JP7548826B2 - Wall - Google Patents

Wall Download PDF

Info

Publication number
JP7548826B2
JP7548826B2 JP2021000430A JP2021000430A JP7548826B2 JP 7548826 B2 JP7548826 B2 JP 7548826B2 JP 2021000430 A JP2021000430 A JP 2021000430A JP 2021000430 A JP2021000430 A JP 2021000430A JP 7548826 B2 JP7548826 B2 JP 7548826B2
Authority
JP
Japan
Prior art keywords
earthquake
formwork
embedded
concrete
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021000430A
Other languages
Japanese (ja)
Other versions
JP2022105845A (en
Inventor
大樹 日向
淳 久保田
宜和 高稻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2021000430A priority Critical patent/JP7548826B2/en
Publication of JP2022105845A publication Critical patent/JP2022105845A/en
Application granted granted Critical
Publication of JP7548826B2 publication Critical patent/JP7548826B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Load-Bearing And Curtain Walls (AREA)

Description

本発明は壁体に関する。 The present invention relates to a wall body.

近年、環境負荷低減などの観点から、建物への木質材料の利用が推奨されている。特許文献1では、火災時におけるコンクリート柱の爆裂を抑制するためコンクリート柱を木質被覆材で耐火被覆する構造が提案されている。 In recent years, the use of wood materials in buildings has been recommended from the perspective of reducing environmental impact. Patent Document 1 proposes a structure in which concrete pillars are fireproofed with wood covering material to prevent the concrete pillars from exploding in the event of a fire.

一方、地震力を負担する構造要素である耐震壁については、鉄筋コンクリート(RC)による壁体(RC耐震壁)とすることが一般的である。 On the other hand, earthquake-resistant walls, which are structural elements that bear earthquake forces, are generally constructed of reinforced concrete (RC) (RC earthquake-resistant walls).

特開2020-16044号公報JP 2020-16044 A

しかしながら、RC耐震壁を用いると、室内で感じる閉塞感が強く、建物の美観の面からは、耐震壁が木質材料で被覆されることが望ましい。特許文献1では特殊な装置を用いて棒状のコンクリート柱を回転させながらその周囲に帯状の木質被覆材を巻き付けているが、係る方法を面状の壁体に適用することは現実的ではなかった。 However, using reinforced concrete earthquake-resistant walls creates a strong feeling of claustrophobia inside the building, and from the perspective of the building's aesthetics, it is desirable for the earthquake-resistant walls to be covered with wood materials. In Patent Document 1, a special device is used to rotate a rod-shaped concrete pillar while wrapping a strip of wood covering material around it, but it is not practical to apply this method to planar walls.

また通常の耐震壁では、配筋と型枠設置、コンクリート打設、脱型といった工程が壁体工事において必要となり、施工が複雑で工費が嵩むという問題点があった。 In addition, with normal earthquake-resistant walls, the wall construction requires processes such as reinforcing bars, setting formwork, pouring concrete, and removing the formwork, which makes construction complicated and increases costs.

本発明は、前述した問題点に鑑みてなされたものであり、その目的は、施工が容易で美観に優れた壁体等を提供することである。 The present invention was made in consideration of the above-mentioned problems, and its purpose is to provide a wall structure that is easy to construct and has a beautiful appearance.

前述した目的を達成するための本発明は、木質材料による板状の埋設型枠と、2枚の前記埋設型枠の内側に設けられた板状のコンクリート部材と、前記2枚の前記埋設型枠の間に、鉛直方向に間隔を空けて複数設けられる木質材料による束材と、を具備し、コンクリートに埋設される横筋が、複数の前記束材の間を通して配置されることを特徴とする壁体である。 In order to achieve the above-mentioned object, the present invention provides a wall comprising: a plate-shaped embedded formwork made of a wood material; a plate-shaped concrete member provided inside two of the embedded formworks ; and a plurality of wooden beams provided at intervals in the vertical direction between the two embedded formworks, the wall being characterized in that horizontal reinforcement bars embedded in the concrete are arranged between the plurality of beams .

本発明では、耐震壁などの壁体について、木質板材をコンクリート部材の埋設型枠として用いることで、壁体の表面が木現しとなって閉塞感が低減され、美観に優れる。また通常の壁体工事における脱型工程が不要となり、壁体が容易に施工できる。また、コンクリート部材の一部が木質の束材で代替されるので壁体を軽量化でき、また束材により埋設型枠の設置精度の管理も容易になる。 In the present invention, by using wooden boards as embedded formwork for concrete members in walls such as earthquake-resistant walls, the surface of the wall is exposed to the wood, reducing the sense of claustrophobia and creating an aesthetically pleasing appearance. The wall can be easily constructed because the form stripping process required in normal wall construction is no longer necessary. In addition, the wall can be made lighter because some of the concrete members are replaced with wooden beams, and the beams make it easier to control the installation accuracy of the embedded formwork.

記2枚の前記埋設型枠が連結材により連結されることも望ましい。
建物の内壁等では、壁体の両面を木現しとすることが美観の面で特に好ましい。この場合、コンクリート部材を挟んだ2枚の埋設型枠を連結材で連結することで、連結材が、2枚の埋設型枠の間にコンクリートを打設する際に埋設型枠に加わる側圧に抵抗し、埋設型枠の間隔を保持できる。また埋設型枠がコンクリート部材を拘束することで、壁体の耐力、靭性等の向上も期待できる。
It is also preferable that the two buried formwork pieces are connected by a connecting material.
For the interior walls of buildings, it is particularly preferable to have exposed wood on both sides of the wall for aesthetic reasons. In this case, by connecting two embedded forms sandwiching a concrete member with a connecting material, the connecting material can resist the lateral pressure applied to the embedded forms when concrete is poured between the two embedded forms, and maintain the distance between the embedded forms. In addition, the embedded formwork can be expected to improve the strength and toughness of the wall by restraining the concrete member.

前記壁体は、前記埋設型枠と前記コンクリート部材を一体化するためのせん断補強材を有することが望ましい。
これにより埋設型枠とコンクリート部材が一体化し、壁体の面外剛性が向上してその面外変形が抑制される。
It is desirable that the wall has shear reinforcement for integrating the buried formwork and the concrete member.
This integrates the buried formwork and the concrete member, improving the out-of-plane rigidity of the wall and suppressing its out-of-plane deformation.

