前記平均組成に対して、ハフニウムの含有割合が高く、硼素の含有割合が低い第1層と、前記平均組成に対して、ハフニウムの含有割合が低く、硼素の含有割合が高い第2層とが、交互に積層され、かつ、
前記第1層および前記第2層のそれぞれの平均層厚が2~20nmであることが好ましい。
これにより、十分な耐摩耗性および耐凝着性が発揮される。
(3) Alternately laminated structure The hafnium boride layer is formed by alternately laminating, in a thickness direction thereof, first layers having a high hafnium content and a low boron content with respect to the average composition, and second layers having a low hafnium content and a high boron content with respect to the average composition, and
The first layer and the second layer each preferably have an average thickness of 2 to 20 nm.
This provides sufficient wear resistance and adhesion resistance.

ここで、この交互積層構造は、HADDF-STEM(High-angle Annular Dark Field Scanning Transmission Electron Microscopy)像の観察において、明るい層と暗い層が交互に視認することにより、その存在を確認することができる。ここで、明るい層は第1層に相当し、暗い層は第2層に相当する。 The presence of this alternating laminate structure can be confirmed by observing bright and dark layers alternately in HADDF-STEM (High-angle Annular Dark Field Scanning Transmission Electron Microscopy) images. Here, the bright layer corresponds to the first layer, and the dark layer corresponds to the second layer.

また、前記第1層のおけるハフニウムの含有割合の平均値をCAHf(原子%)、硼素の含有割合の平均値をCAB(原子%)、前記第2層におけるハフニウムの含有割合の平均値をCBHf(原子%)、硼素の含有割合の平均値をCBB(原子%)とするとき、
0.3≦|CAHf-CBHf|=|CAB-CBB|≦5.0
であることよりが好ましい。
この関係式が成り立つとき、Ti基合金等の溶着性の高い材料の切削加工において、耐摩耗性および耐凝着性がより一層発揮される。
In addition, when the average hafnium content in the first layer is C AHf (atomic %), the average boron content is C AB (atomic %), the average hafnium content in the second layer is C BHf (atomic %), and the average boron content is C BB (atomic %),
0.3≦|C AHf −C BHf |=|C AB −C BB |≦5.0
It is more preferable that
When this relational expression is satisfied, wear resistance and adhesion resistance are further enhanced in cutting of highly adhesive materials such as Ti-based alloys.

ここで、CAHf(原子%)、CAB(原子%)、CBHf(原子%)、CBB(原子%)とは、それぞれ、硼化ハフニウム層の縦断面において、STEMを用いたエネルギー分散型X線分光法(Energy Dispersive X-ray Spectrometry:EDS)により工具基体から工具表面方向に交互積層が少なくとも20層以上となる範囲(すなわち、第1層あるいは第2層のそれぞれに測定点は10点以上がある)でライン分析を行い、測定した範囲における第1層の平均組成、および第2層の平均組成である。 上記のCAHf、CAB、CBHfおよびCBBの数値は第1層及び第2層のHfBxにおけるx値より計算される。 Here, C AHf (atomic %), C AB (atomic %), C BHf (atomic %), and C BB (atomic %) are the average composition of the first layer and the average composition of the second layer in the range measured by line analysis in the vertical section of the hafnium boride layer in a range from the tool substrate to the tool surface direction in which there are at least 20 alternating laminations (i.e., there are 10 or more measurement points in each of the first layer and the second layer) by energy dispersive X-ray spectrometry (EDS) using a STEM. The numerical values of C AHf , C AB , C BHf , and C BB are calculated from the x value in HfBx of the first layer and the second layer.

(4)結晶構造
硼化ハフニウム層には、六方晶の結晶構造を有する結晶粒を含むことが好ましい。六方晶構造の結晶粒を有するとは、(001)面、(100)面、(101)面に対応するX線回折ピークを有することをいい、六方晶以外の結晶構造を有する結晶粒の存在を排除しない。すなわち、たとえば、アモルファス相を有していてもよい。
(4) Crystal structure The hafnium boride layer preferably contains crystal grains having a hexagonal crystal structure. The term "hafnium boride layer has crystal grains having a hexagonal crystal structure" refers to having X-ray diffraction peaks corresponding to the (001) plane, the (100) plane, and the (101) plane, and does not exclude the existence of crystal grains having a crystal structure other than the hexagonal crystal structure. That is, the hafnium boride layer may have an amorphous phase, for example.

ここで、六方晶の(001)面、(100)面、(101)面の各回折ピーク強度の測定は、Cu-Kα線(波長λ:0.15405nm)を用いた2θ/θ集中法光学系のX線回折法を用いることができる。 Here, the diffraction peak intensities of the (001), (100), and (101) planes of the hexagonal crystal can be measured using X-ray diffraction with a 2θ/θ focusing optical system using Cu-Kα radiation (wavelength λ: 0.15405 nm).

ここで、六方晶の(001)面は、(0001)面と表すこともある。同様に、(100)面は、(10-10)面、(1-100)面、(01-10)面、(-1100)面、(-1010)面、(0-110)面と表され、(101)面は、(10-11)面、(1-101)面、(01-11)面、(-1101)面、(-1011)面、(0-111)面と表わされることがある。これらはそれぞれ等価な関係にある面指数である。 Here, the (001) face of a hexagonal crystal is sometimes expressed as the (0001) face. Similarly, the (100) face is sometimes expressed as the (10-10) face, (1-100) face, (01-10) face, (-1100) face, (-1010) face, and (0-110) face, and the (101) face is sometimes expressed as the (10-11) face, (1-101) face, (01-11) face, (-1101) face, (-1011) face, and (0-111) face. These are plane indices that are equivalent to each other.

(5)ナノインデンテーション硬さ
硼化ハフニウム層のナノインデンテーション硬さは、25~40GPaであることが好ましい。ナノインデンテーション硬さがこの範囲にあるとき、Ti基合金等の溶着性の高い材料の切削加工において、耐摩耗性および耐凝着性がより一層発揮される。
(5) Nanoindentation Hardness The hafnium boride layer preferably has a nanoindentation hardness of 25 to 40 GPa. When the nanoindentation hardness is in this range, wear resistance and adhesion resistance are further enhanced in cutting of highly adhesive materials such as Ti-based alloys.

ナノインデンテーション硬さの測定は、超微小押し込み硬さ試験機を用いて測定する。ナノインデンテーション試験法(ISO14577)に基づき、硼化ハフニウム層の表面を研磨し、ダイヤモンド製のBerkovich圧子を用い、押し込み荷重として1962μN(=200mgf)にて測定を行う。 Nanoindentation hardness is measured using an ultra-microindentation hardness tester. Based on the nanoindentation test method (ISO 14577), the surface of the hafnium boride layer is polished, and measurements are performed using a diamond Berkovich indenter with an indentation load of 1962 μN (= 200 mgf).

2.その他の層(下部層)
硬質被覆層として、本実施形態のハフニウム硼化物層を含む硬質被覆層はTi基合金のような切削工具との溶着性の高い材料を切削により加工する場合においても、十分に優れた耐クラック性、耐摩耗性を長期間の使用にわたって発揮するが、前記硬質被覆層とは別に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1~2.0μmの合計平均層厚を有するTi化合物(化学量論的な化合物に限定されない)層を含む下部層を工具基体に隣接して設けた場合には、この層が奏する効果と相俟って、より一層優れた耐チッピング性、および、耐熱亀裂性を発揮することができる。
2. Other layers (lower layer)
The hard coating layer including the hafnium boride layer of this embodiment exhibits sufficiently excellent crack resistance and wear resistance over a long period of use, even when cutting a material that has high adhesion to a cutting tool, such as a Ti-based alloy, by cutting. However, when a lower layer including a Ti compound (not limited to a stoichiometric compound) layer having a total average layer thickness of 0.1 to 2.0 μm and consisting of one or more layers selected from a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer and a carbonitride oxide layer is provided adjacent to the tool base in addition to the hard coating layer, the effect of this layer is combined with the effect of the lower layer to exhibit even more excellent chipping resistance and heat crack resistance.