本発明によれば、施工が容易で美観に優れた壁体等を提供できる。 The present invention provides walls and other structures that are easy to construct and have a beautiful appearance.

耐震壁1を示す図。FIG. 耐震壁1の構築方法を示す図。FIG. 2 is a diagram showing a method of constructing a seismic wall 1. ボルト6とナット7を示す図。A diagram showing a bolt 6 and a nut 7. ドリフトピン8、棒材9、9a、コッター45、カプラー10を示す図。A diagram showing the drift pin 8, the rods 9, 9a, the cotter 45, and the coupler 10. 耐震壁1の配置の例。An example of the placement of earthquake-resistant walls 1. 耐震壁1a、1bを示す図。FIG. 埋設型枠4の小口面にコッター45、棒材46を設ける例。An example in which a cotter 45 and a bar 46 are provided on the end surface of an embedded formwork 4. 引張材47を示す図。A diagram showing tension member 47. 束材49を示す図。A diagram showing bundle material 49.

以下、図面に基づいて本発明の好適な実施形態について詳細に説明する。 The following describes in detail a preferred embodiment of the present invention with reference to the drawings.

図1は本発明の壁体の実施形態に係る耐震壁1を示す図である。図1(a)は耐震壁1の立面図、図1(b)は図1(a)の線A-Aに沿った水平方向の断面図である。 Figure 1 shows a seismic wall 1 according to an embodiment of the wall of the present invention. Figure 1(a) is an elevational view of the seismic wall 1, and Figure 1(b) is a horizontal cross-sectional view taken along line A-A in Figure 1(a).

図1に示すように、耐震壁1は、柱2と梁3とに囲まれた構面内に配置される。柱2と梁3はRC部材であるが、鉄骨部材でもよい。 As shown in Figure 1, the earthquake-resistant wall 1 is placed within a structural plane surrounded by columns 2 and beams 3. The columns 2 and beams 3 are reinforced concrete members, but they may also be steel members.

耐震壁1は、埋設型枠4、コンクリート部材5、ボルト6、ナット7等を有する。 The earthquake-resistant wall 1 includes an embedded formwork 4, a concrete member 5, bolts 6, nuts 7, etc.

埋設型枠4は、CLT(Cross Laminated Timber)、LVL(Laminated Veneer Lumber)、集成材などの木質材料により形成された板状の部材であり、コンクリート部材5と共に地震力を負担する。本実施形態では、2枚の埋設型枠4が、板面同士が対向するように配置される。また柱2により長期荷重を負担する設計とすることで、埋設型枠4を長期荷重の負担を考慮する部材として取り扱わずに済み、当該部材に要求される耐火被覆が不要になる。 The buried formwork 4 is a plate-like member made of wood materials such as CLT (Cross Laminated Timber), LVL (Laminated Veneer Lumber), and laminated timber, and bears earthquake forces together with the concrete member 5. In this embodiment, two buried formworks 4 are arranged with their plate surfaces facing each other. Furthermore, by designing the columns 2 to bear long-term loads, the buried formwork 4 does not need to be treated as a member that requires long-term load bearing, and the fire-resistant coating required for this member is not required.

ここで、埋設型枠4としては、CLTを特に好適に用いることができる。すなわち、地震力等の外力には正負があり1方向からの力ではない。そのため、埋設型枠4の材料としては、繊維方向の強度が高く繊維直交方向の強度が低い異方性材料である通常の木質材料よりも、木材を繊維方向が直交するように積層接着することで方向毎の性質の差異を低減したCLTが優れている。 Here, CLT is particularly suitable for use as the embedded formwork 4. In other words, external forces such as earthquakes have positive and negative forces and are not forces that come from one direction. For this reason, CLT is superior as a material for the embedded formwork 4 to regular wood materials, which are anisotropic materials with high strength in the fiber direction and low strength in the direction perpendicular to the fiber. CLT is superior because it reduces the difference in properties between directions by laminating and gluing wood pieces so that the fiber directions are perpendicular to each other.

コンクリート部材5は、2枚の埋設型枠4の内側に設けられる板状の部材である。本実施形態の耐震壁1では、埋設型枠4が地震力を負担することで、コンクリート部材5の厚さを一般的な耐震壁より薄くでき、コンクリート量の低減による環境負荷の軽減、軽量化を実現できる。ただし、耐震壁1ではコンクリート部材5を主な耐震要素とすることから、原則としてコンクリート部材5の厚さは埋設型枠4よりも大きい。しかしながら、環境面や耐震壁1の重量に配慮してコンクリート部材5を埋設型枠4より薄くすることも考えられる。 The concrete members 5 are plate-shaped members that are placed inside the two buried formwork 4. In the earthquake-resistant wall 1 of this embodiment, the buried formwork 4 bears the earthquake force, so the thickness of the concrete members 5 can be made thinner than that of a typical earthquake-resistant wall, and the amount of concrete can be reduced, reducing the environmental load and weight. However, since the concrete members 5 are the main earthquake-resistant element of the earthquake-resistant wall 1, the concrete members 5 are generally thicker than the buried formwork 4. However, it is also possible to make the concrete members 5 thinner than the buried formwork 4 in consideration of the environment and the weight of the earthquake-resistant wall 1.

コンクリート部材5は、コンクリート51に補強筋として横筋52と縦筋53を埋設したものである。横筋52は埋設型枠4と平行に配置される水平方向の鉄筋であり、鉛直方向に間隔を空けて複数本設けられる。縦筋53は鉛直方向の鉄筋であり、横筋52に沿って水平方向に間隔を空けて複数本設けられる。 The concrete member 5 is made by embedding horizontal bars 52 and vertical bars 53 as reinforcing bars in concrete 51. The horizontal bars 52 are horizontal reinforcing bars arranged parallel to the embedded formwork 4, and multiple bars are provided at intervals in the vertical direction. The vertical bars 53 are vertical reinforcing bars, and multiple bars are provided at intervals in the horizontal direction along the horizontal bars 52.