ここで、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、2.0μmを超えると下部層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。 Here, if the total average thickness of the lower layers is less than 0.1 μm, the effect of the lower layers is not fully exerted, while if it exceeds 2.0 μm, the crystal grains in the lower layers tend to become coarse, making chipping more likely to occur.

3.工具基体
工具基体は、この種の工具基体として従来公知の基材であれば、本発明の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例を挙げるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、さらに、Ti、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、またはcBN焼結体のいずれかであることが好ましい。
3. Tool Base The tool base may be any of the conventionally known substrates for this type of tool base, provided that they do not impede the achievement of the object of the present invention. For example, the tool base is preferably any of cemented carbide (WC-based cemented carbide, WC, Co, and carbonitrides of Ti, Ta, Nb, etc.), cermet (TiC, TiN, TiCN, etc.), ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), or cBN sintered body.

次に、実施例について説明するが、本発明はこれら実施例に限定されるものではない。 Next, we will explain the examples, but the present invention is not limited to these examples.

原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、直径が4mmの超硬基体形成用丸棒焼結体を作製し、さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さがそれぞれ2mm×4mm、ねじれ角40度の4枚刃スクエア形状を持ったWC基超硬合金製の工具基体(エンドミル)1および2を製造した。 As raw material powders, WC powder, VC powder, TaC powder, NbC powder, Cr3C2 powder, and Co powder, all of which have an average particle size of 1 to 3 μm, were prepared. These raw material powders were mixed according to the composition shown in Table 1, wet mixed in a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. This green compact was sintered in a vacuum of 6 Pa at a temperature of 1400°C for 1 hour to produce a round sintered body for forming a cemented carbide base with a diameter of 4 mm. The sintered round bar was then ground to produce tool bases (end mills) 1 and 2 made of WC-based cemented carbide and having a cutting edge diameter x length of 2 mm x 4 mm, respectively, and a four-blade square shape with a twist angle of 40 degrees.

続いて、これら工具基体1および2を以下の(a)~(d)の手順により下部層(一部の工具基体に対してのみ設けた)と硬質被覆層を形成した。 Next, a lower layer (applied only to some of the tool substrates) and a hard coating layer were formed on these tool substrates 1 and 2 by the following steps (a) to (d).

(a)前記工具基体1、2のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、高出力パルススパッタリング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、一方、高出力パルススパッタリング装置内には、回転テーブルを挟んで対向する4か所に板状のTiターゲットと、ハフニウムと硼素の焼結体ターゲットを同種類のターゲットが中心に対して対面となる位置に配置した。 (a) Each of the tool bases 1 and 2 was ultrasonically cleaned in acetone and, in a dried state, was attached along its outer periphery at a position radially away from the central axis on a rotating table in a high-power pulse sputtering device at a predetermined distance. Meanwhile, within the high-power pulse sputtering device, plate-shaped Ti targets and sintered targets of hafnium and boron were placed at four locations facing each other across the rotating table, with the same types of targets facing each other in the center.

(b)前記装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら公転する工具基体に-200Vの直流バイアス電圧を印加した後、前記装置内へ反応ガスとしてアルゴン(以下Arと表記する)ガスを導入し、2.0Paの雰囲気とする。さらに前記装置内に具備されるタングステンフィラメントへ40Aの電流を流すことによりArイオンを励起させ、前記工具基体を1時間、Arボンバード処理した。 (b) The inside of the device was evacuated and maintained at a vacuum of 0.1 Pa or less, while the inside of the device was heated to 500°C with a heater, and then a DC bias voltage of -200 V was applied to the tool base that revolved around its axis while rotating on the rotating table, and argon (hereinafter referred to as Ar) gas was introduced into the device as a reactive gas to create an atmosphere of 2.0 Pa. Furthermore, Ar ions were excited by passing a current of 40 A through a tungsten filament provided in the device, and the tool base was subjected to Ar bombardment processing for 1 hour.

(c)前記装置内に反応ガスとしてArガスと窒素ガスを導入して0.6Paの反応雰囲気とすると共に、前記Tiターゲットに表2に示される所定のパルススパッタ条件で高出力パルススパッタを行い、もって前記工具基体の表面に、表2に示される平均層厚のTiN層を硬質被覆層の下部層として成膜した。ただし、すべての工具基体に下部層を形成したわけではない。 (c) Ar gas and nitrogen gas were introduced into the device as reactive gases to create a reactive atmosphere of 0.6 Pa, and high-power pulse sputtering was performed on the Ti target under the specified pulse sputtering conditions shown in Table 2, thereby forming a TiN layer with the average layer thickness shown in Table 2 on the surface of the tool substrate as the lower layer of the hard coating layer. However, the lower layer was not formed on all of the tool substrates.

(d)引き続き、装置内に導入するガスのうち窒素ガスを閉じ、Arガスに切り替えると共に、装置内雰囲気を0.5Paとし、十分に窒素ガスの排出がなされ、Arガスのみの装置内雰囲気となった後、ハフニウムと硼素からなる焼結体ターゲットに表2に示される所定のパルススパッタ条件で、層厚に対応した時間で高出力パルススパッタを行い、表3に示す本発明被覆エンドミル(以下、本発明被覆工具という)1~12を製造した。 (d) Next, the nitrogen gas introduced into the apparatus was turned off and switched to Ar gas, and the atmosphere inside the apparatus was set to 0.5 Pa. After the nitrogen gas was sufficiently discharged and the atmosphere inside the apparatus was filled with Ar gas only, high-power pulse sputtering was performed on a sintered target made of hafnium and boron under the specified pulse sputtering conditions shown in Table 2 for a time corresponding to the layer thickness, and coated end mills of the present invention (hereinafter referred to as coated tools of the present invention) 1 to 12 shown in Table 3 were manufactured.

また、比較の目的で、これら工具基体1~2に対して、表4に示す条件で前記(a)~(d)の手順により下部層と硬質被覆層を形成し、表5に示す比較被覆エンドミル(以下、比較被覆工具という)1~9を製造した。ただし、すべての工具基体に下部層を形成したわけではない。 For comparison purposes, a lower layer and a hard coating layer were formed on tool substrates 1 and 2 under the conditions shown in Table 4 using the procedures (a) to (d) above, and comparative coated end mills (hereinafter referred to as comparative coated tools) 1 to 9 shown in Table 5 were manufactured. However, a lower layer was not formed on all tool substrates.

なお、表3、5における「全体HfBx層の平均x(原子比)」とは、HfB層の第1層および第2層を併せた平均x(原子比)を、「交互積層の第1層のHfBx層のx(原子比)」とは、交互積層の第1層のHfBx層のx(原子比)の平均値を、また、「交互積層の第2層のHfBx層のx(原子比)」とは、交互積層の第2層のHfBx層のx(原子比)の平均値を、それぞれ、表す。 In Tables 3 and 5, "average x (atomic ratio) of the entire HfBx layer" refers to the average x (atomic ratio) of the first and second HfB layers combined, "x (atomic ratio) of the HfBx layer of the first layer of the alternating stack" refers to the average value of x (atomic ratio) of the HfBx layer of the first layer of the alternating stack, and "x (atomic ratio) of the HfBx layer of the second layer of the alternating stack" refers to the average value of x (atomic ratio) of the HfBx layer of the second layer of the alternating stack.

Figure 0007549293000001
Figure 0007549293000001

Figure 0007549293000002
Figure 0007549293000002

Figure 0007549293000003
Figure 0007549293000003

Figure 0007549293000004
Figure 0007549293000004

Figure 0007549293000005
Figure 0007549293000005

次に、本発明被覆工具1~12、比較被覆工具1~9に対して、以下の切削試験を行い、その結果を表6に示す。 Next, the following cutting tests were conducted on the coated tools 1 to 12 of the present invention and the comparative coated tools 1 to 9, and the results are shown in Table 6.