これらの補強筋はシングル配筋として配置され、横筋52は平面において一列のみ設けられる。複数本の縦筋53は、横筋52の両埋設型枠4側に交互に配置される。このように縦筋53を千鳥状配置とすることで、横筋52の片側のみに縦筋53が配置される場合と比較して、地震時等に耐震壁1に加わる圧縮力に対し、耐震壁1の面外変形を抑制できる。なお、上下複数本の横筋52を、縦筋53の両埋設型枠4側に交互に配置することも可能である。 These reinforcing bars are arranged as single reinforcements, and the horizontal bars 52 are arranged in only one row in the plane. The multiple vertical bars 53 are arranged alternately on both buried formwork 4 sides of the horizontal bars 52. By arranging the vertical bars 53 in a staggered pattern in this way, out-of-plane deformation of the earthquake-resistant wall 1 can be suppressed against compressive forces applied to the earthquake-resistant wall 1 during an earthquake, etc., compared to when the vertical bars 53 are arranged only on one side of the horizontal bars 52. It is also possible to arrange multiple horizontal bars 52 on the top and bottom alternately on both buried formwork 4 sides of the vertical bars 53.

ボルト6とナット7(以下、ボルト6等ということがある)は2枚の埋設型枠4を連結する連結材であり、ボルト6は埋設型枠4とコンクリート部材5の間のせん断補強材としても機能する。すなわち、耐震壁1の面外変形時に埋設型枠4とコンクリート部材5の間で生じるせん断力にボルト6が抵抗することで、埋設型枠4とコンクリート部材5が構造的に一体化し、耐震壁1の面外剛性が向上してその面外変形が抑制される。ボルト6等は、水平方向および鉛直方向に間隔を空けて複数配置される。 The bolts 6 and nuts 7 (hereinafter sometimes referred to as bolts 6, etc.) are connecting members that connect two pieces of embedded formwork 4, and the bolts 6 also function as shear reinforcement between the embedded formwork 4 and the concrete member 5. In other words, the bolts 6 resist the shear force that occurs between the embedded formwork 4 and the concrete member 5 when the earthquake-resistant wall 1 undergoes out-of-plane deformation, thereby structurally integrating the embedded formwork 4 and the concrete member 5, improving the out-of-plane rigidity of the earthquake-resistant wall 1 and suppressing its out-of-plane deformation. Multiple bolts 6, etc. are arranged at intervals in the horizontal and vertical directions.

図2は耐震壁1の構築方法を示す図である。本実施形態では、図2(a)に示すように耐震壁1のコンクリート部材5の補強筋(横筋52および縦筋53)と柱2の補強筋21を配筋した後、図2(b)に示すように柱2を構築する。前記したように柱2はRC部材であり、補強筋21の周囲に型枠(不図示)を配置してコンクリートを打設することで構築される。 Figure 2 shows a method for constructing an earthquake-resistant wall 1. In this embodiment, after arranging the reinforcing bars (horizontal bars 52 and vertical bars 53) of the concrete member 5 of the earthquake-resistant wall 1 and the reinforcing bars 21 of the column 2 as shown in Figure 2(a), the column 2 is constructed as shown in Figure 2(b). As mentioned above, the column 2 is an RC member, and is constructed by placing formwork (not shown) around the reinforcing bars 21 and pouring concrete into it.

本実施形態では、その後、図2(c)に示すように柱2の間で2枚の埋設型枠4を対向させて配置する。ここで、図3(a)に示すように、2枚の埋設型枠4には頭付きのボルト6の軸部を通すための貫通孔41が設けられる。ボルト6の軸部を一方の埋設型枠4側から両埋設型枠4の貫通孔41に通し、他方の埋設型枠4の貫通孔41から突出した軸部の先端にナット7を締め込むことにより、図3(b)に示すように2枚の埋設型枠4が連結される。ボルト6の頭部とナット7は、埋設型枠4の外面に設けた凹部42に収容される。ただし、埋設型枠4の壁面外にボルト6の頭部とナット7が突出する形(不図示)で連結されていても構わない。 In this embodiment, two embedded forms 4 are then placed facing each other between the columns 2 as shown in FIG. 2(c). Here, as shown in FIG. 3(a), the two embedded forms 4 are provided with through holes 41 for passing the shafts of the headed bolts 6. The shafts of the bolts 6 are passed through the through holes 41 of both embedded forms 4 from one embedded form 4 side, and the nuts 7 are fastened to the tips of the shafts protruding from the through holes 41 of the other embedded form 4, thereby connecting the two embedded forms 4 as shown in FIG. 3(b). The heads and nuts 7 of the bolts 6 are accommodated in recesses 42 provided on the outer surface of the embedded form 4. However, the heads and nuts 7 of the bolts 6 may be connected in a form that protrudes (not shown) outside the wall surface of the embedded form 4.

ボルト6とナット7により2枚の埋設型枠4を連結した状態を図2(d)に示す。この後、2枚の埋設型枠4の内側にコンクリート51を打設することで、図1に示す耐震壁1が構築される。ボルト6等は、コンクリート51の打設時に埋設型枠4に加わる側圧に抵抗し、埋設型枠4の間隔を保持する。埋設型枠4は、表面仕上げ材を兼ねた永久型枠としてコンクリート51の硬化後も残置される。 Figure 2(d) shows the state in which the two buried forms 4 are connected by the bolts 6 and nuts 7. After this, concrete 51 is poured inside the two buried forms 4 to construct the earthquake-resistant wall 1 shown in Figure 1. The bolts 6 and the like resist the lateral pressure applied to the buried forms 4 when the concrete 51 is poured, and maintain the spacing between the buried forms 4. The buried forms 4 are left in place even after the concrete 51 hardens, as permanent forms that also serve as surface finishing materials.

なお、埋設型枠4の収まりとして、埋設型枠4が柱2や梁3に直接接しない(埋設型枠4と柱2や梁3の間に若干の隙間がある)場合もあり、このようなケースでは、上記隙間に外側から当て板をしてコンクリート51を打設すればよい。 Note that the embedded formwork 4 may not be in direct contact with the columns 2 or beams 3 (there may be a small gap between the embedded formwork 4 and the columns 2 or beams 3), and in such cases, a backing plate may be placed from the outside in the gap and concrete 51 may be poured.

以上説明したように、本実施形態では、耐震壁1について、木質板材をコンクリート部材5の埋設型枠4として用いることで、耐震壁1の表面が木現しとなって閉塞感が低減され、美観に優れる。また通常の壁体工事における脱型工程が不要となり、耐震壁1を容易に施工できる。 As described above, in this embodiment, by using wooden boards as the embedded formwork 4 for the concrete members 5 in the earthquake-resistant wall 1, the surface of the earthquake-resistant wall 1 is exposed to the wood, reducing the feeling of claustrophobia and creating an aesthetically pleasing appearance. In addition, the form stripping process that is required in normal wall construction is no longer necessary, making the earthquake-resistant wall 1 easy to construct.

さらに、埋設型枠4に地震力を負担させることで、耐震壁1の剛性や耐力が向上する。結果、耐震壁1におけるコンクリート量を低減でき、環境面で優れ、耐震壁1も軽量化できる。またコンクリート部材5が埋設型枠4で覆われるので、地震時などにコンクリート部材5にひび割れが生じても耐震壁1の美観が損なわれず、ひび割れへの水の侵入やそれに伴う補強筋の腐食を防止できる。 Furthermore, by having the buried formwork 4 bear the seismic force, the rigidity and strength of the earthquake-resistant wall 1 are improved. As a result, the amount of concrete in the earthquake-resistant wall 1 can be reduced, which is environmentally friendly and allows the earthquake-resistant wall 1 to be made lighter. In addition, because the concrete members 5 are covered by the buried formwork 4, the aesthetic appearance of the earthquake-resistant wall 1 is not marred even if cracks occur in the concrete members 5 during an earthquake, and water intrusion into the cracks and the associated corrosion of the reinforcing bars can be prevented.

また本実施形態では、2枚の埋設型枠4の間にコンクリート部材5を設けて耐震壁1とすることで、耐震壁1の両面が木現しとなり、耐震壁1を建物の内壁に用いる場合等において特に好ましい美観となる。 In addition, in this embodiment, by placing a concrete member 5 between two embedded formworks 4 to form the earthquake-resistant wall 1, both sides of the earthquake-resistant wall 1 are exposed to wood, which creates a particularly attractive appearance when the earthquake-resistant wall 1 is used as an interior wall of a building.

ボルト6等は、2枚の埋設型枠4の間にコンクリート51を打設する際に埋設型枠4に加わる側圧に抵抗し、埋設型枠4の間隔を保持する。また埋設型枠4がコンクリート部材5を拘束することで、耐震壁1の耐力、靭性等の向上も期待できる。 The bolts 6 and the like resist the lateral pressure applied to the embedded formwork 4 when concrete 51 is poured between the two embedded formworks 4, and maintain the distance between the embedded formworks 4. In addition, the embedded formwork 4 restrains the concrete members 5, which is expected to improve the strength, toughness, etc. of the earthquake-resistant wall 1.

また、ボルト6は埋設型枠4とコンクリート部材5の間のせん断補強材としても機能する。すなわち、地震力や建物の長期荷重などにより柱2や梁3から耐震壁1に圧縮力が作用すると、耐震壁1の面外変形により埋設型枠4とコンクリート部材5との境界面にせん断(ずれ)が生じる可能性があるが、ボルト6をこのせん断に抵抗するせん断補強材として用いることで、埋設型枠4とコンクリート部材5が一体化し、耐震壁1の面外剛性が向上してその面外変形を抑制できる。 The bolts 6 also function as shear reinforcement between the buried formwork 4 and the concrete member 5. In other words, when compressive forces act on the earthquake-resistant wall 1 from the columns 2 and beams 3 due to earthquake forces or long-term building loads, shear (shift) may occur at the interface between the buried formwork 4 and the concrete member 5 due to out-of-plane deformation of the earthquake-resistant wall 1. However, by using the bolts 6 as shear reinforcement to resist this shear, the buried formwork 4 and the concrete member 5 are integrated, the out-of-plane rigidity of the earthquake-resistant wall 1 is improved, and the out-of-plane deformation can be suppressed.

さらに、埋設型枠4と柱2や梁3との間に隙間がある場合、ボルト6はコンクリート部材5に加わった地震力を埋設型枠4に伝達し、コンクリート部材5の応力を緩和させるためにも有効である。 Furthermore, if there is a gap between the buried formwork 4 and the columns 2 or beams 3, the bolts 6 are effective in transmitting the seismic force applied to the concrete member 5 to the buried formwork 4 and relieving the stress in the concrete member 5.

ただし、埋設型枠4とコンクリート部材5の間のせん断を問題としない場合や、埋設型枠4が柱2および梁3に直接接している場合等では、ボルト6を省略することも可能である。この場合、コンクリート51の打設時には、埋設型枠4の外側に仮設のサポート材(不図示)を設けて埋設型枠4に加わる側圧を支持させ、埋設型枠4の間隔を保持する。あるいは埋設型枠4を連結する連結材としてセパレータ等を用いてもよい。 However, in cases where shear between the buried formwork 4 and the concrete member 5 is not an issue, or where the buried formwork 4 is in direct contact with the columns 2 and beams 3, the bolts 6 can be omitted. In this case, when pouring the concrete 51, a temporary support material (not shown) is provided on the outside of the buried formwork 4 to support the lateral pressure applied to the buried formwork 4 and maintain the spacing of the buried formwork 4. Alternatively, a separator or the like may be used as a connecting material to connect the buried formwork 4.

本実施形態では、コンクリート部材5の補強筋をシングル配筋とすることにより、配筋作業の省力化とコストダウンが可能になり、鉄筋のかぶり厚も確保しやすく鉄筋の腐食防止にも有効である。通常のRC耐震壁で壁厚が200mm以上の場合にはダブル配筋が推奨されるが、本実施形態の耐震壁1では、コンクリート部材5の厚さが200mm以上であっても、横筋52および縦筋53の径を大きくすることによりシングル配筋を実現することが可能である。 In this embodiment, the reinforcing bars of the concrete member 5 are single-bar arrangement, which reduces the labor and costs involved in the bar arrangement work, makes it easier to ensure the cover thickness of the reinforcing bars, and is also effective in preventing corrosion of the reinforcing bars. For normal RC earthquake-resistant walls with a wall thickness of 200 mm or more, double reinforcement is recommended, but in the earthquake-resistant wall 1 of this embodiment, single reinforcement can be achieved by increasing the diameter of the horizontal bars 52 and vertical bars 53, even if the thickness of the concrete member 5 is 200 mm or more.

しかしながら、本発明が以上の実施形態に限ることはない。例えば本実施形態では埋設型枠4の連結材兼せん断補強材としてボルト6を用いたが、図4(a)に示すように、せん断補強材としてドリフトピン8を用いてもよい。 However, the present invention is not limited to the above embodiment. For example, in this embodiment, bolts 6 are used as connecting members and shear reinforcement members for the buried formwork 4, but drift pins 8 may also be used as shear reinforcement members, as shown in FIG. 4(a).