エンドミルによる側面加工によって湿式切削試験を実施した。
被削材:Ti基合金(質量%で、Ti-6%Al-4%V合金)のブロック材(幅190mm×250mm)
切削速度:80m/min
回転速度:12732min-1
送り速度:1,019mm/min
軸方向切込み量(ap):2.0mm
径方向切込み量(ae):0.2mm
エンドミル刃外径:2mm
切削長150m(切削時間として140分に相当)まで切削し、逃げ面摩耗幅を測定し、チッピング発生の有無を観察した。
Wet cutting tests were carried out by side machining with an end mill.
Workpiece: Block of Ti-based alloy (Ti-6% Al-4% V alloy by mass) (width 190 mm x 250 mm)
Cutting speed: 80m/min
Rotation speed: 12732 min -1
Feed speed: 1,019 mm/min
Axial cutting depth (ap): 2.0 mm
Radial cutting depth (ae): 0.2 mm
End mill blade outer diameter: 2 mm
Cutting was continued up to a cutting length of 150 m (corresponding to a cutting time of 140 minutes), the flank wear width was measured, and the occurrence of chipping was observed.

Figure 0007549293000006
Figure 0007549293000006

表6に示す結果から明らかなように、本発明被覆工具1~12は、Ti基合金の湿式切削試験であっても優れた耐摩耗性および耐溶着性を有していることがわかる。
これに対して、比較被覆工具1~9は、チッピングが発生し短時間の工具寿命であった。
As is clear from the results shown in Table 6, the coated tools 1 to 12 of the present invention have excellent wear resistance and adhesion resistance even in the wet cutting test of a Ti-based alloy.
In contrast, the comparative coated tools 1 to 9 suffered chipping and had a short tool life.

Claims (3)

工具基体と該工具基体上の硬質被覆層とを有する表面被覆切削工具であって、
前記硬質被覆層は0.5~5.0μmの平均層厚である硼化ハフニウム層を含み、
前記硼化ハフニウム層は、その平均組成を組成式:HfBxで表したとき、xが1.0~2.5であって、
かつ、その層厚方向に、前記平均組成に対して、ハフニウムの含有割合が高く、硼素の含有割合が低い第1層と、前記平均組成に対して、ハフニウムの含有割合が低く、硼素の含有割合が高い第2層とが、交互に積層され、
前記第1層および前記第2層のそれぞれの平均層厚が2~20nmである、
ことを特徴とする表面被覆切削工具。
1. A surface coated cutting tool having a tool substrate and a hard coating layer on the tool substrate,
the hard coating layer comprises a hafnium boride layer having an average thickness of 0.5 to 5.0 μm;
The hafnium boride layer has an average composition represented by the composition formula HfBx, where x is 1.0 to 2.5,
In addition, a first layer having a high hafnium content and a low boron content with respect to the average composition and a second layer having a low hafnium content and a high boron content with respect to the average composition are alternately laminated in the layer thickness direction,
The average thickness of each of the first layer and the second layer is 2 to 20 nm.
A surface-coated cutting tool comprising:
前記第1層におけるハフニウムの含有割合の平均値をCAHf(原子%)、硼素の含有割合の平均値をCAB(原子%)、前記第2層におけるハフニウムの含有割合の平均値をCBHf(原子%)、硼素の含有割合の平均値をCBB(原子%)とするとき、
0.3≦|CAHf-CBHf|=|CAB-CBB|≦5.0
であることを特徴とする請求項1に記載の表面被覆切削工具。
When the average hafnium content in the first layer is C AHf (atomic %), the average boron content is C AB (atomic %), the average hafnium content in the second layer is C BHf (atomic %), and the average boron content is C BB (atomic %),
0.3≦|C AHf −C BHf |=|C AB −C BB |≦5.0
2. The surface-coated cutting tool according to claim 1,
前記硼化ハフニウム層は、六方晶構造の結晶粒を有することを特徴とする請求項1または2に記載の表面被覆切削工具。 The surface-coated cutting tool according to claim 1 or 2, characterized in that the hafnium boride layer has crystal grains with a hexagonal crystal structure.
JP2021014036A 2021-01-30 2021-01-30 Surface-coated cutting tools Active JP7549293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021014036A JP7549293B2 (en) 2021-01-30 2021-01-30 Surface-coated cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021014036A JP7549293B2 (en) 2021-01-30 2021-01-30 Surface-coated cutting tools