この場合、2枚の埋設型枠4のうち一方に貫通孔43を、他方に凹部44を設け、ドリフトピン8を貫通孔43に挿入して凹部44に向かって押し込むことで、ドリフトピン8の先端を凹部44内に位置させ、ドリフトピン8の基端を貫通孔43内に位置させる。その後、貫通孔43の残りの空間431を栓(不図示)で塞ぐことも可能である。 In this case, a through hole 43 is provided in one of the two embedded formwork sheets 4 and a recess 44 is provided in the other, and the drift pin 8 is inserted into the through hole 43 and pushed toward the recess 44, so that the tip of the drift pin 8 is positioned in the recess 44 and the base end of the drift pin 8 is positioned in the through hole 43. After that, the remaining space 431 of the through hole 43 can be blocked with a plug (not shown).

ドリフトピン8は、2枚の埋設型枠4をセットした後で配置してもよいが、一方の埋設型枠4の貫通孔43に予めドリフトピン8を挿入した状態で両埋設型枠4をセットし、その後ドリフトピン8を他方の埋設型枠4の凹部44に向かって押し込んでもよい。 The drift pin 8 may be placed after the two embedded formwork 4 are set, but it is also possible to set both embedded formwork 4 with the drift pin 8 already inserted into the through hole 43 of one embedded formwork 4, and then push the drift pin 8 into the recess 44 of the other embedded formwork 4.

その他、せん断補強材としては、図4(b)に示すように埋設型枠4から内側に突出する棒材(ダボ)9を設けてもよく、図4(c)に示すように棒材9aの先端を拡径させてもよい。 Other shear reinforcement materials may include rods (dowels) 9 protruding inward from the embedded formwork 4 as shown in Figure 4(b), or the tips of rods 9a may be enlarged as shown in Figure 4(c).

さらに、図4(d)に示すように、2枚の埋設型枠4の内面にコッター(凹部)45を形成してもよく、この場合、埋設型枠4のコッター45にコンクリート51が入り込むことで埋設型枠4とコンクリート部材5が一体化する。 Furthermore, as shown in FIG. 4(d), cotters (recesses) 45 may be formed on the inner surfaces of the two embedded formwork 4. In this case, the embedded formwork 4 and the concrete member 5 are integrated by the concrete 51 entering the cotters 45 of the embedded formwork 4.

また図4(e)に示すように、棒材9としてネジ鉄筋やミリネジを用い、2枚の埋設型枠4から突出する棒材9の先端をカプラー10に螺合させ、棒材9同士をカプラー10によって連結してもよい。この場合、棒材9とカプラー10が埋設型枠4の連結材としても機能し、埋設型枠4によるコンクリート部材5の拘束効果も期待できる。 Also, as shown in FIG. 4(e), threaded rebar or metric screws may be used as the rods 9, and the tips of the rods 9 protruding from the two embedded formwork 4 may be screwed into couplers 10 to connect the rods 9 to each other via the couplers 10. In this case, the rods 9 and couplers 10 also function as connecting members for the embedded formwork 4, and the embedded formwork 4 can also be expected to have a restraining effect on the concrete member 5.

また本実施形態では柱2と梁3で囲まれた構面内に立面視で1枚の埋設型枠4が配置されているが、図5(a)に示すように上記構面内に複数枚(図の例では2枚)の埋設型枠4が並置されてもよい。さらに、図5(b)に示すように、建物の上下層に耐震壁1を配置し、これらの耐震壁1をPC鋼棒11により導入したプレストレス力で緊結することで、耐力を向上させることもできる。 In this embodiment, one embedded formwork 4 is arranged in an elevation view within the structural surface bounded by the columns 2 and beams 3, but as shown in FIG. 5(a), multiple embedded formworks 4 (two in the illustrated example) may be arranged side by side within the structural surface. Furthermore, as shown in FIG. 5(b), the strength can be improved by arranging earthquake-resistant walls 1 on the upper and lower floors of the building and fastening these earthquake-resistant walls 1 with prestress introduced by PC steel bars 11.

また、壁式構造とする場合等では、耐震壁1の全周が柱2や梁3に囲まれていなくてもよく、例えば耐震壁1の平面における端部の一方のみに柱2が設けられていてもよい。また耐震壁1を、図5(c)に示すように平面視でL字状に交差するように設けてもよく、平面視で十字状に交差するように設けることも可能である。さらに、耐震壁1に開口を設けることも可能であり、窓や出入口などとして用いることができる。耐震壁1では、必要に応じて開口の補強材も設けられる。 In addition, in the case of a wall structure, the entire circumference of the earthquake-resistant wall 1 does not have to be surrounded by columns 2 and beams 3; for example, a column 2 may be provided at only one end of the earthquake-resistant wall 1 in its plane. The earthquake-resistant wall 1 may also be provided so as to intersect in an L-shape in plan view as shown in FIG. 5(c), or so as to intersect in a cross shape in plan view. Furthermore, openings can be provided in the earthquake-resistant wall 1, and they can be used as windows or entrances. Reinforcement materials for the openings can also be provided in the earthquake-resistant wall 1 as necessary.

また、本実施形態ではコンクリート部材5を鉄筋コンクリートとしているが、図6(a)の耐震壁1aのように、横筋52や縦筋53を省略し、コンクリート部材5aを無筋コンクリートとしてもよい。本実施形態では埋設型枠4に地震力を負担させることでコンクリート部材5aを薄くできるが、耐震壁1aでは埋設型枠4の座屈防止効果によって部材の薄さを補える。また、無筋コンクリートはひび割れが入りやすいが、埋設型枠4で覆うことで美観が保たれる。なおコンクリート部材5aに用いるコンクリートを繊維補強コンクリートとし、靭性を向上させてもよい。 In this embodiment, the concrete member 5 is made of reinforced concrete, but as in the case of the earthquake-resistant wall 1a in FIG. 6(a), the horizontal reinforcement 52 and vertical reinforcement 53 may be omitted and the concrete member 5a may be made of unreinforced concrete. In this embodiment, the concrete member 5a can be made thin by having the buried formwork 4 bear the earthquake force, but in the earthquake-resistant wall 1a, the buckling prevention effect of the buried formwork 4 compensates for the thinness of the member. Also, unreinforced concrete is prone to cracking, but covering it with the buried formwork 4 maintains its aesthetic appearance. The concrete used for the concrete member 5a may be made of fiber-reinforced concrete to improve toughness.

さらに、本実施形態では2枚の埋設型枠4の内側にコンクリート部材5を設けているが、図6(b)の耐震壁1bのように、2枚の埋設型枠4の一方を省略し、1枚の埋設型枠4の側方にコンクリート部材5を設けた構成としてもよい。 In addition, in this embodiment, the concrete member 5 is provided inside the two embedded formwork 4, but as in the earthquake-resistant wall 1b in Figure 6 (b), one of the two embedded formwork 4 may be omitted and the concrete member 5 may be provided to the side of one embedded formwork 4.

例えば耐震壁を建物の外壁に適用する場合など、耐火仕様の制限により片面を耐火材料とする時には、埋設型枠4と通常型枠の間にコンクリート51を打設し、通常型枠を脱型して図6(b)に示すように片面を耐火材料であるコンクリート部材5とすることができる。なお図6(b)の例では埋設型枠4とコンクリート部材5の間のせん断補強材として前記した棒材9(図4(b)参照)を用いている。 For example, when applying an earthquake-resistant wall to the exterior wall of a building, if one side must be made of fire-resistant material due to restrictions in fire-resistance specifications, concrete 51 can be poured between the embedded formwork 4 and the normal formwork, and the normal formwork can be removed to leave one side of the concrete member 5 made of fire-resistant material, as shown in Figure 6(b). In the example of Figure 6(b), the bar material 9 (see Figure 4(b)) described above is used as shear reinforcement between the embedded formwork 4 and the concrete member 5.

また本実施形態では、埋設型枠4の小口面を未処理の平らな状態としたが、埋設型枠4の柱2や梁3に面した小口面、あるいは図5(a)のように埋設型枠4を並置する場合の隣接する埋設型枠4の小口面について、接着剤やダボ、コッター等を採用し、部材間のせん断力に対し抵抗させてもよい。 In this embodiment, the end faces of the buried formwork 4 are left flat and untreated, but adhesives, dowels, cotters, etc. may be used on the end faces of the buried formwork 4 that face the columns 2 or beams 3, or on the end faces of adjacent buried formwork 4 when buried formwork 4 are placed side by side as in Figure 5(a), to resist shear forces between the members.

接着剤を用いる場合は、埋設型枠4の小口面に接着剤を塗布するだけでなく、埋設型枠4の小口面と柱2や梁3との間、あるいは、隣接する埋設型枠4の小口面の間に隙間を設け、当該隙間に接着剤を圧入してもよい。 When using adhesive, the adhesive can be applied not only to the end face of the embedded formwork 4, but also between the end face of the embedded formwork 4 and the column 2 or beam 3, or between the end faces of adjacent embedded formwork 4, and the adhesive can be pressed into the gap.

また図7(a)は小口面にコッター45を形成した例であり、隣接する埋設型枠4の小口面を凹凸形状に切削してコッター45を設け、両小口面の凹凸を互いに噛み合わせたものである。 Figure 7(a) shows an example in which a cotter 45 is formed on the end surface, where the end surface of an adjacent buried formwork 4 is cut into an uneven shape to provide a cotter 45, and the unevenness of both end surfaces is interlocked with each other.

図7(b)はダボとコッターを併用する例であり、埋設型枠4の梁3に面した小口面にコッター45が形成され、コッター45の底面から梁3側に突出するように埋設型枠4に棒材(ダボ)46が固定される。棒材46にはラグスクリューボルトなどを用いることができる。埋設型枠4の小口面と梁3との間には後打ちモルタル12などの充填材が打設され、棒材46の突出部が後打ちモルタル12に埋設される。 Figure 7 (b) shows an example of using a dowel and a cotter together, where a cotter 45 is formed on the end surface of the buried formwork 4 facing the beam 3, and a bar (dowel) 46 is fixed to the buried formwork 4 so that it protrudes from the bottom surface of the cotter 45 toward the beam 3. A lag screw bolt or the like can be used for the bar 46. A filler such as post-cast mortar 12 is poured between the end surface of the buried formwork 4 and the beam 3, and the protruding part of the bar 46 is embedded in the post-cast mortar 12.

図7(b)は埋設型枠4の梁3に面した小口面の例であるが、埋設型枠4の柱2に面した小口面を同様の構成とすることも可能であり、柱2に面した小口面と梁3に面した小口面の双方を同様の構成とすることも可能である。 Figure 7 (b) shows an example of the end surface of the buried formwork 4 facing the beam 3, but it is also possible for the end surface of the buried formwork 4 facing the column 2 to have a similar configuration, and it is also possible for both the end surface facing the column 2 and the end surface facing the beam 3 to have a similar configuration.

また図8(a)に示すように、埋設型枠4と梁3に跨るように引張材47を設けてもよい。引張材47には例えば鉄筋やボルトを用いることができる。図8(a)の例では、引張材47が耐震壁1の上下辺の両端部の計4箇所に配置される。 As shown in FIG. 8(a), tension members 47 may be provided across the embedded formwork 4 and the beam 3. For example, reinforcing bars or bolts may be used as the tension members 47. In the example of FIG. 8(a), the tension members 47 are placed at four locations in total, at both ends of the top and bottom edges of the earthquake-resistant wall 1.

地震等により耐震壁1に図8(a)の矢印aに示すように層間せん断力が作用すると、耐震壁1に生じる回転モーメントにより、矢印bに示すように耐震壁1の上下辺の一方の端部において埋設型枠4と梁3が離間する方向の引張力が生じる。また矢印a’に示すように耐震壁1に反対方向の層間せん断力が作用すると、耐震壁1に生じる反対方向の回転モーメントにより、矢印b’に示すように耐震壁1の上下辺の他方の端部において埋設型枠4と梁3が離間する方向の引張力が生じる。引張材47はこれらの引張力に抵抗し、耐震壁1の耐力を向上させることができる。 When an interlayer shear force acts on the earthquake-resistant wall 1 as shown by arrow a in FIG. 8(a) due to an earthquake or the like, a rotational moment is generated in the earthquake-resistant wall 1, which generates a tensile force in the direction that separates the embedded formwork 4 and the beam 3 at one end of the upper or lower side of the earthquake-resistant wall 1 as shown by arrow b. When an interlayer shear force acts on the earthquake-resistant wall 1 in the opposite direction as shown by arrow a', a rotational moment in the opposite direction is generated in the earthquake-resistant wall 1, which generates a tensile force in the direction that separates the embedded formwork 4 and the beam 3 at the other end of the upper or lower side of the earthquake-resistant wall 1 as shown by arrow b'. The tension member 47 resists these tensile forces and can improve the strength of the earthquake-resistant wall 1.