Publications (2)

Publication Number Publication Date
JP2022117522A JP2022117522A (en) 2022-08-12
JP7549293B2 true JP7549293B2 (en) 2024-09-11

Family

ID=82750281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021014036A Active JP7549293B2 (en) 2021-01-30 2021-01-30 Surface-coated cutting tools

Country Status (1)

Country Link
JP (1) JP7549293B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004188520A (en) 2002-12-10 2004-07-08 Mitsubishi Materials Corp Cutting tool made of surface coated cemented carbide, hard coating layer of which shows excellent wear resistance under high speed and heavy cutting condition
JP2004230497A (en) 2003-01-29 2004-08-19 Mitsubishi Materials Kobe Tools Corp Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting condition
JP2007222995A (en) 2006-02-24 2007-09-06 Hitachi Tool Engineering Ltd Coating member
JP2010538949A (en) 2007-01-04 2010-12-16 アリゾナ ボード オブ リージェンツ ア ボディー コーポレート アクティング オン ビハーフ オブ アリゾナ ステイト ユニバーシティ Zirconium and hafnium boride alloy templates for silicon for nitride incorporation
WO2016175166A1 (en) 2015-04-27 2016-11-03 株式会社タンガロイ Coated cutting tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004188520A (en) 2002-12-10 2004-07-08 Mitsubishi Materials Corp Cutting tool made of surface coated cemented carbide, hard coating layer of which shows excellent wear resistance under high speed and heavy cutting condition
JP2004230497A (en) 2003-01-29 2004-08-19 Mitsubishi Materials Kobe Tools Corp Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting condition
JP2007222995A (en) 2006-02-24 2007-09-06 Hitachi Tool Engineering Ltd Coating member
JP2010538949A (en) 2007-01-04 2010-12-16 アリゾナ ボード オブ リージェンツ ア ボディー コーポレート アクティング オン ビハーフ オブ アリゾナ ステイト ユニバーシティ Zirconium and hafnium boride alloy templates for silicon for nitride incorporation
WO2016175166A1 (en) 2015-04-27 2016-11-03 株式会社タンガロイ Coated cutting tool

Also Published As

Publication number Publication date
JP2022117522A (en) 2022-08-12

Similar Documents

Publication Publication Date Title
KR101432847B1 (en) Workpiece with hard coating
WO2014163081A1 (en) Surface-coated cutting tool
JP6417959B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
EP2965842B1 (en) Coated cutting tool
WO2012018063A1 (en) Coated tool
WO2012005275A1 (en) Coated polycrystalline cbn tool
KR20080055735A (en) Coated cemented carbide endmill
EP3447166B1 (en) Coated cutting tool
JP5035956B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
EP4292735A1 (en) Coated tool
KR20190142359A (en) Sheath cutting tool
EP4108366A1 (en) Coated tool
WO2015125898A1 (en) Hard coating film and method of forming same
WO2019043095A1 (en) A coated cutting tool and a method for coating the cutting tool
JP7549293B2 (en) Surface-coated cutting tools
KR102085536B1 (en) Coated cutting insert
JP7226688B2 (en) Cutting tools
WO2022176058A1 (en) Cutting tool
WO2021193445A1 (en) Surface-coated cutting tool
EP4389329A1 (en) Coated tool
JP2023105884A (en) Surface-coated cutting tool
WO2022239139A1 (en) Cutting tool
JP2024125678A (en) Surface-coated cutting tools
US20240207945A1 (en) Coated cutting tool
JP5440352B2 (en) Surface coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240813

R150 Certificate of patent or registration of utility model

Ref document number: 7549293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150