なお、梁3がRC部材である場合は、埋設型枠4の小口面と梁3のコンクリートに引張材47を埋設するが、梁3が鉄骨部材である場合は、図8(b)に示すように梁3(H形鋼)のフランジに形成された孔に引張材47である頭付きボルトの軸部を通し、当該軸部の先端を埋設型枠4の小口面に埋め込まれた雌ネジ48に螺合すればよい。 If the beam 3 is an RC member, the tension member 47 is embedded in the end face of the embedded formwork 4 and in the concrete of the beam 3. If the beam 3 is a steel member, the shaft of a headed bolt, which is the tension member 47, is passed through a hole formed in the flange of the beam 3 (H-shaped steel) as shown in Figure 8 (b), and the tip of the shaft is screwed into a female screw 48 embedded in the end face of the embedded formwork 4.

また図9(a)に示すように、2枚の埋設型枠4を連結するように木質材料による束材49を設けてもよい。これにより埋設型枠4間のコンクリート部材5の一部を束材49に代替し、耐震壁1の重量を低減できる。また束材49により埋設型枠4の設置精度の管理が容易になる。 As shown in FIG. 9(a), a wooden beam 49 may be provided to connect two embedded forms 4. This allows a portion of the concrete member 5 between the embedded forms 4 to be replaced with the beam 49, reducing the weight of the earthquake-resistant wall 1. The beam 49 also makes it easier to control the installation accuracy of the embedded forms 4.

束材49は柱状の部材であり、例えば埋設型枠4の全高さに亘って配置される。また束材49は、埋設型枠4と平行な水平方向に間隔を空けて複数本設けられても良い。 The beams 49 are columnar members, and are arranged, for example, over the entire height of the buried formwork 4. In addition, multiple beams 49 may be provided at intervals in the horizontal direction parallel to the buried formwork 4.

束材49には、CLTを特に好適に用いることができる。すなわち、地震時には耐震壁1の面内で斜め方向の圧縮力が加わる場合があるが、この際、異方性材料である通常の木質材料を用いると、強度の低い繊維直交方向にも力が加わり、耐力や剛性の低下を起こしやすくなる。一方、CLTは前記したように異方性を有しないため、CLTを束材49に用いることで上記した耐力や剛性の低下を防止できる。 CLT is particularly suitable for use as the bundle 49. In other words, during an earthquake, compressive forces may be applied diagonally within the plane of the seismic wall 1. In this case, if normal wood materials, which are anisotropic materials, are used, forces will also be applied in the direction perpendicular to the fibers, which has low strength, making it more likely that strength and rigidity will decrease. On the other hand, as mentioned above, CLT does not have anisotropy, so using CLT for the bundle 49 can prevent the above-mentioned decrease in strength and rigidity.

図9(a)の例では、横筋52を通すため、柱状の束材49に横筋52に沿った水平方向の貫通孔491が設けられるが、図9(b)に示すように鉛直方向に間隔を空けて束材49を設けてもよい。横筋52は、上下の束材49の間に通して配置することができる。なお図9(a)、(b)ではコンクリート51の図示を省略している。 In the example of FIG. 9(a), horizontal through holes 491 are provided in the columnar beams 49 along the beams 52 to allow the beams 52 to pass through, but the beams 49 may be provided at intervals in the vertical direction as shown in FIG. 9(b). The beams 52 can be arranged to pass between the upper and lower beams 49. Note that the concrete 51 is not shown in FIGS. 9(a) and (b).

埋設型枠4と束材49は、接着剤、ボルト、ドリフトピン、ビス等を用いて連結される。耐震壁1の施工時は、一方の埋設型枠4を耐震壁1の位置にセットした後、当該埋設型枠4に束材49を取り付けてもよいが、予め1枚の埋設型枠4に束材49を取り付けたものを耐震壁1の位置にセットしてもよい。 The buried formwork 4 and the beams 49 are connected using adhesives, bolts, drift pins, screws, etc. When constructing the earthquake-resistant wall 1, one of the buried formworks 4 may be set at the position of the earthquake-resistant wall 1, and then the beams 49 may be attached to that buried formwork 4, or one buried formwork 4 with the beams 49 attached in advance may be set at the position of the earthquake-resistant wall 1.

さらに、図9(c)に示すように、2枚の埋設型枠4を束材49で連結したものをプレキャスト部材とし、当該プレキャスト部材を施工現場まで運搬して耐震壁1の位置にセットすることもできる。これは図1のようにボルト6等を用いるケース、図4(a)のようにドリフトピン8を用いるケース、図4(e)に示すように棒材9同士をカプラー10で連結するケースも同様であり、プレキャスト化することで耐震壁1の施工が容易となる。 Furthermore, as shown in Figure 9(c), two embedded formwork 4 connected with a beam 49 can be used as a precast member, which can then be transported to the construction site and set in place at the seismic wall 1. This is also true for cases where bolts 6, etc. are used as in Figure 1, where drift pins 8 are used as in Figure 4(a), and where rods 9 are connected with couplers 10 as in Figure 4(e), and precasting makes it easier to construct the seismic wall 1.

また、埋設型枠4の間のコンクリート部材5を含めて耐震壁1をプレキャスト化することもでき、耐震壁1の施工が更に容易になる。本実施形態では埋設型枠4に地震力を負担させることでコンクリート量を低減し耐震壁1を軽量化できるため、コンクリート部材5を含めてプレキャスト化しても運搬、設置等に問題が生じることはない。ただし、重量面を考慮し、耐震壁1を縦あるいは横に分割したものをプレキャスト化し、現場でプレキャスト部材を組み合わせて耐震壁1を構築してもよい。これは図9(c)のようにコンクリート部材5を除く部分をプレキャスト化する場合でも同様である。 The earthquake-resistant wall 1 can also be precast, including the concrete members 5 between the buried formwork 4, making construction of the earthquake-resistant wall 1 even easier. In this embodiment, the amount of concrete can be reduced by having the buried formwork 4 bear the seismic force, making the earthquake-resistant wall 1 lighter. Therefore, even if the concrete members 5 are precast, there will be no problems with transportation or installation. However, considering the weight, the earthquake-resistant wall 1 can be precast by dividing it vertically or horizontally, and the precast members can be combined on-site to construct the earthquake-resistant wall 1. This is also true when the parts other than the concrete members 5 are precast, as shown in Figure 9(c).

以上、添付図面を参照しながら、本発明に係る好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The above describes preferred embodiments of the present invention with reference to the attached drawings, but the present invention is not limited to these examples. It is clear that a person skilled in the art can come up with various modified or revised examples within the scope of the technical ideas disclosed in this application, and it is understood that these also naturally fall within the technical scope of the present invention.

1、1a、1b:耐震壁
2:柱
3:梁
4:埋設型枠
5、5a:コンクリート部材
6:ボルト
7:ナット
8:ドリフトピン
9、9a、46:棒材
10:カプラー
11:PC鋼棒
12:後打ちモルタル
21:補強筋
41、43、491:貫通孔
42、44:凹部
45:コッター
47:引張材
48:雌ネジ
49:束材
51:コンクリート
52:横筋
53:縦筋
1, 1a, 1b: Earthquake-resistant wall 2: Column 3: Beam 4: Buried formwork 5, 5a: Concrete member 6: Bolt 7: Nut 8: Drift pin 9, 9a, 46: Bar 10: Coupler 11: PC steel bar 12: Post-cast mortar 21: Reinforcement bar 41, 43, 491: Through hole 42, 44: Recess 45: Cotter 47: Tensile material 48: Female screw 49: Bundle 51: Concrete 52: Horizontal bar 53: Vertical bar

Claims (3)

木質材料による板状の埋設型枠と、
2枚の前記埋設型枠の内側に設けられた板状のコンクリート部材と、
前記2枚の前記埋設型枠の間に、鉛直方向に間隔を空けて複数設けられる木質材料による束材と、
を具備し、
コンクリートに埋設される横筋が、複数の前記束材の間を通して配置される
ことを特徴とする壁体。
A plank-shaped embedded formwork made of wood material;
A plate-shaped concrete member provided inside the two embedded formworks;
A plurality of wooden bundles are provided at intervals in the vertical direction between the two embedded formworks;
Equipped with
A horizontal bar to be embedded in concrete is disposed between the plurality of beams.
A wall body characterized by:
記2枚の前記埋設型枠が連結材により連結されることを特徴とする請求項1記載の壁体。 2. The wall structure according to claim 1, wherein the two embedded formworks are connected by a connecting material. 前記埋設型枠と前記コンクリート部材を一体化するためのせん断補強材を有することを特徴とする請求項1または請求項2に記載の壁体。 3. The wall structure according to claim 1, further comprising a shear reinforcement material for integrating the buried formwork and the concrete member.
JP2021000430A 2021-01-05 2021-01-05 Wall Active JP7548826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021000430A JP7548826B2 (en) 2021-01-05 2021-01-05 Wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021000430A JP7548826B2 (en) 2021-01-05 2021-01-05 Wall

Publications (2)

Publication Number Publication Date
JP2022105845A JP2022105845A (en) 2022-07-15
JP7548826B2 true JP7548826B2 (en) 2024-09-10

Family

ID=82365632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021000430A Active JP7548826B2 (en) 2021-01-05 2021-01-05 Wall

Country Status (1)

Country Link
JP (1) JP7548826B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089988A (en) 2003-09-12 2005-04-07 Hirofumi Fujimoto Form unit
JP2008196179A (en) 2007-02-13 2008-08-28 Masayasu Mifuji Makeup placing mold of solid wood material in which temporary member is not used
JP2014133973A (en) 2013-01-08 2014-07-24 Masayasu Mifuji Framework construction method of decorative driving form of solid wood
JP2016216899A (en) 2015-05-14 2016-12-22 株式会社竹中工務店 Earthquake-proof wall structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089988A (en) 2003-09-12 2005-04-07 Hirofumi Fujimoto Form unit
JP2008196179A (en) 2007-02-13 2008-08-28 Masayasu Mifuji Makeup placing mold of solid wood material in which temporary member is not used
JP2014133973A (en) 2013-01-08 2014-07-24 Masayasu Mifuji Framework construction method of decorative driving form of solid wood
JP2016216899A (en) 2015-05-14 2016-12-22 株式会社竹中工務店 Earthquake-proof wall structure

Also Published As

Publication number Publication date
JP2022105845A (en) 2022-07-15

Similar Documents

Publication Publication Date Title
JP7040725B2 (en) building
US9062446B2 (en) Floor element for forming building blocks
JP6530959B2 (en) Seismic wall structure
CN110670720A (en) Connecting structure of prefabricated column and superposed beam and construction method thereof
KR102110559B1 (en) Wall structure for reinforcing joint capability and construction method therefor
JP6713779B2 (en) Beam-column joint structure and beam-column joining method
JP7030754B2 (en) Wall structure and how to build the wall structure
JP7548826B2 (en) Wall
JP7561165B2 (en) Joint structure and method for constructing the joint structure
JP2009155870A (en) Reinforcing structure
KR102408922B1 (en) Seismic retrofit structure using PC panels
JP2009102940A (en) Earthquake-resisting wall
KR102567304B1 (en) Shear reinforcing method of concrete structure using engineering plastic panel attached stress reinforcing brace
KR102578034B1 (en) Assembly construction method of noncombustible engineering plastic panel attached FRP wraping and X-brace for seismic reinforcement of column
JP7538063B2 (en) Wooden members
JP6071752B2 (en) Structural member
JP2014201870A (en) Cwood
JP3909488B2 (en) Seismic reinforcement structure of existing building and its construction method
CN211774531U (en) Connecting structure of prefabricated column and superposed beam
JP2022020037A (en) Earthquake-resistant wall
JP7528013B2 (en) Wooden wall mounting structure
WO2024209782A1 (en) Structure base, structure member, and structure
JP7470243B1 (en) Composite beams and methods for constructing composite beams
JP4083913B2 (en) Seismic reinforcement structure of building
JP7499195B2 (en) Beam-floor joint structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240319

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20240418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240829

R150 Certificate of patent or registration of utility model

Ref document number: 7548826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150